STRUCTURAL AND FUNCTIONAL ANALYSIS OF GLUTATHIONE PEROXIDASE FROM RICINUSCOMMUNIS L. – A COMPUTATIONAL APPROACH

Sohini Gupta1, Sabuj Saha2, Paushali Roy3, Protip Basu4, Sayak Ganguli5*
1Cell Biology, Molecular Biology, Genetics and Plant Biotechnology Laboratory, Post Graduate Department of Botany, Barasat Government College, Kolkata.
2Cell Biology, Molecular Biology, Genetics and Plant Biotechnology Laboratory, Post Graduate Department of Botany, Barasat Government College, Kolkata.
3DBT-Centre for Bioinformatics, Presidency College, Kolkata
4DBT-Centre for Bioinformatics, Presidency College, Kolkata
5DBT-Centre for Bioinformatics, Presidency College, Kolkata
* Corresponding Author : sayakbif@yahoo.com

Received : -     Accepted : -     Published : 15-06-2010
Volume : 2     Issue : 1       Pages : 20 - 30
Int J Bioinformatics Res 2.1 (2010):20-30
DOI : http://dx.doi.org/10.9735/0975-3087.2.1.20-30

Keywords : Ricinus communis L. Delaunay triangulation, glutathione peroxidase, oxidative stress, accessible surface area, pocket identification
Conflict of Interest : None declared

Cite - MLA : Sohini Gupta, et al "STRUCTURAL AND FUNCTIONAL ANALYSIS OF GLUTATHIONE PEROXIDASE FROM RICINUSCOMMUNIS L. – A COMPUTATIONAL APPROACH." International Journal of Bioinformatics Research 2.1 (2010):20-30. http://dx.doi.org/10.9735/0975-3087.2.1.20-30

Cite - APA : Sohini Gupta, Sabuj Saha, Paushali Roy, Protip Basu, Sayak Ganguli (2010). STRUCTURAL AND FUNCTIONAL ANALYSIS OF GLUTATHIONE PEROXIDASE FROM RICINUSCOMMUNIS L. – A COMPUTATIONAL APPROACH. International Journal of Bioinformatics Research, 2 (1), 20-30. http://dx.doi.org/10.9735/0975-3087.2.1.20-30

Cite - Chicago : Sohini Gupta, Sabuj Saha, Paushali Roy, Protip Basu, and Sayak Ganguli "STRUCTURAL AND FUNCTIONAL ANALYSIS OF GLUTATHIONE PEROXIDASE FROM RICINUSCOMMUNIS L. – A COMPUTATIONAL APPROACH." International Journal of Bioinformatics Research 2, no. 1 (2010):20-30. http://dx.doi.org/10.9735/0975-3087.2.1.20-30

Copyright : © 2010, Sohini Gupta, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Oxidative stress in plants causes the induction of several enzymes, including superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2). The first two are responsible for converting superoxide to H2O2 and its subsequent reduction to H2O, and the third is involved in recycling of ascorbate. Glutathione peroxidases (GPXs, EC 1.11.1.9) are a family of key enzymes involved in scavenging oxyradicals in animals. Only recently, indications for the existence of this enzyme in plants were reported. Genes with significant sequence homology to one member of the animal GPX family, namely phospholipid hydroperoxide glutathione peroxidase (PHGPX), were isolated from several plants. In this paper we report the homology modelling of the glutathione peroxidase protein from Ricinus communis L. and its interactions with its two substrates hydrogen peroxide and glutathione. Specific sites of interaction were identified and ligand binding pockets were also screened.

References

[1] Thannickal V.J., Fanburg B.L. (2000) Am J Physiol Lung Cell Mol Physiol, 279:L1005- L1028  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Jackson M.J. (2005) Philos Trans R Soc Lond B Biol Sci, 360:2285-2291  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Sies H. (1993) Eur J Biochem, 215:213-219  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Arthur J.R. (2000) Cell Mol Life Sci, 57:1825- 1835  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Toppo S., Vanin S., Bosello V., Tosatto S.C.E. (2008) Antioxid Redox Signal, 10:1501-1513  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Grossmann A., Wendel A. (1983) Eur J Biochem, 135:549-552  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Imai H., Nakagawa Y. (2003) Free Radic Biol Med, 34:145-169  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Rouhier N., Jacquot J.P. (2005) Free Radic Biol Med.,38:1413-1421  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Navrot N., Collin V., Gualberto J., Gelhaye E., Hirasawa M., Rey P., Knaff D.B., Issakidis E., Jacpuot J.P., Rouhier N. (2006) Plant Physiol, 142:1364-1379  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Herbette S., Lenne C., Leblanc N., Julien J.L., Drevet J.R., Roeckel-Drevet P. (2002) Eur J Biochem, 269:2414-2420  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Jung B.G., Lee K.O., Lee S.S., Chi Y.H., Jang H.H., Kang S.S., Lee K., Lim D., Yoon S.C., Yun D.J., Inoue Y., Cho M.J., Lee S.Y. (2002) J Biol Chem, 277:12572-12578  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Sztajer H., Gamain B., Aumann K.D., Slomianny C., Becker K., Brigelius-Flohé R., Flohé L. (2001) J Biol Chem, 276:7397-7403  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Missirlis F., Rahlfs S., Dimopoulos N., Bauer H., Becker K., Hilliker A., Phillips J.P., Jäckle H. (2003) Biol Chem., 384:463-472.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Tanaka T., Izawa S., Inoue Y. (2005) J Biol Chem., 280:42078-42087  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] Corona M., Robinson G.E. (2006) Insect Mol Biol., 15:687-701  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Dayer R., Fischer B.B., Eggen R.I., Lemaire S.D. (2008) Genetics., 179:41-57  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] Holland D., Ben-Hayyim G., Faltin Z., Camoin L., Strosberg A.D., Eshdat Y. (1993) Plant Mol Biol., 21:923-927  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[18] Maiorino M., Ursini F., Bosello V., Toppo S., Tosatto S.C.E., Mauri P., Becker K., Roveri A., Bulato C., Benazzi L., De Palma A., Flohé L. (2007) J Mol Biol., 365:1033-1046  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[19] Tosatto S.C.E., Bosello V., Fogolari F., Mauri P., Roveri A., Toppo S., Flohé L., Ursini F., Maiorino M. (2008) Antioxid Redox Signal., 10:1515-1526  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[20] Shandar Ahmad, M. Michael Gromiha, Hamed Fawareh and Akinori Sarai (2004) BMC Bioinformatics, 5:51  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[21] Edelsbrunner H., Mucke E.P. (1994) ACM Trans. Graphics, 13:43-72.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[22] Edelsbrunner H. (1995) Discrete Comput. Geom.,13:415-440  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[23] Edelsbrunner H. (1995) Discrete Comput. Geom.,13:415-440  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[24] Edelsbrunner H., Shah N.R. (1996) Algorithmica, 15:223-241  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[25] Facello M.A. (1995) Computer Aided Geometric Design., 12:349-370.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[26] Liang J., Edelsbrunner H., Woodward C. (1998) Protein Science, 7:1884-1897  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[27] Joe Dundas, Zheng Ouyang, Jeffery Tseng, Andrew Binkowski, Yaron Turpaz, and Jie Liang (2006) Nucl. Acids Res., 34:W116- W118.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus