MOLECULAR PHYLOGENY OF ANGIOSPERMIC PLANT FAMILIES USING RBCL GENE SEQUENCES

B. Uma Reddy1*
1Department of Bioinformatics, Gulbarga University, Gulbarga, India
* Corresponding Author : drumareddy11@yahoo.co.in

Received : -     Accepted : -     Published : 21-12-2009
Volume : 1     Issue : 2       Pages : 27 - 36
Int J Bioinformatics Res 1.2 (2009):27-36
DOI : http://dx.doi.org/10.9735/0975-3087.1.2.27-36

Keywords : rbcL gene, monophyletic, paraphyletic, polyphyletic, Phylogenetic relationship, MEGA
Conflict of Interest : None declared

Cite - MLA : B. Uma Reddy "MOLECULAR PHYLOGENY OF ANGIOSPERMIC PLANT FAMILIES USING RBCL GENE SEQUENCES." International Journal of Bioinformatics Research 1.2 (2009):27-36. http://dx.doi.org/10.9735/0975-3087.1.2.27-36

Cite - APA : B. Uma Reddy (2009). MOLECULAR PHYLOGENY OF ANGIOSPERMIC PLANT FAMILIES USING RBCL GENE SEQUENCES. International Journal of Bioinformatics Research, 1 (2), 27-36. http://dx.doi.org/10.9735/0975-3087.1.2.27-36

Cite - Chicago : B. Uma Reddy "MOLECULAR PHYLOGENY OF ANGIOSPERMIC PLANT FAMILIES USING RBCL GENE SEQUENCES." International Journal of Bioinformatics Research 1, no. 2 (2009):27-36. http://dx.doi.org/10.9735/0975-3087.1.2.27-36

Copyright : © 2009, B. Uma Reddy, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

The present study was undertaken to assess the role of plastid-rbcL (ribulose-1, 5-bisphosphate carboxylase large-subunit) gene sequences in addressing the evolutionary relationships within the angiosperms at inter and intra-familial levels using computational experiment. In order to elucidate the relationships, a set of 92 chloroplast rbcL sequences representing from 90 taxa of 12 genera and 10 angiospermic plant families (dicot and monocots) were withdrawn from the GenBank database. The multiple sequence alignment was performed using Genebee-ClustalW service to findout the regions of conserved or indels among the sequences. The phylogenetic tree was inferred from these sequences by employing Bootstrap method of UPGMA (Unweighted Pair Group Method with Arithmetic Mean) using MEGA (Molecular Evolutionary Genetics Analysis) software. The consistency of these generic-wise groupings was further confirmed by the MP (Maximum-Parsimony), ME (Minimum-Evolution) and NJ (Neighbor-Joining) methods. The analysis of these studies strongly indicates that, out of the 12 selected genera Trichosanthes (Cucurbitaceae), Phyllanthus (Phyllanthaceae), Austrobryonia (Cucurbitaceae), Solanum (Solanaceae), Piper (Piperaceae) and Saxifraga (Saxifragaceae) are grouped into separate clusters and exhibiting monophyletic conditions. Where as, Drypetes (Putranjivaceae), Asparagus (Asparagaceae), Cassia (Caesalpinioideae, sub-family), Canna (Cannaceae), Mentha (Lamiaceae), are paraphyletic and the members of the Salvia (Lamiaceae) are distributed throughout these hiraeoid clades, confirming the polyphyly of this large genus. Similar observations were noticed in all four methods. Thus, chloroplast rbcL gene sequences can unambiguously resolve the relationships, as well as provided a good indication of major supra-generic groupings among the selected angiospermic plant families and also gave many clues for future studies.

References

[1] Chase, M. W.; Soltis, D.E.; Olmstead, R.G.; Morgan, D.; Les, D. H.; Mishler, B. D.; Duvall, M. R.; Price, J. H.; Hillis, H. G.; Qiu, Y. L.; Kron, K. A.; Rettig, J. H.; Conti, E.; Palmer, J. D.; Manhart, J. R.; Sytsma, K. J.; Michaels, H. J.; Kress, W. J.; Karol, K. G.; Clark, W. D.; Hedren, M.; Gaul, B. S.; Jansen, R. K.; Kim, K. J.; Wimpee, C. F.; Smith, J. F.; Furnier, G.R.; Strauss, S. H.; Xiang, Q. Y.; Plunkett, G. M.; Soltis, P. S.; Swensen, S. M.; Williams, S. E.; Gadek, P. A.; Quinn, C. J.; Eguiarte, L. E.; Goldenberg, E.; Lean, G. H.; Graham, S. W.; Barrett, S. C. H.; Dayanandan, S. and Albert, V. A. (1993) Ann. Mo. Bot. Gard, 80, 528 -580  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Les, D. E.; Garvin, D. K. and Wimpee, C. F. (1991). Proc. Natl. Acad. Sci, 88, 10119 – 10123  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Duvall, M. R.; Learn, G.H.; Jr.; Eguiate, L. E. and Clegg, M. T. (1993) Proc Natl Acad Sci, 90, 4641 – 4644  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Wolfe, K. H.; Li, W. H. and Sharp, P. M. (1987). Proc. Natl. Acad. Sci, 88, 9054 – 9058.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Zurawski, G.; Clegg, M. T. and Brown, A. H. D. (1984). Genetics, 106, 735-749  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Ritland, K. and Clegg, M. T. (1987) Am Nat, 130, 74 – 100  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Uma Reddy, B. (2009) Int J Bioinf, ISSN: 0974 - 6439, 2(1), 54 – 59  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Kenneth Wurdack, J.; Petra Hoffmann.; Rosabelle Samuel.; Anette De Bruun.; Michelle Van Der Bank. and Mark Chase W. (2004) Am. J. Bot, 91(11), 1882 – 1900  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] James Richardson, E.; Michael Fay, F.; Quentin Cronk, C.B.; Diane Bowman. and Mark Chase, W. (2000) Am. J. Bot, 87(9), 1309 – 1324  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Sasa Stefanovic.; Bernard Pfeil, E.; Jeffrey Palmer, D. and Jeff Doyle J. (2009) Syst. Bot, 34(1), 115 – 128  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Sudhir Kumar.; Masatoshi Nei.; Joel Dudley. and Koichiro Tamura (2008) Brief in Bioinf, 9(4), 299-308  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Kluge, A. G. and Farris, J. S. (1969) Syst. Bot, 18, 1-22  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Farris, J. S. (1989) Cladistics, 5, 417 – 419.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Felsenstein, J. (1985) Evolution, 39, 783 - 791.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] Kenneth Cameron, M.; Mark Chase, W.; Mark Whitten, W.; Paul Kores, J.; David Jarrell, C.; Victor Albert, A.; Tomosia Yukawa.; Harold Hillis, G. and Douglas Goldman, H. (1999) Am. J. Bot, 86(2), 208 – 224  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Kimura, M. (1980) J Mol Evol, 16, 111-120  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] Burger, W. C. (1977) Bot Rev, 43, 345 – 393  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[18] Taylor, D. W. and Hickey, L. J. (1992) Plant Syst Evol, 180, 137 – 156  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[19] Shu-Miaw Chaw.; Andrey Zharkikh.; Huang- Mo Sung.; Tak Cheung Lau. and Wen Hsiung Li. (1997) Mol. Biol. Evol, 14(1), 56 – 68  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[20] Vasishta, P. C. (2001) Taxonomy of Angiosperms. Published by G.S. Sharma, Proprietor, R. Chand and Company, 1 –Ansari Road, Daryaganj, New Delhi, 32  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[21] Wurdack, K. J.; Hoffmann, P.; Samuel, R.; de Bruijn, A.; Van der Bank, M. and Chase, M. W. (2004) Am. J. Bot, 91 (11), 1882-1900  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[22] Tokuoka, T. and Tobe, H. (2006) J. Plant Res, 119 (6), 599-616.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[23] Schaefer, H.; Kocyan, A. and Renner, S. S. (2008) Syst. Bot, 33 (2), 349-355  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[24] Kress, W. J.; Prince, L. M.; Hahn, W. J. and Zimmer, E. A. (2001) Syst. Biol, 50 (6), 926-944  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[25] Walker, J. B.; Sytsma, K. J.; Treutlein, J. and Wink, M. (2004) Am. J. Bot, 91 (7), 1115-1125  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[26] Kaufmann, M. and Wink, M. (1994) Biosci. Rep, 49, 635-645  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[27] Wagstaff, S. J. and Olmstead, R. G. (1997) Syst. Bot, 22 (1), 165-179  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[28] Olmstead, R. G.; Bremer, B.; Scott, K. M. and Palmer, J. D. (1993) Ann. Mo. Bot. Gard, 80, 700-722  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[29] Rodman, J. E.; Price, R. A.; Karol, K. G.; Conti, E.; Sytsma, K. and Palmer, J. (1993) Ann. Mo. Bot. Gard, 80, 686-699  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[30] Forest, F., Chase, M. W., Persson, C., Crane, P. R. and Hawkins, J. A. (2007) Evolution, 61 (7), 1675-1694  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[31] Doyle, J. J.; Doyle, J. L.; Ballenger, J. A.; Dickson, E. E.; Kajita, T. and Ohashi, H. (1997) Am. J. Bot, 84, 541-554  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[32] Yamashita, ,J. and Tamura,, M. N. (2000) Molecular phylogeny of the Convallariaceae (Asparagales) Wilson, K. L. and Morrison, D. A. (Eds.); Monocots: Systematics And Evolution: 387-400; CSIRO, Melbourne  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[33] Solits, D. E.; Kuzoff, R. K.; Mort, M. E.; Zanis, M.; Fishbein, M.; Hufford, L.; Koontz, J. and Arroyo, M. K. (2001). Ann. Mo. Bot. Gard, 88 (4), 669-693  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus