

Research Article

GENETIC DIVERGENCE OF CHICKPEA (*CICER ARIETINUM*) CULTIVARS FOR THE TRAITS RELATED TO MECHANICAL HARVESTING AND YIELD AND YIELD COMPONENTS

MASTAMARADI S.B.*, NAIK R.V., BIRADAR S.B., GIRITAMMANAVAR V.A. AND ONTAGODI T.P.

Department of Genetics and Plant Breeding, University of Agricultural Sciences, Dharwad, 560065, India *Corresponding Author: Email - bmshree.4795@gmail.com

Received: May 24, 2020; Revised: June 12, 2020; Accepted: June 13, 2020; Published: June 15, 2020

Abstract: Genetic diversity was assessed through Mahalanobis's D² statistics in 58 genetically diverse chickpea genotypes. The study revealed that 58 genotypes were grouped into six distinct clusters. Cluster I was largest consisting of 39 genotypes followed by, cluster II with 8, cluster IV with 4, and cluster V with 5, while remaining clusters III and VI were solitary. Number of seeds per plant contributed maximum (32.43 %) to the divergence of genotypes. This was followed by days to maturity (18.51%), yield per plant (13.25%) and harvest index (12.70%). Based on inter cluster distance, Cluster VI was superior for early maturity habit, number of secondary branches, number of tertiary branches, lowest internodal length and seeds per plant, cluster III for seed yield per plant and harvest index, while cluster IV for seed yield per plant, number of seeds per plant and lower branch angle. Whereas, cluster II for plant height, higher height at first podding, highest number of internodes per plant and lowest branch angle. The genotypes from these clusters may therefore be selected as parents in crossing programmes to incorporate the characters related to mechanical harvesting and yield components.

Keywords: Genetic diversity, Genotypes, Clusters, Mechanical harvesting

Citation: Mastamaradi S.B., et al., (2020) Genetic Divergence of Chickpea (Cicer arietinum) Cultivars for the Traits Related to Mechanical Harvesting and Yield and Yield Components. International Journal of Agriculture Sciences, ISSN: 0975-3710 & E-ISSN: 0975-9107, Volume 12, Issue 11, pp.- 9907-9909.

Copyright: Copyright©2020 Mastamaradi S.B., *et al.*, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Academic Editor / Reviewer: Sengar Shivesh S., Dr Renu Agrawal

Introduction

Chickpea (*Cicer arietinum* L.), also known as Bengal gram or Garbanzo, is one of the earliest food legumes cultivated by man and plays an important role in human diet and agricultural systems. It is the largest produced food legume in South Asia and is currently the second most important food legume in the world after common bean. India is the largest chickpea producing country accounting for 65.4% of the global chickpea production. It occupies 14.8 million hectare of chickpea area with production of 14.23 million tonnes seeds, with productivity of 950 kg ha⁻¹ [1].

With continuously increasing labor cost, manual harvesting has become an expensive field operation for any crop in India and farmers are increasingly opting for mechanical harvesting wherever it is feasible. Also, untimely availability of labor causes delay in harvesting which can result in yield losses through pod drop and shattering, while seed quality also deteriorates. Chickpea is harvested by hand in India because the existing popular chickpea varieties grown in India have inadequate height, semi-spreading growth habit and height of lower pods is about 15-20 cm from the ground that means branches are close to ground due to semispreading growth habit and therefore these cultivars are not suitable for mechanical harvesting. This necessitates the development of cultivars suited to mechanical harvesting. Cultivars with tall plant height, erect growth habit, acceptable branch angle with higher first pod height, a greater number of internodes and short internodal length are required for mechanical harvesting which need to be developed through intensive breeding programs. The knowledge of genetic diversity is required in the formation of successful breeding programmes. For further crop improvement with desired character combinations, it is required to use diverse parents for hybridization programme so that superior segregants are obtained. So, the present experiment was formulated to study the genetic divergence for selection of suitable parents for utilizing in hybridization programme aimed at combining characters related to mechanical harvesting and yield and yield attributes.

Materials and methods

The base material for the present investigation consisted of 58 genetically diverse genotypes of chickpea obtained from AICRP on chickpea, UAS, Dharwad and ICRISAT, Hyderabad. The chickpea genotypes are listed in [Table-1]. The experiment was conducted at Botany Garden, Department of Genetics and Plant Breeding, Dharwad during rabi 2011. Geographically, Dharwad is situated at 15 ° 12 N' latitude and 70° 26' E longitude at an altitude of 678 m above sea level and receives an average annual rainfall of 720 mm. Data were recorded on five randomly tagged plants for *viz.*, days to maturity, plant height, number of secondary branches, number of tertiary branches, height at first podding, internodal length, number of internodes per plant, branch angle, seeds per plant, seed yield per plant and harvest index. Mahalanobis (1936) [2] D² statistics was used for assessing the genetic divergence among 58 genotypes. On the basis of magnitude of D² value the genotypes were grouped into number of clusters as suggested by Tocher described by Rao (1952) [3]. Statistical analyses for experimental observations were carried out by 'windostat' software.

Results and discussion

The 58 genotypes tested were grouped into six distinct clusters. Cluster pattern revealed that, cluster I is largest consisting of 39 genotypes followed by, cluster II with 8, cluster IV with 4, and cluster V with 5, while remaining clusters III and VI were solitary [Table-2] and [Fig-1].

Maximum difference among the genotypes within same cluster was shown by cluster V (D^2 =175.55) followed by cluster I (D^2 =145.89). The minimum intra cluster distance was observed for cluster II (113.83). Since cluster III and VI had only one genotype each the intra cluster distance was zero. When diversity among the clusters was studied, it showed a range of 141.84 to 3028.12. Cluster VI and II showed maximum inter cluster distances of 3028.12, followed by that between cluster VI and III (2164.75).

Table- T List of chickpea genotypes used in the study										
No.	Genotype	Source	No.	Genotype	Source					
1	PG 0105	UAS, DWD	30	IARI-367	UAS, DWD					
2	JG 23	UAS, DWD	31	BUSHY MUT	UAS, DWD					
3	H 08-13	UAS, DWD	32	AT-2-3	UAS, DWD					
4	PG 081	UAS, DWD	33	AT-3-4	UAS, DWD					
5	GJG 0907	UAS, DWD	34	ICCV 03112	ICRISAT, HYD					
6	RKG 153	UAS, DWD	35	ICCX-040111-F3-P14-BP	ICRISAT, HYD					
7	Phule G 0215-2	UAS, DWD	36	ICCV 03108	ICRISAT, HYD					
8	CSJ 564	UAS, DWD	37	ICCX-040177-F3-BP-P44-BP	ICRISAT, HYD					
9	Phule G 0204-4	UAS, DWD	38	JG 11	UAS, DWD					
10	IPC 07-19	UAS, DWD	39	ICCV 98501	ICRISAT, HYD					
11	JG 24	UAS, DWD	40	ICCX-040183-F3-BP-P38-BP	ICRISAT, HYD					
12	IPC 08-11	UAS, DWD	41	ICCX-040123-F3-P24-BP	ICRISAT, HYD					
13	AKG 1001	UAS, DWD	42	ICCX-040111-F3-P13-BP	ICRISAT, HYD					
14	BGD 1068	UAS, DWD	43	ICCX-040130-F4-BP-P8-BP-BP	ICRISAT, HYD					
15	RVSSG-9	UAS, DWD	44	ICCX-040138-F3-BP-P4-BP	ICRISAT, HYD					
16	GJG 0906	UAS, DWD	45	ICCX-040183-F3-BP-P15-BP	ICRISAT, HYD					
17	RVSSG-10	UAS, DWD	46	ICCX-040166-F4-P18-BP-BP	ICRISAT, HYD					
18	H 08-71	UAS, DWD	47	ICCX-040183-F3-BP-P13-BP	ICRISAT, HYD					
19	BCP60	UAS, DWD	48	ICCV 04103	ICRISAT, HYD					
20	IPC 07-09	UAS, DWD	49	ICCV 03104	ICRISAT, HYD					
21	BGD 1070	UAS, DWD	50	ICCX-060058-F4-P10-BP	ICRISAT, HYD					
22	BGM 572	UAS, DWD	51	ICCX-040118-F3-P4-BP	ICRISAT, HYD					
23	BG 3029	UAS, DWD	52	ICCX-040166-F4-P5-BP-BP	ICRISAT, HYD					
24	GJG 0904	UAS, DWD	53	ICCX-040155-F4-P9-BP-BP	ICRISAT, HYD					
25	BGD 1061	UAS, DWD	54	ICCX-040121-F3-P34-BP	ICRISAT, HYD					
26	Phule G 09103	UAS, DWD	55	JAKI 9218	UAS, DWD					
27	Phule G 07101	UAS, DWD	56	BGD-103	UAS, DWD					
28	DBGV-02	UAS, DWD	57	A-1	UAS, DWD					
29	DBGV 04	UAS, DWD	58	BG-256	UAS, DWD					

Table-1 List of chickpea genotypes used in the study

Table-2 Inter (bold) - and intra- cluster distances (D²) in 58 chickpea genotypes

Clusters		11		IV	V	VI	No. of genotypes
1	145.89	268.1	227.57	350.91	337.38	2891.2	39
II		113.83	327.06	500.76	407.62	3028.12	8
III			0	141.84	403.88	2164.75	1
IV				123.43	694.17	1827.7	4
V					175.55	2948	5
VI						0	1

Table-3 Percent contribution of different traits related to yield and mechanical harvesting in 58 chickpea genotypes towards total diversity

Characters	Times ranked first	Percent contribution
Days to maturity	306	18.51%
Plant height	3	0.18%
Number of secondary branches per plant	38	2.30%
Number of tertiary branches per plant	19	1.15%
Height at first podding	148	8.95%
Internodal length	56	3.39%
Number internodes per plant	6	0.36%
Branch angle	112	6.78%
Seeds per plant	536	32.43%
Yield per plant	219	13.25%
Harvest index	210	12.70%

Table-4 Cluster means for 11 different traits related to yield and mechanical harvesting in 58 chickpea genotypes

Cluster	DM	PH (cm)	NSB	NTB	HAFP (cm)	INL (cm)	NIPP	BA	SPP	YPP (g)	HI (%)
I	106.05	48.75	8.44	12.14	26.97	1.61	27.3	34.24	64.69	16.06	49.83
	121.81	52.59	6.8	10.4	38.51	1.69	29.1	31.39	46.35	10.36	48.44
	113.5	44.36	14.55	26.5	24.6	1.74	28.01	32.93	132.73	32.93	53.56
IV	106.63	45.92	10.01	16.7	21	1.59	26.27	34.61	143.44	28.73	53.37
V	111.1	47.93	17.7	22.44	22.73	1.93	26.77	43.58	47.7	11.67	35.53
VI	89	28.7	42.75	50.45	11.25	1.08	25.5	48.25	261	28.05	38.4

The lowest inter cluster distance was noticed between clusters IV and III (141.84), followed by between clusters I and III (227.57) [Table-2]. Researcher found considerable genetic diversity in chickpea where in inter cluster distance ranged from 55.59 to 400.99 [4]. Whereas, little divergence in chickpea where the inter cluster distance ranged from 11.92 to 31.59 [5]. Similarly, Vishnu, *et al.*, (2018) [6] found D² values varying from 8.64 to 28 under irrigated condition in chickpea. This indicated that substantial diversity existed in the germplasm collections evaluated in the present study. This is also in agreement with earlier reports indicating

substantial diversity in chickpea materials [7,8]. Number of seeds per plant (ranked first 536 times out of 1653 total number of combinations) contributed 32.43 percent to divergence of genotypes. This was followed by days to maturity (18.51%), yield per plant (13.25%), harvest index (12.70%), height at first podding (8.95%), branch angle (6.78%), internodal length (3.39%) number of secondary branches per plant (2.30%) and number of tertiary branches per plant (1.15%). On the other hand, number of internodes per plant and plant height had negligible contribution towards divergence.

Vijayakumar, *et al.*, (2017) [10] observed highest contribution of seed yield and days to maturity towards the divergence in chickpea. Whereas, number of internodes per plant and plant height had negligible contribution towards divergence. Major contribution of number of pods per plant / seeds per plant towards genetic diversity in chickpea was also reported [9] [Table-3].

		Anality	1.			1.00							
	*	United B	£ .	1	K	1	1	1	1	1	1	1	1
		12629) #4 Talata (K	1	- 81	- 6	1	- ii	÷.		1	1	19	1
	1	Voley RI	1	1	- 21	- 21	- 81	- 22	- S -	- Q -		÷.	- 21
	8	Looper of	-	1	- 57	- 81	- 81	8		- 10 - E			- 61
		10000.00	1	- U	- <u>N</u>	- 8.	- U	£.	1	1	- 8	0	1
		Sales Si	-	1	1	11	11	1	1	1	1	1	1
	+	Sec.7	-	1		1	1	1	1	1	1	1	1
		1000			1	11	1	i.	- ¥	1	1	1	1
		very ki		1	- 11	- 22 -	- 22 -		- 2 -	÷.	÷.	- 6	- 2
	1	(march			- 53	- 81	- 81	- 5	- č.	÷.	÷.		- 6
		VIIIO.S.	_		- 57	- 81	- 81	- 12	- 5	- 8		- 8	- 81
		Long II.	-	- U	- <u>k</u>)	- U.	- U	1	- U	- J) -	- A -	- A	1
		Manes Pr		1	1	11	1	1	1	1	1	1	1
	. 10	VOIR 1		1		1	1	1	1	1	1	1	1
	1	'date of	-	1	1	1	1	î.	1	1	1	1	1
		Want	-		- 14	- 21	- 21	- 81	- 21-	- 2	÷.	- 6	- 11
	1	10.00		12		12	- 22 -	1	÷.		- C	÷.	
	2	Volum III	-	1				8	- b-		- de -	- 10	
		WHEET	_	11	- 88	- U.	1.		- J	- 8	- X.	- X	- J.
12401	-	2000	1	1	1	- X-	11	1	1	1	1	1	1
	0	Venerals	1	1	1	1	1	1	1	1	1	1	1
		Service International	7	1	11	1	11	Ť.		1	1		1
		And in	-	1	- 8	- 22 -	- 22 -	1	- Q	- 2 -	- Q -	- 62 -	- 12
1 Janit		Long to	-8		- 51	- 82 -	- 53 -	1	- 21		÷.	÷.	1
1 2661	2	Venue Voles II	ъ				- 5-					1	
		Content of		- U.	- U	- U	- U	J	- U		- A.		
		1000 10	F	1	1	1	¥.	1	1	1	1	1	1
	-	States B.	-	1		1	1	1	1	1	1	1	1
# Dette		1006-11	_				- 1	-	1	1	÷.	1	1
				100	200	322	400	590	000	703	008	900	1001

Fig-1 Dendrogram of 58 chickpea genotypes based on evaluation for 11 different traits

The mean value showed that the different clusters were superior in respect of different characters. Cluster VI consisting of single genotype exhibited early maturity habit with mean number of days to maturity being 89 days, highest (42.75) mean number of secondary branches per plant, highest (50.45) number of tertiary branches per plant, lowest (1.08 cm) internodal length and highest seeds per plant (261). Cluster III with a single genotype had very high seed yield per plant (32.93 gm) and high harvest index (53.56 %). Also, cluster IV with 4 genotypes represented high seed yield per plant (28.73 g) and a greater number of seeds per plant and lower branch angle. Whereas, cluster II showed higher plant height (52.59 cm), higher height at first podding (38.51cm), highest number of internodes per plant (29.1) and lowest branch angle (31.39 degree) [Table-4]. The genotypes from these clusters may therefore be selected as parents in crossing programmes to incorporate the characters related to mechanical harvesting and yield components.

Conclusion

The results of diversity analysis could be utilized in identifying the best parental combination for generating variability with respect to the traits related to mechanical harvesting and yield and yield attributes. Accordingly, the genotypes from cluster-II ICCX-040183-F3-BP-P15-BP, ICCX-040138-F3-BP-P4-BP and genotypes from cluster-I ICCX-040111-F3-P13-BP, GJG 0907, Phule G 0215-2 exhibited desirable plant height and height at first podding and therefore these could be utilized in breeding programmes aiming at development of lines suitable for machine harvesting. Whereas, the genotypes from cluster-IV RVSSG 10, BGD 1061 and genotype RVSSG-9 of cluster-III with high perse performance could be utilized in breeding programme for improvement of seed yield. In this context genotypes in cluster-I and II could be crossed with genotypes in cluster-IV and aslo, by hybridization of genotypes in cluster-III and IV and subsequent selection from segregating generations, there is an opportunity to breed for high yielding chickpea genotypes which are suitable for mechanical harvesting.

Application of research: Genetic diversity study in chickpea provided the information on amount of variability present for plant height, height at first podding and seed yield and seed yield related traits. This information could be used in developing improved chickpea plant type which is high yielding as well as suitable for mechanical harvesting. Current study aimed at unveiling the available diversity of genotypes suitable for mechanical harvesting.

Research Category: Plant Breeding and Farm Mechanization

Abbreviations: AICRP- All India Coordinated Research Project ICRISAT- International Crop Research Institute on Semi-Arid Tropics

Acknowledgement / Funding: Authors are thankful to ICRISAT and MULLaRP organizations for the help rendered in providing germplasm resources for carrying out evaluation of genotypes for traits related to mechanical harvesting. Authors are also thankful to Department of Genetics and Plant Breeding, University of Agricultural Sciences, Dharwad, 560065, India

**Research Guide or Chairperson of research: Dr R V Naik

University: University of Agricultural Sciences, Dharwad, 560065, India Research project name or number: PhD Thesis

Author Contributions: All authors equally contributed

Author statement: All authors read, reviewed, agreed and approved the final manuscript. Note-All authors agreed that- Written informed consent was obtained from all participants prior to publish / enrolment

Study area / Sample Collection: UAS, Dharwad and ICRISAT, Hyderabad

Cultivar / Variety / Breed name: Chickpea (Cicer arietinum L.)

Conflict of Interest: None declared

Ethical approval: This article does not contain any studies with human participants or animals performed by any of the authors. Ethical Committee Approval Number: Nil

References

- [1] FAO (2016) FAO Statistical Year Book, Food and Agricultural Organization of the United Nations.
- [2] Mahalanobis B.C. (1936) Procee. Nat. Acad. Sci., India, 2, 49-55.
- [3] Rao C.R. (1952) Advanced Statistical Methods in Biometrics Research, John Wiley and Sons, New York, pp 357-338
- [4] Pandey A., Gupta S., Kumar A., Thongbam P. D. and Pattanayak A. (2013) Indian Journal of Agricultural Sciences, 83 (12), 1300-4.
- [5] Parhe S.D., Harer P.N. and Nagawade D. R. (2014) *The bioscan*, 9(2), 879-882.
- [6] Vishnu B., Jayalakshmi V., Sudha Rani M., (2018) Journal of Food Legumes, 31(2),75-78.
- [7] Rajkumar K., Suneeta P., Anita B. and Vijay P. (2015) *Electronic Journal of Plant Breeding*, 6(2), 424-433.
- [8] Verma A.K., Dhirender S.K.J., Rizvi A.H., Andrews M. and Yadav S. S. (2008) American-Eurasian Journal of Sustainable Agriculture, 2(3), 205-211.
- [9] Renuka S. and Anita B., (2019) Legume Research An International Journal, 42(5), 715-718.
- [10] Vijayakumar A.G., Ishwar Boodi, Gaur P.M. and Upadhyaya H.D. (2017) Electronic Journal of Plant Breeding, 8(1), 89-95.
- [11] Gaikwad A.R., Desai N.C., Pawar G.H. and Langhi A.M. (2014) Inter. Jr. of Agril Sci., 10 (2),812-815.
- [12] Jayalakshmi V., Rufus Ronald G. and Lakshmanna K. (2014) Legume Res., 37 (6), 682-684.