PHYLOGENETIC ANALYSIS OF NITROGEN-FIXING AND QUORUM SENSING BACTERIA

Anushree Chaphalkar1, Nivedita Salunkhe2
1Bioinformatics Lab, Department of Biotechnology, Vidya Pratishthan’s Arts, Science and Commerce College, M.I.D.C., Vidyanagari, Baramati 413 133, Pune, Maharashtra, India
2Bioinformatics Lab, Department of Biotechnology, Vidya Pratishthan’s Arts, Science and Commerce College, M.I.D.C., Vidyanagari, Baramati 413 133, Pune, Maharashtra, India

Received : -     Accepted : -     Published : 21-12-2010
Volume : 2     Issue : 2       Pages : 17 - 32
Int J Bioinformatics Res 2.2 (2010):17-32
DOI : http://dx.doi.org/10.9735/0975-3087.2.2.17-32

Keywords : Phylogeny; Nitrogenase reductase; NifH; Quorum sensing; LuxA, LuxS
Conflict of Interest : None declared
Acknowledgements/Funding : I wish to put on record, my sincere thanks to all those who have spent their precious time giving valuable inputs for the successful accomplishment of this project. I would personally like to thank all my teachers, for guiding me throughout. I would

Cite - MLA : Anushree Chaphalkar and Nivedita Salunkhe "PHYLOGENETIC ANALYSIS OF NITROGEN-FIXING AND QUORUM SENSING BACTERIA." International Journal of Bioinformatics Research 2.2 (2010):17-32. http://dx.doi.org/10.9735/0975-3087.2.2.17-32

Cite - APA : Anushree Chaphalkar, Nivedita Salunkhe (2010). PHYLOGENETIC ANALYSIS OF NITROGEN-FIXING AND QUORUM SENSING BACTERIA. International Journal of Bioinformatics Research, 2 (2), 17-32. http://dx.doi.org/10.9735/0975-3087.2.2.17-32

Cite - Chicago : Anushree Chaphalkar and Nivedita Salunkhe "PHYLOGENETIC ANALYSIS OF NITROGEN-FIXING AND QUORUM SENSING BACTERIA." International Journal of Bioinformatics Research 2, no. 2 (2010):17-32. http://dx.doi.org/10.9735/0975-3087.2.2.17-32

Copyright : © 2010, Anushree Chaphalkar and Nivedita Salunkhe, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

The present study involves phylogenetic analysis of distinguished bacterial population essentially grouped into functional attributes, namely nitrogen fixation and quorum sensing. The basis of this analysis are protein sequences of NifH (nitrogenase reductase), LuxA (Luciferase alpha subunit) and LuxS (Sribosyl homocysteine lyase) from 30, 17, 25 species of bacteria respectively. These bacteria show vast diversity in terms of habitat mode of survival pathogenicity. Phylogenetic analysis gives an insight into the evolution and interrelationships of these microbial species. GeneBee, ClustalW and Phylip softwares were found to be satisfactory for the chosen work. Phylogenetic trees were constructed in the form of Cladograms, Phylograms and Unrooted radial trees. According to the results obtained, the most highly evolved group of organisms with respect to their nitrogenase reductase protein is that of Desulfovibrio vulgaris and Chlorobium phaeobacteriodes. Bacillus thuringiensis and Bacillus subtilis hold the most highly evolved forms of LuxS protein. Also knowledge abtained from the motif pattern analysis between Bradyrhizobium japonicum and Rhizobium leguminosarum NifH protein sequence are conserved and further analysis may show that there may be quorum sensing mediated gene regulation in host bacterium interaction. Phylogenetic analyses, thus, on the basis of highly conserved protein domains, universal in their existence, can provide a preamble to the actual 16S-rRNA based phylogeny or genomic analyses of phylogeny carried out in the wet lab.

References

[1] Jason Raymond, Janet L. Siefert, Christopher R. Staples and Robert E. Blankenship (2004) Mol. Biol. Evol., 21(3):541-554  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Peters John W., Fisher Karl, Dean Dennis R. (1995) Annual Review of Microbiology, Vol. 49: 335-366.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Peters John W., Fisher Karl, Dean Dennis R. (1995) Annual Review of Microbiology, Vol. 49: 335-366.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Quok-Cheong Choo, Mohd-Razip Samian, and Nazalan Najimudin (2003) Appl Environ Microbiol., 69(6): 3658–3662  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Cantera Jose Jason L., Kawasaki Hiroko (2004) Seki Tatsuji Microbiology ISSN 1350-0872  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Smith R. L., Van Baalen C. and Tabita F. R. (1987) J. Bacteriol., 169(6): 2537–2542  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Berman-Frank I., Lundgren P. and Falkowski P. (2003) Res. Microbiol. 154:157-164  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Glazer A.N., Kechris K.J. (2009) PLoS ONE, 4(7): e6136  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Young J.P.W. (2005) Springer. pp 221–241  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Henson B.J., Watson L.E., Barnum S.R. (2004) J Mol Evol., 58: 390–399  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Juan E. Gonzalez, Melanie M.Marketon (2003) MMBR, 67:574-592  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Schrock R.R. (2005) Philos Transact A 363: 959–969, Discussion 1035–1040  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Talavera G., Castresana J. (2007) Syst Biol., 56(4):564-77  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Phillips A., Janies D., Wheeler W. (2000) Mol. Phylogenet Evol., 16(3):317-30  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] Zehr J.P., Mellon M.T. and Hiorns W.D. (1997) Microbiology 143: 1443–1450  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Arp D.J., Triplett, E.W. (2000) Wymondham,Great Britain: Horizon Scientific Press, pp. 1–14  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] Donald H. Burke, John E. Hearst. (1993) Evolution, 90, 7134-7138  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[18] Rivas E., Eddy S.R. (2008) PLoS Comput Biol., 4(9):e1000172.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[19] Garrity George M., Brenner Don J., Krieg Noel R., Staley James R. (2005) Springer - Verlag Bergey's Manual of Systematic Bacteriology, Volume Two: The Proteobacteria, Parts A - C  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[20] Camilli A. and Bassler B.L. (2006) Science, 311:1113–1116  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[21] Winzer K., Hardie K. R. and Williams P. (2003) Adv. Appl. Microbiol. 53:291– 396.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[22] Nealson K.H. and Hastings J.W. (1979) Microbiol. Rev. 43: 496-518  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[23] Bassler B.L. (1999) Curr Opin Microbiol 2: 582–587  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[24] Waters C.M. and Bassler B.L. (2005) Ann. Rev. Cell. Dev. Biol. 21: 319-346  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[25] Reading N.C. and Sperandio V. (2006) FEMS Microbiol. Lett., 254: 1-11  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[26] Dunny G. M. and Winans S. C. (1999) Rev 43: 496–518. 1  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[27] Schauder S., Shokat K., Surette M.G., Bassler B.L. (2001) Mol Microbiol. 41(2):463-76  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[28] Gobbetti M., De Angelis M., Di Cagno R., Minervini F., Limitone A. (2007) Int J Food Microbiol.; 120(1-2):34-45.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[29] Mount W. (2001) Bioinformatics - Sequence and Genome Analysis. Ed (1).  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus