STRUCTURAL ANALYSIS AND MOLECULAR MODELING OF HUMAN DOPAMINE RECEPTOR 5 (DRD5)

Raja Chakraborty1, Sayak Ganguli2, Hirak Jyoti Chakraborty3, Abhijit Datta4
1Department of Oral Biology, University of Manitoba, Manitoba, Canada R3E0W2
2DBT Centre for Bioinformatics, Presidency College Kolkata, India
3DBT Centre for Bioinformatics, Presidency College Kolkata, India
4DBT Centre for Bioinformatics, Presidency College Kolkata, India

Received : -     Accepted : -     Published : 21-12-2010
Volume : 2     Issue : 2       Pages : 96 - 102
Int J Bioinformatics Res 2.2 (2010):96-102
DOI : http://dx.doi.org/10.9735/0975-3087.2.2.96-102

Conflict of Interest : None declared

Cite - MLA : Raja Chakraborty, et al "STRUCTURAL ANALYSIS AND MOLECULAR MODELING OF HUMAN DOPAMINE RECEPTOR 5 (DRD5)." International Journal of Bioinformatics Research 2.2 (2010):96-102. http://dx.doi.org/10.9735/0975-3087.2.2.96-102

Cite - APA : Raja Chakraborty, Sayak Ganguli, Hirak Jyoti Chakraborty , Abhijit Datta (2010). STRUCTURAL ANALYSIS AND MOLECULAR MODELING OF HUMAN DOPAMINE RECEPTOR 5 (DRD5). International Journal of Bioinformatics Research, 2 (2), 96-102. http://dx.doi.org/10.9735/0975-3087.2.2.96-102

Cite - Chicago : Raja Chakraborty, Sayak Ganguli, Hirak Jyoti Chakraborty , and Abhijit Datta "STRUCTURAL ANALYSIS AND MOLECULAR MODELING OF HUMAN DOPAMINE RECEPTOR 5 (DRD5)." International Journal of Bioinformatics Research 2, no. 2 (2010):96-102. http://dx.doi.org/10.9735/0975-3087.2.2.96-102

Copyright : © 2010, Raja Chakraborty, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Dopamine has been shown to play a key role in the Central Nervous System. Any imbalance in dopamine production and dopamine receptor activity has been implicated widely in the pharmacology, of a number of neurobehavioral disorders existing today. The dopamine receptors interact with G-proteins to transduce dopamine stimulation into intracellular responses. In this work a 3D structure of DRD5 based on the template of High resolution crystal structure of human ı-2 adrenergic receptor (PDB code 2RH1A) was generated. The model was assessed using MOLPROBITY. The results revealed that 94% of the residues were found in the favoured region of Ramachandran’s plot. Active site analysis showed that predicted binding sites included all the seven transmembrane helices. Our work demonstrates that in silico modeling of proteins has been shown to play an important role in determining protein structure and provides a promising area in possible drug discovery.

References

[1] Ao Zhang, Ying Kan and Fuying Li Behavioral Profile Pages 587-630  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Olivier Civelli, James R. Bunzow, and David K. Grandy (1993) Annu. Rev. Pharmacol. Toxicol, 281-307  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Sunahara R. K., Guan H. C., O’Dowd, B. F., Seeman P., Laurier L. G., et al. (1991) Nature, Pages 614-19  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Grandy D. K., Zhang Y., Bouvier C., Zhou Q. Y., Johnson R. A., et al. (1991) Proc. Natl. Acad. Sci. USA, Pages 175-79.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Juana. Ballesteros, Lei Shi, and Jonathana. Javitch (2001) Mol Pharmacol, Pages 1–19.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Meena K. Sakharkar and Kishore R. Sakharkar (2007) Current Drug Discovery Technologies, Pages, 48-58  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Maurits EL Arbouw, Jeroen PP van Vugt, Toine CG Egberts and Henk- Jan Guchelaar (2007) Pharmacogenomics, Pages 159- 176  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W. and Lipman D. J. (1997) Nucleic Acids Res, Pages 3389–3402  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Lovell S.C., Davis I.W., Arendall III W.B., Bakker P.I.W. de, Word J.M., Prisant M.G., Richardson J.S. and Richardson D.C. (2002) Proteins: Structure, Function & Genetics, Pages 437-450  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Laurie A.T., Jackson R.M. (2005) Bioinformatics, 1908-1916  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Prashen Chelikani, Viktor Hornak, Markus Eilers, Phillip J. Reeves, Steven O. Smith, Uttam L. RajBhandary, and H. Gobind Khorana (2007) PNAS, Pages 7027–7032  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Wolf S., Bockmann M., Howeler U., Schlittera J., Gerwert K. (2008) FEBS LETTER, 8.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Jeremiah Stitham, Scott R. Gleim, Karen Douville, Eric Arehart, and John Hwa (2006) The Journal Of Biological Chemistry, Pages 37227–37236  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Zhexin Xiang (2006) Curr Protein Pept Sci, Pages 217–227.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] Thompson JD, Higgins DG, and Gibson TJ. (1994) Nucleic Acids Res, Pages 4673-80  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Davis I.W., Leaver-Fay A., Chen V.B., Block J.N., Kapral G.J., Wang X., Murray L.W., Arendall W.B. 3rd, Snoeyink J., Richardson J.S., Richardson D.C. (2007) Nucleic Acids Res, Pages 375-83  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] Bordoli A. K., Kopp L., and Schwede T. (2006) Bioinformatics, Pages 195-201  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[18] Joe Dundas, Zheng Ouyang, Jeffery Tseng, Andrew Binkowski, Yaron Turpaz, and Jie Liang (2006) Nucleic Acids Res, W316-W118  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[19] Tusnády G.E. and Simon I. (1998) J. Mol. Biol, Pages 489-506  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[20] Cserzo M., Wallin E., Simon I., von Heijne G. and Elofsson A. (1997) Prot. Eng, Pages 673-676  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[21] Cherezov V., Rosenbaum D.M., Hanson M.A., Rasmussen S.G., Thian F.S., Kobilka T.S., Choi H.J., Kuhn P., Weis W.I., Kobilka B.K., Stevens R.C. (2007), Science, Pages 1258-1265  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[22] Ritchie D.W. and Kemp G.J.L. (2000) PROTEINS: Struct. Funct. Genet, Pages 178-194.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[23] Laurie A.T., Jackson R.M. (2005) Bioinformatics, Pages 1908-1916  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[24] Cristina Missale S., Russel Nash, Susan W. Robinson, Mohamed Jaber, and Marc G. Caron (1998) Physiol Rev, Pages 189-225  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[25] Shandar Ahmad, M. Michael Gromiha, Hamed Fawareh and Akinori Sarai (2004) BMC Bioinformatics  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[26] Lipinski C.A., Lombardo F., B.W. Dominy, P.J. Feeney, (1997) Adv.Drug.Delivery Rev, 4-25  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[27] Ramachandran G.N., Ramakrishnan C. and Sasisekharan V. (1963) J. Mol. Biol. 95-99.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus