INSILICO IDENTIFICATION OF NOVEL CODING REGIONS FROM ARCHEAL GENOME - AEROPYRUM PERNIX

Sivasubramaniam Arunmeena1, Piramanayagam Shanmughavel2*
1Computational Biology and Bioinformatics Lab, Department of Bioinformatics, Bharathiar University Coimbatore-641046, Tamilnadu, India.
2Computational Biology and Bioinformatics Lab, Department of Bioinformatics, Bharathiar University Coimbatore-641046, Tamilnadu, India.
* Corresponding Author : shanvel_99@yahoo.com

Received : -     Accepted : -     Published : 15-06-2010
Volume : 2     Issue : 1       Pages : 53 - 55
Int J Bioinformatics Res 2.1 (2010):53-55
DOI : http://dx.doi.org/10.9735/0975-3087.2.1.53-55

Keywords : Aeropyrum pernix, Extremophiles, non-coding regions
Conflict of Interest : None declared
Acknowledgements/Funding : This work was supported by DBT Bioinformatics Facility, Delhi, India

Cite - MLA : Sivasubramaniam Arunmeena and Piramanayagam Shanmughavel "INSILICO IDENTIFICATION OF NOVEL CODING REGIONS FROM ARCHEAL GENOME - AEROPYRUM PERNIX." International Journal of Bioinformatics Research 2.1 (2010):53-55. http://dx.doi.org/10.9735/0975-3087.2.1.53-55

Cite - APA : Sivasubramaniam Arunmeena , Piramanayagam Shanmughavel (2010). INSILICO IDENTIFICATION OF NOVEL CODING REGIONS FROM ARCHEAL GENOME - AEROPYRUM PERNIX. International Journal of Bioinformatics Research, 2 (1), 53-55. http://dx.doi.org/10.9735/0975-3087.2.1.53-55

Cite - Chicago : Sivasubramaniam Arunmeena and Piramanayagam Shanmughavel "INSILICO IDENTIFICATION OF NOVEL CODING REGIONS FROM ARCHEAL GENOME - AEROPYRUM PERNIX." International Journal of Bioinformatics Research 2, no. 1 (2010):53-55. http://dx.doi.org/10.9735/0975-3087.2.1.53-55

Copyright : © 2010, Sivasubramaniam Arunmeena and Piramanayagam Shanmughavel, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Researches on archaeal microorganisms continue to excite the scientific community. Their unique adaptations that cater to hypersaline, hyperthermic, and hypothermic circumstances have incited research to manipulate those attributes for use in virtually every aspect of life. Adaptations in membrane, enzymes, and protein structures and components have potential applications in areas including electronics, agriculture, aquaculture, medicine, pharmaceuticals, food science, and nutrition. Although the time and effort required to new find archaeal homologues may be great, many believe that the economic and environmental benefits of such a breakthrough would be considerable enough to outweigh the challenges. An analysis of the archeal genome Aeropyrum pernix, showed that certain regions earlier thought to be ‘non-coding’ have significant sequence similarity to other protein sequences from archaea and other species. The available sequence analysis tools were used to identify a number of potential protein coding regions in these putative ‘non coding’ regions. We could identify 907 such regions and 282 of them apparently code for proteins present in archeal or other species. The remaining 625 regions are mostly start /stop conflicts. Of the 282 protein coding regions, only 64 code for proteins with homologues of known function. A good number of proteins show homology to proteins that are important for the survival of the organism. Hence these novel regions may be referred as homologues to coding regions. In addition Genome sequence collections should be regularly checked to improve gene prediction by sequence similarity and greater effort is required to make gene definitions consistent across related species.

References

[1] Altschul S.F., Boguski M.S., Gish W. and Wootton J.C. (1994) Nat Genet,6(2), 119-29.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Andersson S.G., Zomorodipour A., Andersson J.O., Sicheritz-Pontén T., Alsmark U.C., Podowski R.M., Näslund A.K., Eriksson A.S., Winkler H.H. and Kurland C.G. (1998) Nature, 396(6707),133-40  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Andrade M.A. and Sander C. (1997) Curr Opin Biotechnol,8(6),675-83.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Apweiler R., Gateau A.,Contrino S., Martin M.J., Junker V., O'Donovan C., Lang F.,Mitaritonna N., Kappus S. and Bairoch A.(1997) Proc Int Conf Intell Syst Mol Biol, 5,33-43  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Bocs S., Danchin A. and Médigue C. (2002) BMC Bioinformatics, 3,5  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Borodovsky M., Rudd K.E. and Koonin E.V. (1994) Nucleic Acids Res. 22(22),4756- 67.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Faguy D.M. and Doolittle W.F. (1999) Curr Biol, 9,R883-6.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Gish W.and States D.J. (1993) Nat Genet, 3,266-72.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Hall B.G., Yokoyama S. and Calhoun D.H.(1983) Mol Biol Evol, 1(1),109-24.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Kawarabayasi Y., Hino Y., Horikawa H., Yamazaki S., Haikawa Y., Jin-no K., Takahashi M., Sekine M., Baba S., Ankai A., Kosugi H., Hosoyama A., Fukui S., Nagai Y., Nishijima K., Nakazawa H., Takamiya M., Masuda S., Funahashi T., Tanaka T., Kudoh Y., Yamazaki J., Kushida N., Oguchi A., Kikuchi H et al. (1999) DNA Res, 6(2),83-101,145-52  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Kawarabayasi Y., Hino Y., Horikawa H., Yamazaki S., Haikawa Y., Jin-no K., Takahashi M., Sekine M., Baba S., Ankai A., Kosugi H., Hosoyama A., Fukui S., Nagai Y., Nishijima K., Nakazawa H., Takamiya M., Masuda S., Funahashi T., Tanaka T., Kudoh Y., Yamazaki J., Kushida N., Oguchi A., Kikuchi H et al. (1999) DNA Res, 6(2),83-101,145-52  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] McIninch J.D., Hayes W.S. and Borodovsky M. (1996) Proc Int Conf Intell Syst Mol Biol, 4,165-75  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Mukund S. and M. W. W. Adams. (1991) J. Biol. Chem., 266(22),14208-14216  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Mukund S. and M. W. W. Adams. (1993) J. Biol. Chem., 268(18),13592-13600  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] Ragavan S. and Ouzounis A. (1999) Nucleic Acids Res., 27(22), 4405-4408  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Sako Y., Nomura N., Uchida A., Ishida Y., Morii H., Koga Y., Hoaki T. and Maruyama T. (1996) Int J Syst Bacteriol, 46(4),1070-7.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] Yihwa Yang., Daniel T. Levick., Caryn K. Just. (2008) Journal of Young Investigators, 17(4  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[18] Zhang Q., Iwasaki T., Wakagi T., Oshima T. (1996) J Biochem. ,120(3),587-99.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus