COMPUTATIONAL DIAGNOSTICS BASED ON PROTEOMIC DATA- REVIEW ON APPROACHES AND ALGORITHMS

Sreevatsa A.N.1*, Badrunnisa S.2*, Shaukath Ali M.3*, Vinitha R Pai4*
1BITM, Bellary, Karnataka, India
2Department of Biotechnology, BITM, Bellary, Karnataka, India
3College of applied medical science, Jazan University, Jizan
4Department of Biochemistry, Yenopoya Medical College Darelakatte Mangalore, Karnataka, India
* Corresponding Author : vinitharpai@gmail.com

Received : -     Accepted : -     Published : 15-06-2010
Volume : 2     Issue : 1       Pages : 56 - 66
Int J Bioinformatics Res 2.1 (2010):56-66
DOI : http://dx.doi.org/10.9735/0975-3087.2.1.56-66

Keywords : Aeropyrum pernix, Extremophiles, non-coding regions
Conflict of Interest : None declared

Cite - MLA : Sreevatsa A.N., et al "COMPUTATIONAL DIAGNOSTICS BASED ON PROTEOMIC DATA- REVIEW ON APPROACHES AND ALGORITHMS." International Journal of Bioinformatics Research 2.1 (2010):56-66. http://dx.doi.org/10.9735/0975-3087.2.1.56-66

Cite - APA : Sreevatsa A.N., Badrunnisa S., Shaukath Ali M., Vinitha R Pai (2010). COMPUTATIONAL DIAGNOSTICS BASED ON PROTEOMIC DATA- REVIEW ON APPROACHES AND ALGORITHMS. International Journal of Bioinformatics Research, 2 (1), 56-66. http://dx.doi.org/10.9735/0975-3087.2.1.56-66

Cite - Chicago : Sreevatsa A.N., Badrunnisa S., Shaukath Ali M., and Vinitha R Pai "COMPUTATIONAL DIAGNOSTICS BASED ON PROTEOMIC DATA- REVIEW ON APPROACHES AND ALGORITHMS." International Journal of Bioinformatics Research 2, no. 1 (2010):56-66. http://dx.doi.org/10.9735/0975-3087.2.1.56-66

Copyright : © 2010, Sreevatsa A.N., et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Protein identification using mass spectrometry is an indispensable tool for proteomics which in recent days has evolved to give better understanding of the biology of cell and its functioning. Proteomics has wide application in diagnosing diseases such as cancer, Alzheimer’s disease etc. The data obtained from the diagnostic tools like LC-MS is to be interpreted accurately so as to obtain the correct qualitative and quantitative information about the peptides present in the biological sample. Such interpretation requires and exhaustive knowledge and review about different tools that can be employed and their comparison. This article focuses on comparison of different proteomic tools available for the MS data processing and interpretation. The accuracy demanded during protein identification can be fulfilled by tag based approaches, than PMF or PFF systems. Although, there is a need of standardized matrices for the comparison of the protein identification tools, identifying the single best package for each application from the available literature is at present extremely difficult as each package has its own advantage over other. The datasets and thresholds used in these kinds of comparisons have a critical importance on the outcome of such experiments, and that the high variability in machine and experimental setups complicates analysis. The state of data standards and lack of benchmarks therefore makes it difficult to make an effective comparison. While the increasing availability of data in public repositories and tightening standards will no doubt ameliorate the problem, until this basic benchmarking problem is overcome, no single package or approach can conclusively be declared to outperform all others, expect, perhaps, in the specific circumstances used in particular studies.

References

[1] Zhang W., Chait B.T. (2000) Anal Chem 72, 2482–2489  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Perkins D.N., Pappin D.J.C., Creasy D.M., Cottrell J.S. (1999) Electrophoresis 20, 3551–3567  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Nesvizhskii AI., Keller A., Kolker E., Aebersold R. (2003) Anal Chem 75, 4646–4658  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Gay S., Binz P.A., Hochstrasser D.F., Appel R.D. (2002) Proteomics 2, 1374–1391  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Bafna V., Edwards N., (2001) Bioinformatics 17, S13– S21  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Zhang Z., Sun S., Zhu X., Chang S., Liu X., et al. (2006) BMC Bioinformatics 7, 222  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Chen Y., Kwon SW., Kim SC., Zhao Y. (2004) J Prot Res 4, 998-1005  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Magnin J., Masselot A., Menzel C., Colinge J. (2004) J Prot Res 3, 55–60  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Ganapathy A., Wan XF., Wan J., Thelen J .,Emerich DW. (2004) Conf Proc IEEE Eng Med Biol Soc 2, 3051–3054  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Tuloup M., Hernandez C., Coro I., Hoogland C., Binz P-A., (2003) In: Proceedings of the Swiss Proteomics Society 2003 Congress: pp. 174–176  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Rauch., Bellewm., Fitzgibbon., Holzman T., Hussey P., Igra M., Maclean B., Lin C. W., Detter A., Fang R.., Faca V., Gafkenm P., Zhang H., Whitaker J., States D., Hanash D., Paulovich A., Martin W., and McInstoshm M. W. (2006) J. Proteome. Res. 5, 112–121  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Pappin DJ., Hojrup P., Bleasby A.J . (1993). Curr Biol 3, 327–32  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Matrix Science (1999) Mascot. Peptide mass fingerprinting [computer program]. Available: http://www.matrixscience.com/help/pmf_ help.html. Accessed 15 December 2007.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] University of California San Francisco (1996) UCSF Protein Prospector version 4.27.1 [computer program]. Available: http://prospector.ucsf.edu. Accessed 15 December 2007  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] National Center for Biotechnology Information. Fasta format description. Available: http://www.ncbi.nlm.nih.gov/blast/fasta.s html. Accessed 15 December 2007  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Zhang W., Chait B.T. (2000) Anal Chem 72, 2482–2489  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] Chamrad DC., Korting G., Stuhler K., Meyer HE., Klose J. (2004) Proteomics 4, 619– 628.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[18] Bruker Daltonics ProteinScape [computer program]. Available: a. http://www. proteinscape. com Accessed 15 December 2007  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[19] HUPO Brain Proteome Project. Available http://www.hbpp.org. Accessed 15 December 2007  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[20] Yates JR III., Eng JK., inventors; University of Washington, assignee (2000 Jan 25) Identification of nucleotides, amino acids, or carbohydrates by mass spectrometry. United states patent 6,017,693. Available: http://www. patentstorm.us/patents/6017693.html. Accessed 10 December 2007  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[21] Dancik V., Addona T.A., Clauser K.R., Vath J.E., Pevzner P.A . (1999) Proceedings of the Annual International Conference Computational Molecular Biology: RECOMB 1999. pp. 135–144.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[22] Liska A.J., Sunyaev S., Shilov I.N., Schaeffer D.A., Shevchenko A. (2005) Anal Chem, 5, 4118–4122.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[23] Wilkins M.R., Williams K.L. (1997) J Theor Biol, 186, 7–15  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[24] Mann M ., Wilm M. (1994) Anal Chem 66, 4390–4399  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[25] Frank A ., Tanner S ., Bafna V., Pevzner P. (2005) J Prot Res, 4, 1287–1295.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[26] Noga MJ ., Lewandowski J.J ., Suder P ., Silberring J. (2005) Proteomics, 5, 4367–4375  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[27] Ullmer R ., Plematl A ., Rizzi A. (2006) Rap Comm Mass Spectrom, 20, 1469–1479  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[28] Altschul S.F ., Madden T.L ., Schaffer A.A ., Zhang J ., Zhang Z. (1997) Nucleic Acids Res, 25, 3389–3402  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[29] Pearson W.R. (1990) Methods Enzymol,183, 63–98  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[30] Han Y ., Ma B ., Zhang K. (2005) J Bioinform Comput Biol 3, 697–716.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[31] Joshi H.J ., Harrison M.J ., Schulz B.L ., Cooper C.A ., Packer N.H. (2004). Proteomics, 4, 1650–1664  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[32] Shadforth I ., Crowther D ., Bessant C. (2005) Proteomics, 5, 4082–4095  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[33] Lie X.-J ., Kemp C. J ., Zhang H ., and Aebersold R. (2005) Mol. Cell. Proteomics, 4, 1328–1340  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[34] Rauch., Bellewm J ., Fitzgibbon ., Holzman T ., Hussey P., Igra M ., Maclean B ., Lin C.W ., Detter A ., Fang R ., Faca V ., Gafkenm P ., Zhang H ., Whitaker J ., States D ., Hanash D ., Paulovich A ., Martin W ., and McInstoshm M. W. (2006). J. Proteome Res, 5, 112–121  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[35] Fenyo D., Beavis R.C. (2003) Anal Chem, 75, 768–774  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[36] Eriksson J., Chait B.T., Fenyo D. (2000). Anal Chem, 72, 999–1005  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[37] Stead D.A ., Preece .A ., Brown J.P .(2006) Mol Cell Prot, 5, 1205–1211  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[38] Carr S ., Aebersold R ., Baldwin M ., Burlingame A ., Clauser K. (2004) Mol Cel Prot, 3, 531-533  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[39] HUPO Proteomics Standards Initiative. mzMZL development. Available: http://www.psidev.info/index.php?q¼nod e/257. Accessed 21 December 2007  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[40] Weatherly DB, Atwood JA, Minning TA, Covala C, Tarleton R. (2005) Proteomics, 4, 762–772  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[41] Hogan J.M., Higdon R., Kolker N., Kolker E . (2005) OMICS 9: 233–250  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[42] Zhang Z ., (2004) Anal Chem, 76, 3908– 3922.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[43] Arnold R.J ., Jayasankar N ., Aggarwal D.A ., Tang H ., Radivojac P. (2006) Pac Symp Biocomp, 11, 219–230  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[44] Wong J.W.H ., Sullivan M.J ., Cartwright H.M ., Cagney G (2007) B.M.C Bioinformatics, 8, 51  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[45] Robertson C ., Cortens J.P ., Beavis R.C. (2005) Rapid Commun Mass Spectrom, 19, 1844–1850.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[46] Beer I.Barnea E ., Ziv T ., Admon A. (2004) Proteomics, 4, 950–960  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus