Effect of cultural conditions on biomass and nitrate reductase activity in six strains of anabaena isolated from paddy field soils of Ganjam (Orissa)

Padhi S.B.1*, Behura S.2*, Behera G.3, Behera S.4, Swain P.5, Panigrahi M.6, Panigrahi H.7, Mishra A.8, Beja S.9, Baidya S.10, Pradhan S.11
1Algal Research Laboratory, Department of Botany, Berhampur University, Bhanja, 760007, Bihar
2Algal Research Laboratory, Department of Botany, Berhampur University, Bhanja, 760007, Bihar
3Algal Research Laboratory, Department of Botany, Berhampur University, Bhanja, 760007, Bihar
4Algal Research Laboratory, Department of Botany, Berhampur University, Bhanja, 760007, Bihar
5Algal Research Laboratory, Department of Botany, Berhampur University, Bhanja, 760007, Bihar
6Algal Research Laboratory, Department of Botany, Berhampur University, Bhanja, 760007, Bihar
7Algal Research Laboratory, Department of Botany, Berhampur University, Bhanja, 760007, Bihar
8Algal Research Laboratory, Department of Botany, Berhampur University, Bhanja, 760007, Bihar
9Algal Research Laboratory, Department of Botany, Berhampur University, Bhanja, 760007, Bihar
10Algal Research Laboratory, Department of Botany, Berhampur University, Bhanja, 760007, Bihar
11Algal Research Laboratory, Department of Botany, Berhampur University, Bhanja, 760007, Bihar
* Corresponding Author : sasmitabehura@gmail.com

Received : -     Accepted : -     Published : 21-12-2010
Volume : 2     Issue : 2       Pages : 17 - 29
Int J Microbiol Res 2.2 (2010):17-29
DOI : http://dx.doi.org/10.9735/0975-5276.2.2.17-29

Keywords : pH, temperature, copper, molybdenum, NaNO3, NH4Cl, Urea
Conflict of Interest : None declared
Acknowledgements/Funding : The authors express their deep sense of gratitude to Head, P.G. Department of Botany, and Berhampur University for laboratory facilities

Cite - MLA : Padhi S.B., et al "Effect of cultural conditions on biomass and nitrate reductase activity in six strains of anabaena isolated from paddy field soils of Ganjam (Orissa)." International Journal of Microbiology Research 2.2 (2010):17-29. http://dx.doi.org/10.9735/0975-5276.2.2.17-29

Cite - APA : Padhi S.B., Behura S., Behera G., Behera S., Swain P., Panigrahi M., Panigrahi H., Mishra A., Beja S., Baidya S., Pradhan S. (2010). Effect of cultural conditions on biomass and nitrate reductase activity in six strains of anabaena isolated from paddy field soils of Ganjam (Orissa). International Journal of Microbiology Research, 2 (2), 17-29. http://dx.doi.org/10.9735/0975-5276.2.2.17-29

Cite - Chicago : Padhi S.B., Behura S., Behera G., Behera S., Swain P., Panigrahi M., Panigrahi H., Mishra A., Beja S., Baidya S., and Pradhan S. "Effect of cultural conditions on biomass and nitrate reductase activity in six strains of anabaena isolated from paddy field soils of Ganjam (Orissa)." International Journal of Microbiology Research 2, no. 2 (2010):17-29. http://dx.doi.org/10.9735/0975-5276.2.2.17-29

Copyright : © 2010, Padhi S.B., et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Cyanobacteria offer an economically and ecologically sound alternative to chemical fertilizers for realizing the ultimate goal of increased productivity, especially in rice cultivation. There is however, a growing concern about the adverse effects of indiscriminate use of chemical fertilizers on soil productivity and environmental quality. A comparative study between the NR activity and biomass of six Anabaena strains isolated from paddy field soils of Ganjam district in presence of pH, temperature, copper& molybdenum, NaNO3, NH4Cl, and Urea is being conducted to present a situation where NR activity and biomass may be affected under varied concentration. Maximum NR activity was observed in Anabaena sp. at pH 8.5 and 35oC temperature while Anabaena circinalis showed minimum activity in same concentration. Biomass content was maximum in Anabaena variabilis at pH 8.5 where as at temperature 35oC in Anabaena flos-aquae and minimum biomass observed in Anabaena iyengarii at same concentration. NR activity in relation to copper was maximum in Anabaena sp. at 2 ıg/l while minimum in Anabaena circinalis at same concentration. At 0.5μg/l molybdenum content in the culture medium showed maximum NR activity in Anabaena sp and reduced in all strains with increase of concentration. Anabaena flos-aquae showed minimum NR activity at 0.1mM concentration of NaNO3 while Anabaena circinalis showed minimum NR activity at same concentration of NH4Cl. The NR activity was observed minimum at 3mM concentration of Urea in A. cylindrica. The activity of NR and biomass in all the strains was influenced by external NH4 -and NO3 +and Urea concentration.

References

[1] Aiyer R. S. (1965) Agricultural Research Journal of Kerala, 3 (1), 100-104  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Awasthi M. and Rai L. C. (2005) Environ. Safe. 61, 268-272  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Balsco D. and Packard T. T. (1974) Tethys. 6, 239-46.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Bier J. (2002) 6th Symposium on Ground Water Contaminants, Nov 12th and 13th Frensco, CA  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Campbell E. R. and Campbell W. H. (1998) In: Current protocols in field analytical chemistry, Supplement 1, Chapter 5 “Water Quality Parameters- Anions”, John Wiley and sons, Inc  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Dominic T. K. and Madhusoodanan, P.V. (1999) Current Science, 77 (8), 1021-1022.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Eppley R. W. and Renger E. H. (1974) Limnol.Oceanogr, 14, 194-205  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Harrison W. G. (1973) Limnol.Oceanogr, 18, 457-65  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Herrera J., Paneque A., Maldonado J., Barea J. I. and Losada M. (1973) Biochem, Biophysics. Res. Comm- 48, 996-1003  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Hunt M. E., Floyd G. L. and Stout, B. B. (1979) Ecology, 60 (2), 362-375  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Johnson C. J. and Kross B. C. (1990) Am. J. Int. Med., 18, 449-456  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Kannaiyan S. 1985. Studies on the Algal Application for Low Land Rice Crop. Coimbatore: T NAU, Tamil Nadu, India. p. 24  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Kaushik B. D. (1991) Current Trends in Limnology, Vol. 1. Narendra publishing House, New Delhi  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Kaushik B. D. (1994) Annales of Agricultural Research, 14, 105-106  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] Knobloch O. and Tischner R. (1989) Plant Physiol, 89, 786-791  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Kratz W. A. and Myers J. (1955) Am. J. Bot. 42, 282-287  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] Lau P. S., Tam N. F. Y. and Wong Y.S. (1998) Bioresource Technol., 63, 115- 121  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[18] Nayak S., Prasanna R., Dominic, T. K. and Singh P. K. (2004) Biology and Fertility of Soils, 40, 67-72  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[19] Nichols G. L., Snehata S. A. M. and Syrett P. J. (1978) J. Gen. Microbiol, 108, 79-88  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[20] Packard T.T. (1973) Limnol. Oceanogr, 18, 466-9.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[21] Padhi S. B. (1983) Ph.D. Thesis. Berhampur University  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[22] Singh P. K. (1975) Phykos, 14, 81-88.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[23] Singh P. K. (1976b) Biochem. Physiol. Pflanzen, 170, 237-242  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[24] Snell P.D. and Snell C.T. (1949) In Colorimetric Methods of Analysis .III Ed.2.804-805.D.Von Nostrand Company Inc., Princeton, New Jersey and New York.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[25] Stainer R.Y. and Cohen-Bazire G. (1977) Ann. Rev. Microbiol, 31, 225- 274  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[26] Stewart, W.D.P., Haystead A. and Dharmawardene (1975b) In: Stewart, W.D.P. (Ed.) : Nitrogen fixation be freeliving micro-organisms. IBP, 6, 129-158.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[27] Solomonson L. P. and Barber M. J. (1990) Plant Mol. Biol., 41, 225- 253  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[28] US Environmental Protection Agency (1987) Nitrate/ Nitrite health advisory. Washington: US Environmental protection Agency, Office of Drinking Water  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[29] Venkataraman G. S. (1981) Blue-Green Algae for rice production- a manual for its promotion- FAO Soils bulletin no. 46. FAO, Rome.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[30] Zvyagil’skaya R. A., Vartapetyan B. B. and Vov N. P. L. (1996) Appl. Biochem. Microbiol. 32, 165- 169  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus