MITOCHONDRIAL CYTOCHROME B GENE SEQUENCE DIVERSITY IN THE MONGOLIAN RED SQUIRREL, Sciurus vulgaris L.

BAYARLKHAGVA D.1*, BAYARMAA G.2, ODBAYAR T.3
1Department of Genetics and Molecular Biology, National University of Mongolia, P.O.Box-337, Ulaanbaatar- 210646A, Mongolia.
2Department of Genetics and Molecular Biology, National University of Mongolia, P.O.Box-337, Ulaanbaatar- 210646A, Mongolia.
3Department of Genetics and Molecular Biology, National University of Mongolia, P.O.Box-337, Ulaanbaatar- 210646A, Mongolia.
* Corresponding Author : bayarlkhagva@num.edu.mn

Received : 02-02-2012     Accepted : 28-04-2014     Published : 05-05-2014
Volume : 6     Issue : 1       Pages : 149 - 152
Genetics 6.1 (2014):149-152

Keywords : mitochondrial DNA, cytochrome b gene, red squirrel
Conflict of Interest : None declared

Cite - MLA : BAYARLKHAGVA D., et al "MITOCHONDRIAL CYTOCHROME B GENE SEQUENCE DIVERSITY IN THE MONGOLIAN RED SQUIRREL, Sciurus vulgaris L.." International Journal of Genetics 6.1 (2014):149-152.

Cite - APA : BAYARLKHAGVA D., BAYARMAA G., ODBAYAR T. (2014). MITOCHONDRIAL CYTOCHROME B GENE SEQUENCE DIVERSITY IN THE MONGOLIAN RED SQUIRREL, Sciurus vulgaris L.. International Journal of Genetics, 6 (1), 149-152.

Cite - Chicago : BAYARLKHAGVA D., BAYARMAA G., and ODBAYAR T. "MITOCHONDRIAL CYTOCHROME B GENE SEQUENCE DIVERSITY IN THE MONGOLIAN RED SQUIRREL, Sciurus vulgaris L.." International Journal of Genetics 6, no. 1 (2014):149-152.

Copyright : © 2014, BAYARLKHAGVA D., et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Red squirrels (Sciurus vulgaris) are widely distributed throughout Eurasia, occurring in many types of coniferous and mixed-deciduous forests. Even though red squirrels are biologically and genetically well-studied worldwide, so far no genetic studies have been conducted in Mongolia. In this paper, complete sequences of the mitochondrial cytochrome b gene of the Mongolian red squirrel (Sciurus vulgaris) were analyzed to determine genetic diversity. Fifteen specimens were collected from seven provinces: Bulgan, Selenge, Tuv, Khuvsgul, Arkhangai, Zavkhan and Bayan-Ulgii. Ten haplotypes were observed from 15 specimens in seven Mongolian provinces, and the maximum Tamura-Nei nucleotide distance among them was 1.1%, indicating that genetic diversity of Sciurus vulgaris is moderate. The population in Khuvsgul showed the highest genetic distance compared to individuals the remaining populations in Mongolia. Further analyses of mtDNA cytochrome b gene with additional specimens of red squirrels from Khuvsgul province are needed to clarify the reason of environmental condition influencing the genetic variation in the squirrel’s population in Khuvsgul.

References

[1] Mitchell-Jones A.J., Amori G., Bogdanowicz W., Kryštufek B., Reijnders P.J.H., Spitzenberger F., Stubbe M., Thissen J.B.M, Vohralík V. & Zima J. (1999) The Atlas of European Mammals, T & AD Poyser, London  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Wilson D.E. & Reeder D.A.M. (2005) Mammal Species of the World: a Taxonomic and Geographic Reference, 1, Johns Hop-kins Univ. Press  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Oshida T., Masuda R. & Yoshida M.C. (1996) Zoological Sci-ence, 13(4), 615-620  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Oshida T. & Masuda R. (2000) Zoological Science, 17(3), 405-409  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Hillis D.M., Moritz C. & Mable B.K. (1996) Molecular Systemat-ics, 23.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Sunnucks P. (2000) Trends in Ecology & Evolution, 15(5), 199-203  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Reyes A., Gissi C., Pesole G., Catzeflis F.M. & Saccone C. (2000) Molecular Biology and Evolution, 17(6), 979-983  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Grill A., Amori G., Aloise G., Lisi I., Tosi G., Wauters L.A. & Randi E. (2009) Molecular Ecology, 18(12), 2687-2699  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Irwin D.M., Kocher T.D. & Wilson A.C. (1991) Journal of Molec-ular Evolution 32(2), 128-144.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Tamura K. & Nei M. (1993) Molecular Biology and Evolution, 10, 512-526  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Kumar S., Tamura K. & Nei M. (1995) Systematic Biology, 44(4), 576-577  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. (2011) Molecular Biology and Evolution, 28(10), 2731-2739  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Clark E.L., Munkhbat J., Dulamtseren S., Baillie J.E.M., Batsaikhan N., King S.R.B., Samiya R. & Stubbe M. (2006) Summary Conservation Action Plans for Mongolian Mammals Regional Red List Series 2. Zoological Society of London  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Rubinoff D. (2006) Conservation Biology, 20(4), 1026-1033.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] Koh H.S., Ham E.J., Kim J.S., Jang K.H., Park N.J., Zhang M. & Bayarlkhagva D. (2010) Biochemical Genetics, 48(7), 696-705  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Araujo M.B., Humphries C.J., Densham P.J., Lampinen R., Hagemeijer W.J.M., Mitchell-Jones A.J. & Gasc J.P. (2001) Ecography, 24(1), 103-110.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] Brown W.M. (1985) Molecular Evolutionary Genetics, 95-130  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus