GENETIC DIVERSITY OF GUAVA GENOTYPES EVALUATED USING RAPD MOLECULAR MARKER

B. SHIVA1*, A. NAGARAJA2, RAKESH SINGH3, MANISH SRIVASTAV4
1ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, Delhi 110012, India
2ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, Delhi 110012, India
3ICAR- Nation Bureau of Plant Genetic Resources, New Delhi, 110 012, India
4ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, Delhi 110012, India
* Corresponding Author : banothshivaiari@gmail.com

Received : 08-05-2017     Accepted : 15-05-2017     Published : 28-05-2017
Volume : 9     Issue : 5       Pages : 271 - 274
Genetics 9.5 (2017):271-274

Keywords : Characterization, Polymorphic Information Content, Jacards similarity matrix, Genetic Similarity, RAPD
Academic Editor : Prashant Kisanrao Nimbolkar
Conflict of Interest : None declared
Acknowledgements/Funding : I express my sincere thanks to the Head, Division of Fruits and Horticultural Technology, ICAR- IARI, New Delhi, for providing me support and technical guidance in all course of my field and lab work
Author Contribution : All author equally contributed

Cite - MLA : SHIVA, B., et al "GENETIC DIVERSITY OF GUAVA GENOTYPES EVALUATED USING RAPD MOLECULAR MARKER." International Journal of Genetics 9.5 (2017):271-274.

Cite - APA : SHIVA, B., NAGARAJA, A., SINGH, RAKESH, SRIVASTAV, MANISH (2017). GENETIC DIVERSITY OF GUAVA GENOTYPES EVALUATED USING RAPD MOLECULAR MARKER. International Journal of Genetics, 9 (5), 271-274.

Cite - Chicago : SHIVA, B., A. NAGARAJA, RAKESH SINGH, and MANISH SRIVASTAV. "GENETIC DIVERSITY OF GUAVA GENOTYPES EVALUATED USING RAPD MOLECULAR MARKER." International Journal of Genetics 9, no. 5 (2017):271-274.

Copyright : © 2017, B. SHIVA, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Genetic diversity among 24 genotypes (22 varieties/collection belonging to Psidium guajava and 2 other species) of guava were characterized using Random Amplified Polymorphic DNA (RAPD) markers. Out of 29 RAPD primers used, 10 were found to be monomorphic and 19 showed polymorphism among guava genotypes. Number of alleles detected using polymorphic RAPD primer ranged between 2 (OPA13A) to 11 (OPF02A) with an average of 6 amplicons/primer. High rate of polymorphism was observed reasonably for OPF02A, OPH19A, OPF13A, OPA13A and OPB13A primers. The PIC value ranged from 0.49-0.89 indicates that the markers were quite informative. Based on molecular analysis, Sasri Selection and Sasni Selection were grouped with Allahabad Safeda. Tamil Nadu Selection and Lalit genotypes formed a group at 50% similarity. Psidum freidrichsthalianum formed a group with black guava. Molecular analysis showed a high degree of variation among analyzed guava genotypes indicating an important source of genetic diversity that can be used in the guava improvement program

References

1. Govaerts R., Sobral M., Ashton P. and Barrie F. (2008) World Checklist of Myrtaceae. Kew Publishing, Cumbria.
2. Risterucci A. M., Duval M. F., Rhode W. and Billotte N. (2005) Molecular Ecology Notes., 5, 745–748.
3. Prakash D.P., Narayanaswamy P. and Sondur S.N. (2002) J. Hort. Sci. Biotech., 77(3), 287-293.
4. Singh G. (2005) High density planting in guava application of canopy architecture. ICAR News, 11, 9–10.
5. Alves J. E. and Freitas B. M. (2007) Cienc. Rur., 37, 1281-1286.
6. Subramanyam M. D. and Iyer C. P. A. (1993) Improvement of guava. p. 337-347. In: K.L. Chadha and O.P. Pareek (eds.), Fruit Crops Part 1. Advances of Horticulture Vol. 1.
7. Laksminarayana S. and Moreno R. M. A. (1978) Revista Chapingo Nueva E´ poca, 10, 37–47.
8. Padilla J. S., González G. E., Esquivel V. F., Mercado S. E., Hernández D. S. and Mayek P. N. (2002) Rev. Fitotec. Mex., 25, 393-399.
9. Padilla-Ramírez J. S. and González-Gaona E.G. (2010) Acta Hort., 49-54.
10. Sharma A., Sehrawat S. K., Singhrot R. S. and Tele A. (2010) Not. Bot. Hort Agrobot., 38, 28–32.
11. Rodríguez N., Valdés-Infante J., Becker D., Velázquez B., González G., Sourd D., Rodríguez J., Billotte N., Risterucci A.M., Ritter E.and Rohde W. (2007) Acta Hortic, 735, 201–216.
12. Williams J. G. K., Kubelik A. R., Livak K. J. and Rafalski J. A. (1990) Nucleic Acids Res., 18, 6531-6535.
13. Rafalski J. A. and Tingey S. V. (1993) Trends in Genetics, 9(8), 275-280.
14. Stift G., Pachner M. and Lelley T. (2003) Cucurbit Genet. Coop. Rep., 26, 62-65.
15. Hossain M. B., Awal A., Rahman M. A., Haque S. and Khan H. (2003) J Biochem Mol Biol., 36, 427-432.
16. Alavez-López M. J., Cruz-Castillo J. G., Marroquín-Andrade L. M. and Rubí-Arriaga M. (2000) Rev. Chapingo Serie Hort., 2, 179-185.
17. Carranza-Sabás J. A., Peña-Valdivia C. B., Reyes-Agüero J. A., Luna-Cavazos M. and Hernández-Sánchez D. (2004) Rev. Chapingo Serie Hort., 10, 75-77.
18. Doyle J. J. and Doyle J. L. (1990) Focus, 12, 13–15.
19. Risterucci A. M., Duval M. F., Rohde W. and Billotte N. (2005) Mol. Ecol. Notes. 5, 745–748.
20. Ghislain M., Zhang D., Fajardo D., Huamann Z. and Hijmans R. H. (1999). Genetic Resources and Crop Evolution, 46, 547–555.
21. Jaccard P. (1908) Soc. Vaud. Sci. Nat., 44, 223–270.
22. Rohlf F. J. (2000) NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.2, Exeter Software, Setauket, NY.
23. Palumbi S. R. (1996) Nucleic acids II: The polymerase chain reaction. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer Associates, Inc, pp. 205–247.
24. Chen T. W., Ng C. C., Wang C. Y. and Shyu Y. T. (2007) J. Food Drug Anal., 15, 82–88.
25. Ahmed B., Mannan M. A. and Hussain S. A. (2011) Int. J. Nat. Sci., 1(3), 62-67.
26. Mani A., Mishra R. and Thomas G. (2011) J. Phytol., 3, 53–61