

Research Article IMPACT OF PGPR AND GA₃ ON GROWTH, YIELD AND LEAF NUTRIENT STATUS OF STRAWBERRY

KUMARI SEEMA1* AND MEHTA KULDEEP2

¹Department of Agriculture, Baba Farid College, BFGI, Deon, Bathinda, Punjab, 151001, India ²Department of Fruit Science, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173230, India *Corresponding Author: Email - samilodott@gmail.com

Received: December 02, 2018; Revised: December 26, 2018; Accepted: December 27, 2018; Published: December 30, 2018

Abstract: A field trial was conducted to monitor the impact of five isolates of *Bacillus* sp. viz. *Bacillus licheniformis* CKA1, *Bacillus subtilis* CB 8 A, *Bacillus* sp. RG1, *Bacillus* sp. S1 and *Bacillus* sp. S2 @ 109 CFU in combination with GA₃ (25, 50 and 75 ppm) on plant growth, physiological parameters, yield and leaf nutrient status of strawberry cv. Chandler during the years 2013-14. The study showed significant effects of the treatments where the maximum plant height, leaf area, number of crowns per plant were recorded from T₁₅, while the maximum plant spread in T₁₂ and the number of runners per plant in T₁₈. The number of fruits and yield were highest in T₁₂ and lowest in control (T₁₉). The physiological parameters *viz*. chlorophyll content in T₉, rate of photosynthesis in T₁₅ while stomatal conductance and transpiration rate in T₁₈ were recorded maximum. Treatments also had significant effects on leaf nutrient contents in which maximum leaf nitrogen and manganese were recorded in T₉, whereas phosphorus, calcium, magnesium, zinc in T₁₈. The potassium was highest in T₆ and iron, copper in T₁₂. Study revealed that the PGPR can be used for sustainable fruit production.

Keywords: Strawberry, Growth, Leaf Nutrient, Physiological characters

Citation: Kumari Seema and Mehta Kuldeep (2018) Impact of PGPR and GA₃ on Growth, Yield and Leaf Nutrient Status of Strawberry. International Journal of Agriculture Sciences, ISSN: 0975-3710 & E-ISSN: 0975-9107, Volume 10, Issue 24, pp.-7667-7670.

Copyright: Copyright©2018 Kumari Seema and Mehta Kuldeep. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Introduction

Strawberry (Fragaria x ananassa Duch.), a temperate fruit crop has originated from the hybridization between Fragaria chiloensis L. P. Mill and Fragaria virginiana Duch. belonging to family Rosaceae. It is highly valued dessert fruit crop, popular for its taste flavor, rich source of vitamins (C,E,B), minerals, anti cancer properties and many other dietary compounds. In the early decades, the cultivation of strawberry was confined to temperate regions rendering it to price hiking. But due to its high cost return ratio, short growth phase and availability of new varieties, many farmers of states Punjab, Haryana, Delhi, Uttarakhand, J&K are looking forward for its further cultivation [1] and presently, it occupies an area of 0.5 thousand hectare with 3.5 thousand MT annual production in India [2], where Haryana is maximum strawberry producing state followed by Mizoram, Meghalaya, Maharashtra, Himachal Pradesh, Uttarakhand and Jammu & Kashmir. In Himachal Pradesh, it is being cultivated on 54 hectare with annual production of 84 MT [3]. Therefore, for increasing strawberry fruit production and guality, there is a great demand of improved management practices like use of plant growth promoting rhizobacteria and plant growth regulators in order to avoid excessive chemical use for high yield and quality and sustainable fruit production. Plant growth promoting rhizobacteria (PGPR) is defined as rhizosphere bacteria whose interaction with plants helps plant growth by supporting nutrition uptake, antagonizing or adding resistance to pathogens, production of plant hormones and modification of physical structure of the soil applications of PGPR in growth media or direct application to plant body during cropping are carried out to expect better yield as a result of plant/PGPR interaction. Positive effects of PGPR on commercial products have been reported in many crops [4-7]. Application of PGRs particularly GA3 has been commercially recommended for cultivation of strawberry. Many research workers have endorsed application of GA3 for strawberry cultivation [7]. Gibberellins are natural growth hormones which play primary role in stimulating auxin reaction that helps in controlling growth as well has direct effect on internode elongation, flowering, fruiting, quality and yield [1].

Material and methods Experimental Detail

The research experiment was laid out as Randomized Block Design at Model Farm of Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan to monitor the effect of plant growth promoting rhizobacteria and GA₃ on strawberry cultivar Chandler during 2013-14. Five isolates of plant growth promoting rhizobacteria (S1- Bacillus licheniformis CKA1, S2- Bacillus subtilis CB 8 A, S₃- Bacillus sp. RG1, S₄ - Bacillus sp. S₁ and S₅ - Bacillus sp. S₂ @ 109 CFU each) in combination with GA₃ at 25, 50 and 75 ppm were used to treat the strawberry plants planted at a spacing of 50 x 25 cm during October, 2013 which resulted in nineteen treatments along with control viz. T1- GA3 @ 25 ppm, T2- GA3 @ 50 ppm, T₃ - GA₃ @ 75 ppm, T₄ - S₁ + GA₃ @ 25 ppm, T₅ - S₁ + GA₃ @ 50 ppm, T₆ - S₁ + GA₃ @ 75 ppm, T₇ - S₂+ GA₃ @ 25 ppm, T₈ - S₂+ GA₃ @ 50 ppm, T₉ - S₂ + GA₃ @ 75 ppm, T₁₀ - S₃ + GA₃ @ 25 ppm, T₁₁ - S₃ + GA₃ @ 50 ppm, T₁₂ - S₃ + GA₃ @ 75 ppm, T₁₃ - S₄+ GA₃ @ 25 ppm, T₁₄ - S₄+ GA₃ @ 50 ppm, T₁₅ - S₄ + GA3 @ 75 ppm, T16 - S5 + GA3 @ 25 ppm, T17 - S5+ GA3 @ 50 ppm, T18 - S5 + GA₃ @ 75 ppm and T₁₉ - Control (sterile water application). Isolates and GA₃ were applied as foliar application method twenty days before expected flowering.

Parameters and Methods studied Growth parameters

The effect of plant growth promoting rhizobacteria and GA₃ on growth was determined as plant height (cm) and spread (cm) which were measured with the help of a graduated scale while, the leaf area (cm²) was recorded by leaf area meter (Licor-Model 3100). The number of crowns and number of runners per plant were recorded by counting their number from randomly selected five plants in each replication for each treatment and their average was expressed in numbers per plant. The number of fruits from randomly selected five plants were counted and weighed periodically at the time of harvesting and their average were worked out for determination of yield and expressed as grams/ plant.

Impact of PGPR and GA3 on Growth, Yield and Leaf Nutrient Status of Strawberry

Table-1 Plant growth	promotina rł	hizobacteria and	GA ₃ affecting	plant growth and	vield
					,

			· · · · · · · · · · · · · · · · · · ·		* • • • • • • • • • • • • • • • • • • •	,	
Treatment	Plant	Plant	Leaf area	Number of	Number of	Number of	Yield /
	height (cm)	spread (cm)	(cm ²)	crowns/ plant	runners/ plant	fruits / plant	plant (g)
T ₁	26.6	32	112.07	3.78	19	18.89	355.82
T ₂	27.43	33.42	113.67	4.16	19.88	20.78	443.87
T ₃	29.17	39.92	116.56	4.7	23.08	21.56	484.52
T ₄	27	36.92	114.94	4.38	24.53	22	486.1
T ₅	28.67	38.67	118	4.78	25.42	22.44	511.42
T ₆	29.58	41.5	122.68	4.8	30.92	23.67	570.71
T ₇	28.2	38.83	113.88	4.17	20.74	20.89	403.86
T ₈	29	40.17	118.67	4.5	26.58	21.55	471.77
T9	30.7	40.92	126.93	4.74	29.85	23.11	512.52
T ₁₀	27.33	41.67	112.53	4.12	19.37	19	459.36
T ₁₁	29	46.25	114.67	4.4	22.75	23.44	467.95
T ₁₂	30.67	47.17	118.63	4.74	23.97	24	586.57
T ₁₃	27.83	39.92	128.2	4.11	25.21	20.89	472.7
T ₁₄	28.17	41.67	133.31	4.54	26.92	22.22	549.41
T ₁₅	31	43.75	137.95	5.17	32.09	23.78	513.97
T ₁₆	26.67	40.42	121.2	4.33	21.73	19.67	443.51
T ₁₇	28.33	41.5	124.73	4.78	24.98	20.56	459.5
T ₁₈	29.42	43	137.74	4.88	33.71	22.78	488.48
T ₁₉	24.88	31.63	110.2	3.6	18.42	15.78	267.09
CD _{0.05}	1.78	1.5	2.58	0.55	1.85	0.97	1.78

Table-2 Plant growth promoting rhizobacteria and GA3 affecting physiological parameters

Treatment	Chlorophyll content (mg/g)	Photosynthesis	Stomatal conductance	Stomatal resistance	Transpiration rate	
		(µ mol/m²/s)	(m mol/s)	(S cm ⁻¹)	(m mol/m²/s)	
T ₁	2.71	6.4	0.443	1.191	25.69	
T ₂	2.87	6.8	0.45	1.069	25.94	
T ₃	2.94	8.03	0.462	0.876	27.01	
T ₄	3.03	7.1	0.457	0.991	26.69	
T ₅	3.07	7.91	0.471	0.851	27.12	
T ₆	3.1	9.45	0.48	0.624	28.86	
T ₇	2.93	7.54	0.466	0.899	26.79	
T ₈	3.05	8.31	0.514	0.703	27.64	
T9	3.19	10.33	0.529	0.616	30.53	
T ₁₀	2.73	6.75	0.468	1.151	25.82	
T ₁₁	2.89	7.07	0.482	1.022	26.6	
T ₁₂	2.99	8.11	0.496	0.795	27.3	
T ₁₃	2.85	7.73	0.502	1.052	26.42	
T ₁₄	2.88	8.3	0.527	0.898	26.9	
T ₁₅	2.97	11.03	0.562	0.712	27.47	
T ₁₆	2.76	7.1	0.527	0.938	26.72	
T ₁₇	2.9	7.59	0.556	0.64	27.68	
T ₁₈	3.12	8.83	0.68	0.59	32.51	
T ₁₉	2.56	6.01	0.428	1.199	25.2	
CD _{0.05}	0.1	0.2	0.041	0.061	0.77	

Table-3 Plant growth promoting rhizobacteria and GA₃ affecting leaf nutrient status

Treatment	Nitrogen	Phosphorus	Potassium	Calcium	Magnesium	Zinc	Iron	Manganese	Copper
	(%)	(%)	(%)	(%)	(%)	(ppm)	(ppm)	(ppm)	(ppm)
T ₁	2.14	0.221	1.38	1.3	0.301	24.05	84.7	53.9	5.4
T ₂	2.32	0.235	1.41	1.32	0.308	24.78	86.62	57.29	5.69
T ₃	2.4	0.256	1.5	1.37	0.315	26.22	91.82	58.64	6.21
T ₄	2.29	0.261	1.63	1.34	0.319	24.88	94.15	59.74	6.14
T ₅	2.48	0.269	1.65	1.38	0.322	25.78	99.63	63.9	6.53
T ₆	2.61	0.288	1.71	1.42	0.331	26.74	114.2	68.1	6.7
T ₇	2.38	0.234	1.48	1.3	0.305	24.29	88.83	57.86	6.25
T ₈	2.57	0.241	1.52	1.34	0.311	25.93	100.94	69	6.59
T ₉	2.63	0.27	1.62	1.4	0.329	27	106.73	89.13	6.87
T ₁₀	2.27	0.231	1.49	1.31	0.31	25.4	88.86	68.43	5.66
T ₁₁	2.39	0.252	1.56	1.35	0.316	26.2	92.43	74	5.93
T ₁₂	2.6	0.266	1.64	1.38	0.321	27.15	111.04	83.2	6.97
T ₁₃	2.25	0.253	1.47	1.34	0.314	24.1	90.07	62.88	6.57
T ₁₄	2.36	0.256	1.53	1.37	0.323	25.25	96.26	71.23	6.81
T ₁₅	2.5	0.281	1.67	1.39	0.334	26.27	108.36	78.4	6.95
T ₁₆	2.26	0.257	1.5	1.33	0.321	25.16	94.57	66.5	5.82
T ₁₇	2.48	0.279	1.59	1.37	0.337	25.83	104.06	76.34	6.05
T ₁₈	2.54	0.291	1.69	1.44	0.354	27.4	120.51	86.57	6.47
T ₁₉	2.07	0.217	1.32	1.12	0.297	21.16	65.9	51.67	5.14
CD _{0.05}	0.1	0.02	0.12	0.08	0.041	1.05	1.32	1.05	0.28

Physiological parameters

The chlorophyll content (mg/g) was measured by Hiscox and Israelstam [8] while other physiological parameters (photosynthetic rate, stomatal conductance, stomatal resistance and transpiration rate) were recorded with the help of portable photosynthetic meter LICOR- 6200 and expressed as μ mol/m²/s, m mol/s, S cm⁻¹ and m mol/m²/s.

Leaf nutrient status

The leaf nutrient contents of strawberry were determined by collecting fully expanded and matured leaf samples at the end of harvesting season and then drying, grinding and storing of samples were carried out as per procedure described by Kenworthy [9]. The leaf digestion for nitrogen estimation was carried out according to the procedure suggested by Jackson [10] and fed to Auto analyser Kjeltec Foss Tecator Model 2300 while for other nutrients, one gram leaf samples were digested in di-acid (HNO₃ and HClO₄ in 4:1 v/v) as suggested by Piper [11]. The leaf phosphorus was estimated by Vanado-molybdo-phosphoric acid method and potassium with the help of Flame photometer [10]. The Ca, Mg, Zn, Cu, Mn and Fe were carried out on Atomic absorption spectrophotometer model 4141.

Statistical Analysis

The method of analysis of variance as outlined by Gomez and Gomez [12] was used for statistical analysis of the data.

Results and Discussion

Growth and yield parameters

The observations made on plant growth characteristics [Table-1] showed significant effects as maximum plant height (31.00 cm) andleaf area (137.95 cm²) were recorded from T₁₅, whereas the plant spread (47.17 cm) was maximum in T12. The number of crowns per plant (5.17) were maximum in T15 followed by T18 (4.88) while the number of runners per plant (33.71) were highest in T₁₈. This significant effect on plant growth might be due to growth hormone producing efficiency of plant growth promoting rhizobacteria and GA₃ as it stimulates cell division and cell elongation in shoots and root. The results are in line with the work of several researchers who observed increase plant growth with the application of plant growth promoting rhizobacteria and plant growth regulators viz., Pandit et al. [13], Tripathi et al. [14], R Swamy et al. [15], Kumari and Mehta [7]. It is evident from the given data that fruit yield was also significantly increased with the application of plant growth promoting rhizobacteria in combination with GA₃@ 75 ppm as the highest number of fruits (24) and yield (586.57 g) per plant were recorded from the plant treated with plant growth promoting rhizobacteria in combination with GA₃@ 75 ppm (T₁₂).Similar findings were reported by Qureshi et al. [16], R Swamy et al. [15], Thakur et al. [17]. This increase in number of fruits and yield could be due to the development of differentiated inflorescence and formation of more metabolites by larger leaves as treated with plant growth promoting rhizobacteria and GA₃.

Physiological parameters

The given data [Table-2] reveals significant effect of treatments on physiological parameters that the application of plant growth promoting rhizobacteria in combination with GA₃ has resulted in enhanced physiological activity and showed increased chlorophyll content (3.19 mg/g) in T₉ significantly at par with T₁₈ (3.12 mg/g) and rate of photosynthesis (11.03μ mol/m²/s) in T₁₅ while the maximum stomatal conductance (0.680 m mol/s), transpiration rate (32.51 m mol/m^2 /s) and minimum stomatal resistance (0.590 cm^{-1}) were recorded in T18as compared to other treatments. This can be the due to the possibility of GA₃ and other growth hormones produced by plant growth promoting rhizobacteria resulting in increased leaf area, strong source sink relationship, better translocation of nutrients and water, increased nitrogen use efficiency and activities of nitrate reductase and carbonic anhydrase of plants. These results are in harmony with the findings of Misratia *et al.* [18] in rice, Moneruzzaman *et al.* [19] and Kumari *et al.* [6] in strawberry.

Leaf nutrients

The plant growth promoting rhizobacteria and GA₃ treatments had significant effects on leaf nutrient contents [Table-3] in which maximum leaf nitrogen (2.63%) and manganese (89.13 ppm)were recorded in T₉, whereas phosphorus (0.291%), calcium (1.44 %), magnesium (0.354 %), zinc (27.40 ppm) were recorded maximum in T₁₈ as compared to control. The potassium (1.71 %) was highest in T₆ whereas iron (120.51 ppm) and copper (6.97 ppm) were highest in T₁₂. The findings are in accordance with work of Monge *et al.* [20] in peach, Shahin *et al.* [21] in apple and, Singh and Singh [22] in strawberry. Eid and Abou-Leila [23] also reported that GA₃ treatment increased the uptake of N, P, K, Mg, Fe, Zn, Mn and Cu content thereby increasing the mineral nutrient status of the plant. Enhancement in leaf nutrients by plant growth promoting rhizobacterial isolates and GA₃ could be attributed to increased photosynthetic activity, improved translocation of photosynthates and other metabolites to the sinks that might have contributed to the improved nutrient content of treated plants. The nutrient content as affected by GA₃ was also reported in 'Hass' avocado [24].

Conclusion

On the foregoing results, it may be inferred that different isolates of plant growth promoting rhizobacteria and GA₃ showed great potential to affect plant growth, yield, physiological activities and leaf nutrient content in strawberry. It further shows that their applications are safe, effective and can be easily adopted by growers for sustainable and ecological fruit production in order to reduce chemical fertilizers use.

Application of research: Study of the role of plant growth promoting rhizobacteria and GA3 in strawberry cv. Chandler has been reviewed and presented

Research Category: Plant growth regulator

Abbreviations: PGPR- plant growth promoting rhizobacteria, GA₃- gibberellic acid, ppm- parts per million, viz.-such as, cv.-cultivar, MT- metric ton, HNO₃- Nitric acid, HCIO₄ - perchloric acid.

Acknowledgement / Funding: Authors are thankful to Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173230, India

*Research Guide or Chairperson of research: Dr Kuldeep Mehta

University: Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173230, India Research project name or number: PhD Thesis

Author Contributions: All authors equally contributed

Author statement: All authors read, reviewed, agree and approved the final manuscript

Conflict of Interest: None declared

Sample Collection: Isolates of *Bacillus* sp. were collected from the Laboratory of Microbiology, Department of Basic Science, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173230, India

Ethical approval: This article does not contain any studies with human participants or animals performed by any of the authors. Ethical Committee Approval Number

References

- [1] Sonam and Singh Shailesh Kumar (2018) International Journal of Chemical Studies, 6(3), 1382-87.
- [2] Anonymous (2017a) *Horticulture at a glance, India*.

- [3] Anonymous (2017b) Administrative report on Horticulture development in Himachal Pradesh at a glance, Himachal Pradesh, India.
- [4] Karlidag H., Yildirim E., Turan M. and Pehluvan M. (2013) Hort. Science, 48(5), 563–567.
- [5] Kurokura Takeshi, Hiraide S., Shimamura Y. and Yamane K. (2017) Environmental Control in Biology, 55(3):121-128.
- [6] Kumari Seema, Mehta Kuldeep and Singh Niranjan (2018) Journal of Pharmacgnosy and Phytochemistry, 7(2), 383-387.
- [7] Kumari Seema and Mehta Kuldeep (2018) Green Farming, 9(3), 481-485.
- [8] Hiscox J. D. and Israelstam G. F. (1979) Canadian Journal of Botany ,57, 1332-1334.
- [9] Kenworthy A. L. (1964) Fruit, nut and plantation crops, deciduous and evergreen; Guide for collecting foliar samples of nutrient element analysis, 1-39.
- [10] Jackson M. L. (1973) Soil Chemical Analysis, 498.
- [11] Piper C. S. (1966) Soil and plant analysis, 368.
- [12] Gomez K. A. and Gomez A. A. (1984) Statistical Procedure for Agricultural Research, 2nd edition, 680.
- [13] Pandit Bilal Ahmad, Hassan Aamir, Hassan Gousia and Hayat Shazia (2013) Progressive Horticulture, 45(1), 58-68.
- [14] Tripathi V. K., Mishra A. N., Kumar Sanjeev and Tiwari Bharat (2014) Progressive Horticulture,46(1), 48-53.
- [15] R. Swamy Sekhar, Mehta Kuldeep, Kumari Seema and Kalsi Kapil (2016) Environment and Ecology, 34(4), 1247-1250.
- [16] Qureshi Khalid Mahmood, Chughtai Saman, Qureshi Usman Shoukat and Abbasi Nadeem Akhtar (2013) Pak. J. Bot., 45(4), 1179-1185.
- [17] Thakur Seema, Mehta Kuldeep and R. Swamy Sekhar (2017) Progressive Research, 12(1), 1392-1396.
- [18] Misratia Khadija M., Ismail MohdRazi, Hakim Md Abdul, Mohamed Hanafi Musa and PutehAdam (2013) *Australian Journal of Crop Science*, 7(11), 1682-1692.
- [19] Moneruzzaman K. M., Hossain A. B. M. S., Normaniza O. and Boyce A. N. (2011) African Journal of Biotechnology, 10(56), 11911-11918.
- [20] Monge E., Aguirre R. and Blanco E. E. A. (1994) Optimization of plant nutrition, 319-323.
- [21] Shahin M. F., Fawzi M. I. F. and Kandil E. A. (2010) Journal of American Science, 6(12), 202- 208.
- [22] Singh Akath and Singh J. N. (2009) Indian Journal of Horticulture, 66(2), 220-224.
- [23] Eid R. A. and Abou-Leila B. H. (2006) World J. Agric. Sci., 2, 174–179.
- [24] Garner Lauren, Klein Grant, Zheng Yusheng, Khuong Toan and Lovatt Carol J. (2009) J. Am. Soc. Hort. Sci., 133, 3–10.