BIOMETRIC TEMPLATE CLASSIFICATION USING SELECTIVE SUB BANDS OF WAVELETS: A CASE STUDY IN IRIS TEXTURES

NARAYANA CH.V.1, CHANDRA MURTY P.S.R.2, SREENIVASA REDDY E.3
1Acharya Nagarjuna University1, Guntur, A.P, India
2Jawaharlal Nehru Technological University, Kakinada, A.P., India
3Professor, Department of Computer Science and Engineering, Vasireddy Venkatadri Institute of Technology, Guntur, A.P., India

Received : 20-11-2010     Accepted : 24-12-2010     Published : 15-12-2011
Volume : 2     Issue : 1       Pages : 11 - 19
J Biometrics 2.1 (2011):11-19

Cite - MLA : NARAYANA CH.V., et al "BIOMETRIC TEMPLATE CLASSIFICATION USING SELECTIVE SUB BANDS OF WAVELETS: A CASE STUDY IN IRIS TEXTURES." Journal of Biometrics 2.1 (2011):11-19.

Cite - APA : NARAYANA CH.V., CHANDRA MURTY P.S.R., SREENIVASA REDDY E. (2011). BIOMETRIC TEMPLATE CLASSIFICATION USING SELECTIVE SUB BANDS OF WAVELETS: A CASE STUDY IN IRIS TEXTURES. Journal of Biometrics, 2 (1), 11-19.

Cite - Chicago : NARAYANA CH.V., CHANDRA MURTY P.S.R., and SREENIVASA REDDY E. "BIOMETRIC TEMPLATE CLASSIFICATION USING SELECTIVE SUB BANDS OF WAVELETS: A CASE STUDY IN IRIS TEXTURES." Journal of Biometrics 2, no. 1 (2011):11-19.

Copyright : © 2011, NARAYANA CH.V., et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Considering multiple biometric templates per user account by biometric authentication systems for high acceptance rate leads to large storage space and computational overheads. Classification of these templates into significant sub groups will reduce the above overheads. Iris templates carry very distinctive texture information such as brightness, shape, size, uniformity, directionality, regularity etc .Iris texture classification based on wavelet pattern analysis is one of the most effective existing methods. However using all frequency sub-bands in decomposition for classification may increase space and time complexity of classification algorithms. In this paper sub-bands with high energy and entropy are only considered for classification to reduce the overheads due to space and time. Fractal dimensions are used to select significant sub-bands for decomposition at each level. Further statistical features of these significant sub-bands are used for classification. This paper describes iris texture classification using selective sub-bands of wavelets based on fractal dimensions and its results are compared with the other classification methods using conventional features.

References

[1] Sreenivasa Reddy E., Subbarao Ch. and Ramesh Babu I. (2007) Proceedings of 2nd IEEE International Conference on Biometrics, LNCS4642, pp.106-1113  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Keller J.M., Chen S., Crownover R.M. (1989) Computer Vision and Image Processing and Graphics  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Mandelbrot B.B., Van Ness J.W. (1968) SIAM Rev. 10.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Dimitrios Charlampidi and Takis Kasparis (2001) Proc. SPIE, Vol. 4391, 115  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Aura Conci and Oliveira Nunes (2002) SIBGRAPI  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Mona Sharma, Markos Markou, Sameer Singh “Evaluation of Texture Methods for Image Analysis”, pattern recognition letters.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Lane A. and Fan J. (1993) IEEE Transactions, Pattern Analysis and Machine Intelligence. Vol. 15, pp.1186-1191  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Peitgen H. O., Jurgens H., Saupe D. (1992) Chaos and Fractals: New Frontiers of Science, Springer, Berlin  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Omar S. AL-Kadi (2009) Proceedings of ICIP, USA.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Arivazhagan S., Ganesan L., Deivalakshmi S. (2003) Pattern Recognition Letters, Vol.24, Issue 9-10,pp1513-1521  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Qingmiao Wang, Shinguang Ju (2008) Proceedings of 4th IEEE International Conference on Natural Computation  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Karu K., Anil Jain K., and Bolle R. M. (1996) Journal on Pattern Recognition, Vol. 29, No. 9, pp.1437-1446  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Reed T. R. and Buf J. M. H. (1993) Computer vision, Image Processing and Graphics Journal, Vol. 57, No. 3, pp. 359-372  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Jill P. Card, Hyde J. M. and Giversen T. (2001) Discrimination of Surface Textures using Fractal Methods, Pattern Informatics Publications  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] Conners R.W. and Harlow C.A. (1980) IEEE transactions on Pattern Analysis and Machine Intelligence, vol2, no. 3, pp.204-222.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus