COMPUTATIONAL BIOLOGY AND PROTEIN MODELING OF CYANOBACTERIA USING BIOINFORMATICS TOOLS AND TECHNIQUES

Padhi S.B.1*, Behera S.2, Swain P.3, Behura S.4, Behera G.5, Panigrahi M.6, Baidya S.7, Mishra A.8, Beza S.9, Panigrahi H.10, Dash N.11, Pradhan S.12, Ratha N.13
1Algal Research Laboratory, Department of Botany, Berhampur University, Bhanja, 760007, Bihar, India.
2Algal Research Laboratory, Department of Botany, Berhampur University, Bhanja, 760007, Bihar, India.
3Algal Research Laboratory, Department of Botany, Berhampur University, Bhanja, 760007, Bihar, India.
4Algal Research Laboratory, Department of Botany, Berhampur University, Bhanja, 760007, Bihar, India.
5Algal Research Laboratory, Department of Botany, Berhampur University, Bhanja, 760007, Bihar, India.
6Algal Research Laboratory, Department of Botany, Berhampur University, Bhanja, 760007, Bihar, India.
7Algal Research Laboratory, Department of Botany, Berhampur University, Bhanja, 760007, Bihar, India.
8Algal Research Laboratory, Department of Botany, Berhampur University, Bhanja, 760007, Bihar, India.
9Algal Research Laboratory, Department of Botany, Berhampur University, Bhanja, 760007, Bihar, India.
10Algal Research Laboratory, Department of Botany, Berhampur University, Bhanja, 760007, Bihar, India.
11Algal Research Laboratory, Department of Botany, Berhampur University, Bhanja, 760007, Bihar, India.
12Algal Research Laboratory, Department of Botany, Berhampur University, Bhanja, 760007, Bihar, India.
13Algal Research Laboratory, Department of Botany, Berhampur University, Bhanja, 760007, Bihar, India.
* Corresponding Author : sailabalapadhi@gmail.com

Received : -     Accepted : -     Published : 21-12-2010
Volume : 2     Issue : 2       Pages : 88 - 95
Int J Bioinformatics Res 2.2 (2010):88-95
DOI : http://dx.doi.org/10.9735/0975-3087.2.2.88-95

Keywords : Anabaena sp, Bioinformatics, Computational biology, Cyanobacteria, Outer membrane
Conflict of Interest : None declared
Acknowledgements/Funding : The authors express their deep sense of gratitude to Head, P.G. Department of Botany, and Berhampur University for laboratory facilities

Cite - MLA : Padhi S.B., et al "COMPUTATIONAL BIOLOGY AND PROTEIN MODELING OF CYANOBACTERIA USING BIOINFORMATICS TOOLS AND TECHNIQUES." International Journal of Bioinformatics Research 2.2 (2010):88-95. http://dx.doi.org/10.9735/0975-3087.2.2.88-95

Cite - APA : Padhi S.B., Behera S., Swain P., Behura S., Behera G., Panigrahi M., Baidya S., Mishra A., Beza S., Panigrahi H., Dash N., Pradhan S., Ratha N. (2010). COMPUTATIONAL BIOLOGY AND PROTEIN MODELING OF CYANOBACTERIA USING BIOINFORMATICS TOOLS AND TECHNIQUES. International Journal of Bioinformatics Research, 2 (2), 88-95. http://dx.doi.org/10.9735/0975-3087.2.2.88-95

Cite - Chicago : Padhi S.B., Behera S., Swain P., Behura S., Behera G., Panigrahi M., Baidya S., Mishra A., Beza S., Panigrahi H., Dash N., Pradhan S., and Ratha N. "COMPUTATIONAL BIOLOGY AND PROTEIN MODELING OF CYANOBACTERIA USING BIOINFORMATICS TOOLS AND TECHNIQUES." International Journal of Bioinformatics Research 2, no. 2 (2010):88-95. http://dx.doi.org/10.9735/0975-3087.2.2.88-95

Copyright : © 2010, Padhi S.B., et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Computational biology is a term coined from analogy to the role of physical sciences, is now coming into its own as a major element of contemporary biological and biomedical research. In the sharp in this pattern, over past few years, experiments in life sciences in the academic institutions have begun to recognize the value of bioinformatics and computational biology in the field of algology. Cyanobacteria (also known as blue–green algae) are a group of extraordinarily diverse Gram-negative prokaryotes that originated 3.5 billion years ago. After the advent of bioinformatics in the field of algology, complete genome sequences of Cyanobacteria have been reported in more than 30 species and strains including unicellular. The filamentous cyanobacterium Anabaena sp. PCC 7120 (further referred to as Anabaena sp.) is a model system to study nitrogen fixation, cell differentiation, cell pattern formation and evolution of plastids. It is a multicellular photosynthetic microorganism consisting of two cell types, vegetative cells and nitrogen fixing heterocysts. The nucleotide sequence of the entire genome of a filamentous Cyanobacterium, Anabaena sp. Strain PCC 7120, was determined. This study focuses on the function and dynamics of the proteome of the Gram-negative outer membrane in Anabaena sp.

References

[1] Arora A., Abildgaard F., Bushweller J.H. and Tamm L.K. (2001) Nat. Struct. Biol, 8(4), 334-338  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Bhagwat A.A. and Apte S.K. (1989) J.bacteriol,171, 5187-5189  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Buchanan S.K. (2001) Trends Biochem. Sci, 26(1), 3-6  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Cowan S.W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R.A.,Jansonius J.N. and Rosenbusch J.P. (1992) Nature, 358(6389), 727-733  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Egbert H. and Alfred H. (2000) Journal of Bacteriology, 1191–1199  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Faraldo-Gomez J.D. and Sansom M.S. (2003) Nat. Rev. Mol. Cell Biol, 4, 105- 116  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] John C.Wooley, (1999) Journal of Computational Biology, 6, 459-474  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Kamio Y. and Nikaido H. (1976) Biochemistry, 15(12), 2561-2570  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Kaneko T., Nakamura Y. and Wolk C.P. (2001) DNA Res, 8,205-213  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Kanemasa Y., Akamatsu Y. and Nojima S. (1967) Biochem. Biophys. Acta, 144(2), 382-390  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Koronakis V., Eswaran J. and Hughes C. (2004) Annu. Rev. Biochem, 73, 467- 489  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Lyra G., Hantula J., Vainio E., Rapala J., Rouliainen L. and Sivonen, K. (1997) Arch. Microbiol,168,176-184.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Nikaido H. (2003) Microbiol. Mol. Biol. Rev, 67(4), 593-656  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Palinska K.A., Liesack, W., Rhid, E. and Kaunbein, W.E. (1996) Arch. Microbiol, 166, 224-233  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] Ruiz N., Kahne D. and Silhavy T.J. (2006) Nat. Rev. Microbio, 4(1), 57-66  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Schirmer T., Keller T.A., Wang Y.F. and Rosenbusch J.P. (1995) Science, 267(5197), 512-514  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] Schenk H. E.A. and Kuhfitting G. (1983) Biochem. Sys, 1, 179-184.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[18] Smit J., Kamio Y. and Nikaido H. (1975) J. Bacteriol,124(2), 942-958  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[19] Tamm L.K., Hong H. and Liang B. (2004) Biochim. Biophys. Acta. 1666 (1-2), 250- 263  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[20] Tokuda H. and Matsuyama S. (2004) Biochim. Biophys. Acta. 1694(1-3), IN1- 9.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[21] Weiss M.S., Abele U., Weckesser J., Welte W., Schiltz E. and Schulz G.E. (1991) Science, 254(5038), 1627-30.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus