GENOME WIDE SNRNP MOTIFS AND REGULATORY SEQUENCES IN HIV1 ISOLATES

Paushali Roy1*, Protip Basu2, Sayak Ganguli3, Abhijit Datta4
1DBT-Centre for Bioinformatics, Presidency College, Kolkata, India.
2DBT-Centre for Bioinformatics, Presidency College, Kolkata, India.
3DBT-Centre for Bioinformatics, Presidency College, Kolkata, India.
4DBT-Centre for Bioinformatics, Presidency College, Kolkata, India.
* Corresponding Author : paushali.06@gmail.com

Received : -     Accepted : -     Published : 21-12-2009
Volume : 1     Issue : 2       Pages : 14 - 26
Int J Bioinformatics Res 1.2 (2009):14-26
DOI : http://dx.doi.org/10.9735/0975-3087.1.2.14-26

Keywords : Riboswitch, snRNP motifs, HIV-1, gene regulation, RNA processing
Conflict of Interest : None declared

Cite - MLA : Paushali Roy, et al "GENOME WIDE SNRNP MOTIFS AND REGULATORY SEQUENCES IN HIV1 ISOLATES." International Journal of Bioinformatics Research 1.2 (2009):14-26. http://dx.doi.org/10.9735/0975-3087.1.2.14-26

Cite - APA : Paushali Roy, Protip Basu, Sayak Ganguli, Abhijit Datta (2009). GENOME WIDE SNRNP MOTIFS AND REGULATORY SEQUENCES IN HIV1 ISOLATES. International Journal of Bioinformatics Research, 1 (2), 14-26. http://dx.doi.org/10.9735/0975-3087.1.2.14-26

Cite - Chicago : Paushali Roy, Protip Basu, Sayak Ganguli, and Abhijit Datta "GENOME WIDE SNRNP MOTIFS AND REGULATORY SEQUENCES IN HIV1 ISOLATES." International Journal of Bioinformatics Research 1, no. 2 (2009):14-26. http://dx.doi.org/10.9735/0975-3087.1.2.14-26

Copyright : © 2009, Paushali Roy, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

The pathogenesis of HIV-1 is complex and characterized by the interplay of both viral and host factors. Within HIV 1 genome there are several snRNP motifs responsible for pre mRNA splicing and stabilization. By locating these motifs within the genome and disturbing them may result in an impaired ability of the cells to sustain HIV-1 replication. One of such regulatory sequences is riboswitches that regulate the dimerization of HIV-1 RNA, which is an essential step during packaging. The current work was undertaken to identify possible regulatory RNA motifs in the HIV1 genome from different isolates. The current work has successfully identified multiple snRNP motifs in the genome sequences of different strains of HIV-1 isolates. The identification of the multiple snRNP motifs in the genomic sequences of the various isolates lead us to believe that future studies with artificially constructed snRNPs might have the potential to inhibit HIV1 replication. Apart from containing snRNP motifs they also possess regulatory riboswitch motifs. Riboswitches bind metabolites and control the dimerization and packaging of the genome. Thus the occurrence of such motifs further strengthens the idea that apart from serving as a regulatory domain for structural constraints such motifs may also regulate genome integration and production of the necessary products by using the host transcriptional machinery. It is however beyond doubt that such sequence motifs must have originated in the RNA world as they have the power to mediate RNA induced regulation of gene expression.

References

[1] Nishitsuji H. , Kohara M. , Kannagi M. and Masuda T. (2006) J Virol, 80, 7658- 7666  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Jacobo-Molina A. , Ding J. , Nanni R.G. , Clark A.D. , Jr., Lu X. , Tantillo C. , Williams R.L. , Kamer G. , Ferris A.L. , Clark P. , Hizi A, Hughes S.H. and Arnold E. (1993) Proc. Natl. Acad. Sci. USA 90, 6320-6324  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Chakraborti S. and Banerjea A.C. (2003) Mol Ther 7, 817-826  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Mandal M. and Breaker R. R. (2004) Nature Reviews Molecular Cell Biology 5, 451-463  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Ray S. Kumar (2004) Current Science 87(9)  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Miranda-Ríos J. , Navarro M. and Soberón M. (2001) Proc Natl Acad Sci U S A 98(17), 9736-41  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Winkler W.C. , Cohen-Chalamish S. and Breaker R.R. (2002) Proc Natl Acad Sci U S A 99(25), 15908-13  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Nahvi A. , Barrick J.E. and Breaker R.R. (2004) Nucleic Acids Res. 32(1), 143- 50.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Grundy F.J. and Henkin T.M. (1998) Mol Microbiol 30(4), 737-49.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Mandal M. (2003) Cell 113, 577–586  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Winkler W.C. , Nahvi A., Roth A. , Collins J.A. and Breaker R.R. (2004) Nature 428, 281–286  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Mandal M. , Lee M. , Barrick J.E. , Weinberg Z. , Emilsson G.M. , Ruzzo W.L. and Breaker R.R. (2004) Science 306, 275–279  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Tucker B.J. and Breaker R.R. (2005) Curr Opin Struct Biol 15(3), 342-8.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Roth A. (2007) Nat Struct Mol Biol 14(4), 308-17  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] Kaempfer R. (2003) EMBO reports 4(11), 1043–1047  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Batey R.T. , Gilbert S.D. and Montange R.K. (2004) Nature 432, 411-415.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] Sajic R. , Lee K. , Asai K. , Sakac D. , Branch D.R. , Upton C. and Cochrane A. (2007) Nucleic Acids Research, 35, 247–255  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[18] Vagner S. , Rüegsegger U. , Gunderson S.I. , Keller W. and Mattaj I.W. (2000) RNA, 6, 178–188  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[19] Ashe M.P. , Furger A. and Proudfoot N.J. (2000) RNA, 6, 170–177  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus