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Introduction 
Genetic improvement of livestock began thousands of years ago with the 
development of a variety of livestock species and their adaption of specific climate 
and production system. The further development of breeds beginning in the late 
18th century followed by emergence of science of Animal Breeding and Genetics in 
the 20th century with landmark assignment and improvements in livestock around 
the world. Further genetic improvements were made possible with the advent of 
Molecular Genetic Techniques. The application of quantitative trait loci (QTL) 
identification and mapping in livestock produced a number of DNA markers that 
were incorporated into selection programmes in many species. The 21st century 
has been marked with the use of molecular markers in genomics including whole 
genome sequencing and employing genomic selection in dairy cattle breeding 
programmes [1]. Genomic selection has the potential to revolutionize dairy cattle 
breeding because young animals can be accurately selected as parents, leading 
to a much shorter generation interval and higher rates of genetic gain. Genomic 
selection (GS) refers to genetic improvement of animals through selection based 
on genomic breeding values (GEBVs). GEBVs are computed using a reference 
population of animals that have a high diversity genotype as well as phenotypic 
information [2]. Genetic improvement programmes in many animal species will 
benefit from applying genomic selection. Advantages may be highest for breeding 
programmes because the generation interval in traditional progeny testing 
schemes is long and selection of young bulls for progeny testing is inaccurate [3]. 
The animal breeding industry is currently adapting selection procedures in each 
species to include this innovative tool. In the future, GS might be helpful to close

 
the gap between countries with greater and lesser production. During these years, 
genetic selection also incorporated new computer technologies and animal 
reproduction discoveries to improve the identification of superior animals. The 
genome sequencing and development of chips that are able to genotype 
thousands of SNPs across the genome may be a breakthrough for breeders and 
scientists in animal breeding. The rapid adoption of this technology has caused 
profound changes in the dairy cattle industry. 
 
SNP chips available for Genome Wide Association Studies 
Genomic selection (GS) in dairy cattle started in 2006 [4], when high-density 
single nucleotide polymorphism (SNP) panels became affordable for application to 
livestock and plants [5]. The first official direct genomic values (DGV) were 
provided to dairy farmers in January 2009. Despite the improvement in reliability of 
young selection candidates achieved with genome enabled evaluations [6], the 
commercial price of high density SNP chips may limit their use to males and elite 
females in many populations. Currently in cattle, the most commonly used chip is 
the Bovine SNP50.v2 Bead chip (Illumina Inc., San Diego, CA) and imputation 
strategies are focused on imputation from 6K to 50K. The availability of the 80K 
SNP BovineHD BeadChip (Illumina Inc., San Diego, CA) opens the chance of 
imputation from 50K to this higher density panel. Genotyping a large reference 
population at extra-large high density would be cost prohibitive. However, 
genotyping a subset of this reference population, and then imputing the rest of the 
genotypes may be an efficient strategy if the predictive ability of subsequent
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Abstract- The selection of animals using molecular information is more reliable with increased accuracy of selection and higher genetic  gain. Hence, there is need to 
use selection methods that are based on genomic studies. Genomic selection (GS) is a variant of marker-assisted selection method used for predicting genomic 
breeding values (GEBVs) of animals using high density genetic markers, such as single nucleotide polymorphisms (SNPs). The ut ility of genomic information in dairy 
cattle breeding schemes has now reached the level of accuracy that enables dramatic changes and improvements to breeding schemes. GS can increase the accuracy 
of selection, shorten the generation interval by selecting individuals at the early stage of life, and accelerate genetic pro gress. The application of GS in dairy cattle has 
been reported in many countries, including USA, Canada, Australia, Norway, New Zealand, Netherland, Denmark, Germany and Irel and with very promising results. 
Published results indicates that for dairy cattle approximately 1000 bulls are required in the reference population to obtain GEBVs with accuracies that compete with the 
accuracies of EBVs based on progeny testing for all traits. Use of genomically evaluated young bulls can accelerate the breed ing cycle and increase genetic gain per 
unit time beyond what is possible with phenotypic selection. With denser marker panels, more sophisticated statistical tools and in the longer term, sequencing, it is 
expected that the accuracy of GEBVs will continue to improve and breeding schemes will utilize genomic information further at the expense of progeny testing. Current 
application of genomic selection is only the start of the genomic era in livestock production. To fully capitalize on the ben efits provided by GS, breeding programmes 
may need to be redesigned substantially. 
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genomic evaluations exceeds that obtained before imputation. In addition, imputed 
SNPs from low density 3K and 6K platforms to high density must be assessed in 
terms of predictive ability. Recently, technological advances in molecular genetics 
have greatly improved our ability to use information on DNA polymorphisms to 
select livestock. Genome-sequencing efforts have resulted in the availability of a 
reference genome sequence for most livestock species (cattle, sheep, chicken, 
pig, horse, buffalo). This has also resulted in the discovery of many thousands, 
and even millions of single-nucleotide polymorphisms (SNPs), which are single–
base pair variations of individuals from the reference genome. The most common 
SNP chip used for cattle is from the company, Illumina (Illumina Inc., San Diego, 
CA). SNP chip identifies nearly 50000 SNPs and is thus called a 50K SNP chip. 
Approximately 40K of these SNPs are reasonably useful for a variety of reasons. 
Much larger and more expensive SNP chips are used for studying the genetic 
basis of disease in human populations and much smaller and cheaper SNP chips 
are being planned for cattle. The current cost to researchers for one 50K SNP chip 
plus analysis is nearly US$200; smaller chips could cost as little as US$20–50 [7]. 
Currently available whole genome SNP-chips used in GS in dairy cattle are given 
in [Table-1]. 

Table-1 Currently available whole-genome SNP-chips 
Identification Classification Provider Consortium SNP No. 

Bovine HD Commercial Illumina Various 7,77,962 

Bovine HD Commercial Genesleek Various 80,000 

Bovine HD Commercial Genesleek Various 90,000 

BovineSNP50v2 Commercial Illumina Various 54,609 

BOS 1 Commercial Affymetrix Various 6,48,000 

Bovine LD Commercial Illumina Various 6,909 

1HD=high density, LD=low density; 2Illumina Inc., San Diego, CA; Affymetrix, Santa Clara, 
CA. 

 
Genome Wide Breeding Value Estimation 
In the terms of sources of information, the simplest model to predict genome wide 
breeding values only uses genotypic and phenotypic data, where genotypic data 
in recent commercial applications nearly always consist of SNP genotypes. This 
allows deriving an additive relationship matrix and incorporation of polygenic 
breeding values in the model. Whenever pedigree information is not available, the 
additive relationship matrix can be constructed directly from the genotypic 
information. In terms of pre-processing data, pedigree information can be 
compared with SNP information to discover possible genotype or pedigree errors, 
while pedigree and SNP information may be used jointly to derive marker 
haplotypes [8]. De Roos, et al. [4] showed that in order to accurately predict 
GEBVs for Jerseys, using prediction equations based on a Holstein–Friesian 
reference population, at least 300000 SNPs are needed, while the current 
available SNPs (approximately 50000) are sufficient for accurate predictions within 
the same breed. Since within the Holstein–Friesian breed, the average r2 between 
adjacent SNPs at a marker density that resembles the used 50000 SNPs is 
between 0.15 and 0.20, it is expected that panels that may be used to predict 
breeding values across breeds or lines should capture at least the same level of 
LD across those breeds or lines. Eggen [12] diagrammatically summarized the 
process of genotyping reference population by using a whole-genome SNP array. 
The first step in the genomic selection process is the assessment of reference or 
training population with accurate phenotypes for the trait(s). Then, genotyped this 
population using a whole-genome SNP array the resulting data then serve as a 
reference to develop a statistical model estimating the effect of each SNP with the 
trait(s) of interest. This result is a predictive equation to calculate a genomic 
estimated breeding value (GEBV). After validation step, genomic breeding value 
of new animals can be computed using prediction equation, based on their 
genotypes from the SNP array and in absence of accurate phenotypes for these 
animals.  
 
World-wide use of genomic selection in dairy cattle breeding schemes 
To date, genomic selection has only been implemented in a few countries and 
mainly in connection with breeding programmes of Holstein cattle [13]. This breed 

was a good case study for developing genomic selection because it has been 
intensively selected for decades, hence strengthening statistical associations 
between markers and QTL. Furthermore, many large breeding programmes have 
been set up world-wide, facilitating the constitution of large reference populations. 
Thus, international collaborations to exchange genotypes allowed further 
improving the accuracy of genomic predictions [6]. The first genomic evaluations 
were officially released for a few Holstein populations in 2009. Different strategies 
have since been adopted to integrate genomic selection into existing breeding 
programmes. Focusing on the Holstein breed, Pryce and Daetwyler, [13] 
summarized the strategies adopted in eight countries by April 2011. 
Advancements have been rapid and a few countries such as Italy and the United 
Kingdom have now released GEBV for large populations of Holstein bulls. 
Utilization of genomic selection has accelerated among Holstein breeders. For 
example, in France, genomically tested bulls without milking daughters 
represented 39% of market shares in 2011. In most countries, PT continued to be 
carried out during this transition period. France was an exception, with PT officially 
ceasing in 2009 [13]. However, the number of AI sires used each year was 
increased, their diffusion was constrained to a few thousand straws per sire and 
farmers were encouraged to use teams of at least five young bulls. In other dairy 
cattle breeds, several difficulties have impeded the integration of genomic 
selection into breeding programmes. First, breeding programmes are generally of 
smaller size than Holstein programmes, which makes it more difficult to gather 
large reference populations. Several initiatives have, however, been created to 
exchange genotypes across countries, for example, the Inter Genomics 
consortium for the Brown Swiss breed [14] and the collaboration between 
breeding schemes of the Nordic Red Dairy cattle in Denmark, Sweden, Finland 
and Norway. Second, some of these breeds may have larger effective population 
sizes, resulting in weaker associations between markers and QTL. Both of these 
factors tend to reduce the accuracy of genomic predictions, which are generally 
lower than in Holstein populations. The recent use of high-density SNP panels 
[e.g. Illumina Bovine HD (777K)] was a promising option to increase GEBV 
accuracy in such populations. Having large densities in SNPs reduces the 
physical distance between markers and QTL, and hence should strengthen the 
statistical association between them. At such marker density, associations 
between markers and QTL may be also maintained across breeds, making it 
possible to build across-breed prediction equations and to capitalize on reference 
populations of several breeds. However, preliminary analyses of high-density 
chips with the genomic BLUP evaluation model only resulted in marginal gains 
within breeds and across breeds [15]. Szyda, et al. [16] studied statistical 
modeling of candidate gene effects on milk production traits in dairy cattle .  The 
Phenotypic records were daughter yield deviations for milk, protein, fat yields, and, 
obtained from a routine national genetic evaluation. Out of all analyzed 
polymorphisms, DGAT1 K232A had a much larger effect on milk production traits 
than the other SNPs considered. Estimates of the additive genetic effect of K232A 
expressed as half of difference between Lys and Ala encoding variants were 
107.4 kg of milk, 5.4 kg of fat, and 1.6 kg of protein at first parity, as well as 120 kg 
of milk and 6.8 kg of fat at second parity. Bionaz and Loor, [17] studied gene 
networks driving bovine milk fat synthesis during the lactation cycle. Marked up 
regulation and/or percent relative mRNA abundance during lactation were 
observed for genes associated with mammary; Hayes, et al. [18] reported the 
progress of genomic selection in Australian HF and Jerseys dairy cattle using a 
Bayesian method. They reported larger increases in accuracy for the Jersey 
animals when using a Bayesian method than when using a GBLUP method and 
the largest gain was observed for fat yield, which might be explained by a better 
ability to estimate the effect of the DGAT1 mutation in the combined dataset. 
Beecher, et al. [19] reported associations of polymorphisms in bovine immune 
genes with milk production traits in dairy cow.  TLR4-2021 associated with both 
milk protein and fat percentage in late lactation. No association was found 
between this polymorphism and either yield or composition of milk within the bull 
population. CXCR1-777 significantly associated with fat yield and CD14-1908 A 
allele was associated with increased milk fat and protein yield. 
ASERPINA1 haplotype with superior genetic merit significantly associated for milk 
protein yield and milk fat 
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percentage. Jiang, et al. [20] reported genome wide association for milk 
production traits in dairy cattle population. The majority of the significant SNPs is 
located within the reported QTL regions and some are within or close to the 
reported candidate genes. ARS-BFGL-NGS-4939 and BFGL-NGS-118998, are 
located close to the DGAT1 gene and GHR gene, respectively. These findings 
herein not only provide confirmatory evidences for previously findings, but also 
explore a suite of novel SNPs associated with milk production traits, and thus form 
a solid basis for eventually unraveling the causal mutations for milk production 
traits in dairy cows. Pryce, et al. [21] studied a validated genome-wide association 
study in two dairy cattle breeds for milk production traits and fertility traits using 
variable length haplotypes. QTL mapping increased with haplotype length as did 
the number of validated haplotypes discovered, especially across breed. 
Bouwman, et al. [22] studied genome wide association of the milk fatty acids in 
Dutch dairy cows. The two-step single SNP association analysis found a total of 
54 regions on 29 chromosomes that were significantly associated with one or 
more fatty acids. ABCG2 and PPARGC1A on BTA 6; ACSS2 on BTA 13; DGAT1 
on BTA 14; ACLY, SREBF1, STAT5A, GH, and FASN on BTA 19; SCD1 on 
BTA26 and AGPAT6 on BTA 27 Olsen, et al. [23] studied genome wide 
association mapping in cattle identifies QTL for fertility and milk production on 
BTA12. Genotyping costs were minimized by genotyping the sires of the cows 
recorded and by using daughter averages as phenotypes. The genotyped sires 
were assigned to either a discovery or a validation population. Associations were 
only considered to be validated if they were significant in both groups. Strong 
associations were found and validated on chromosomes 1, 5, 8, 9, 11 and 12. 
Several of these were highly supported by findings in other studies. The most 
important result was an association for non-return rate in heifers in a region of 
BTA12 where several associations for milk production traits have previously been 
found. Fuyong, [24] studied Genome-wide association analysis for 305-day milk 
production traits in dairy cattle. Totally, 1659 cows were genotyped resulting in 
44668 effective SNPs in lactation 1 (LA1) and 1333 cows were genotyped 
resulting in 44054 effective SNPs in lactation 2 (LA2). The single SNP association 
analyses were conducted in the animal model, and all relationships between 
individuals in the pedigree were taken into account. 232 SNPs in LA1 and 125 
SNPs in LA2 were identified as being significantly (false discovery rate < 0.05) 
associated with 305-day milk production traits. For 305D-MY, 128 SNPs 
distributed on Bos taurus autosome (BTA) 2, 4, 5, 6, 9, 10, 14, 15, 16, 21, and 28 
were significant in LA1; and 49 SNPs distributed on BTA 4, 6, 7, 10, 11, 14, 22, 
and 25 were significant in LA2. For 305D-PY, 4 SNPs distributed on BTA 3 and 16 
were significant in LA1; and 2 SNPs distributed on BTA 1 and 11 were significant 
in LA2. For 305D-FY, 159 SNPs distributed on BTA 2, 3, 4, 5, 8, 9, 12, 14 and 28 
were significant in LA1; and 117 SNPs distributed on BTA 1, 2, 4, 10, 11, and 14 
were significant in LA2. The majority of detected significant associations (231/232 
in LA1 and 125/125 in LA2) were located within known quantitative trait loci (QTL) 
for the traits of interest; 1 SNP on BTA 2 (at 12.80 Mbp) that does not appear to 
be located within a known QTL region for MY, was identified as being significantly 
associated with 305D-MY, suggesting that this region is a new and unique QTL for 
305D-MY in the Dutch dairy population. Region 2a, region 9, region 10b, region 
11, region 14, 5 single SNPs and 2 unmapped SNPs showed significant 
associations with 2 studied traits; region 6, region 14 and 2 unmapped SNPs 
showed significant associations in both LA1 and LA2. Region 14 was the major 
genome region for 305D-MY and 305D-FY in both 2 lactations. Regions for 305D-
PY had relatively small effects and we did not find regions with major effects on 
305D-PY. The proportion of genetic variance explained by the SNP showing the 
strongest association per region ranged from 2.46% for 305D-MY in LA1 on BTA 9 
to 33.50% for 305D-FY in LA2 on BTA14. The proportion of phenotypic variance 
explained by the SNP showing the strongest association per region ranged from 
0.66% for 305D-MY in LA1 on BTA 9 to 5.98% for 305D-FY in LA2 on BTA14. 
Above all, the results of this study revealed genome regions for 305D-MY, 305D-
PY and 305D-FY in the Dutch dairy cattle population, and the QTL identified in this 
study should be further studied to identify the causal mutations and candidate 
genes underlying the QTL. Gray, et al. [25] studied effectiveness of genomic 
prediction on the milk flow traits in dairy cattle. Milk flow measures for total milking 
time, ascending time, time of plateau, descending time, average milk flow and 

maximum milk flow were collected on 37 213 Italian Brown Swiss cattle. The 
Reliabilities from a validation dataset were estimated and used to compare 
accuracies obtained from the parental averages with genome enhanced 
predictions. The genome enhanced breeding values evaluated using two stage 
methods had similar reliabilities with values ranging from 0.34 to 0.49 for the 
different traits. Across two stage methods, the average increase in reliability from 
parental average was approximately 0.17 for all traits, with the exception of 
descending time, for which reliability increased to 0.11. Maxa, et al. [26] studied 
Genome-wide association mapping of milk production traits in Braunvieh cattle. 
Five hundred and fifty-four progeny-tested bulls and 36,219 autosomal single 
nucleotide polymorphism (SNP) markers on 29 Bos taurus autosomes (BTA) were 
included in the analysis. A principal component analysis was conducted to adjust 
for the effect of population stratification in the analyzed data set. For the principal 
component analysis, genome-wide relationships between individuals were 
calculated. Three different criteria (Horn's test, Kaiser's criterion, and Jolliffe's 
criterion) were tested to determine the number of significant principal components. 
Estimation of putative associations between SNP and milk production traits was 
carried out using a linear regression model in R software (R Foundation for 
Statistical Computing, Vienna, Austria). Significant principal components, 
adjusting for population stratification separately for each criterion and family 
relationships and genotypes at individual SNP were included as fixed effects in the 
model. The inflation factor λ and quantile-quantile plots were calculated to 
compare how the different criteria deal with stratification in our mapping 
population. Based on the analyses on all of the aforementioned criteria, we can 
conclude that Jolliffe's criterion deals the best with population stratification. Two 
SNP had an effect on milk yield on BTA4, 2 SNP affected fat yield on BTA14 and 
BTA23, and 1 SNP was associated with fat percent on BTA1. Meredith, et al. [27] 
reported genome wide associations for milk production traits in dairy cattle. 
Significant associations were detected for milk yield, fat yield, fat percentage, 
protein yield, protein percentage and somatic cell score. These associations were 
detected using two separate populations of HF sires and cows. In total, 1,529 and 
37 associations were detected in the sires using a single SNP regression and a 
Bayesian method, respectively. Crepaldi, et al., [28] studied associations of 
ACACA, SCD, and LPL genes with dairy traits in goats.  ACACA, the major 
regulatory enzyme of fatty acid biosynthesis; SCD, involved in the biosynthesis of 
monounsaturated fatty acids in the mammary gland; and lipoprotein lipase (LPL), 
which plays a central role in plasma triglyceride metabolism. An approach 
somewhat similar to the granddaughter design for detecting quantitative trait loci in 
dairy cattle was followed. Effects of genotypes of a sample of 59 Alpine bucks on 
phenotypes of their 946 daughters raised in 75 flocks were investigated. Data 
comprised 13,331 daily records for milk yields (L/d), fat and protein yields (kg/d), 
and fat and protein contents (%) of 2,200 lactations. Population genetics 
parameters were calculated and associations between milk production traits and 
10 single nucleotide polymorphisms (SNP) at the 3 genes were tested. Two 
markers at the ACACA, 1 for the SCD and 1 at the LPL locus, deviated 
significantly from the Hardy-Weinberg equilibrium, with an observed 
heterozygosity lower than expected. Flock, age of the goat, kidding season, and 
stage of lactation affected all traits considered, except fat percentage. Three SNP 
were found to be significantly associated with milk production traits. The SNP 
located on the ACACA gene showed an effect on milk yield. The marker on 
the LPL locus was highly associated with milk yield, with the largest values for CC 
daughters. Fang, et al. [29] studied a Multiple-SNP Approach for Genome-Wide 
Association Study of Milk Production Traits in Chinese Holstein Cattle. A fast 
method called MEML (Mixed model-based Expectation-Maximization Lasso 
algorithm) was developed for simultaneously estimate of multiple SNP effects. A 
series of simulation experiments were conducted to validate the proposed method, 
and the results showed that compared with SMMA, the new method can 
dramatically decrease the false-positive rate. Mai, et al. [30] studied a genome-
wide association study for milk production traits in Danish Jersey cattle using a 
50K single nucleotide polymorphism chip. QTL for milk production traits in Jersey 
cattle were mapped by a genome wide association analysis using a mixed model 
which incorporated 1,039 bulls and 33,090 SNP and resulted in 98 detected 
combinations of QTL and traits on 27 BTA. These QTL comprised 30 for milk 
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index, 50 for fat index, and 18 for protein index. The evidence presents 33 
genome wide QTL on 14 BTA, of these 7 had effects on milk index 21 on fat index 
and 5 on protein index.  
 
Conclusions 
India is changing rapidly in aspects of life. The effect of westernization is one of 
the main factors responsible for societal changes, mostly related to living 
standards, changing diets, and accordingly a change of product lines in the 
retailers. The utility of genomic information in dairy cattle breeding schemes has 
now reached the level of accuracy that enables dramatic changes and 
improvements to breeding schemes. With denser marker panels, more 
sophisticated statistical tools and in the longer term, sequencing, it is expected 
that the accuracy of BVs will continue to improve and breeding schemes will utilize 
genomic information further at the expense of progeny testing. Current 
applications of genomic selection are only the start of the genomic era in livestock 
production. To fully capitalize on the benefits provided by GS, breeding 
programmes may need to be redesigned substantially.  
 
Application of review: Genomic selection (GS) refers to genetic improvement of 
animals through selection based on genomic breeding values (GEBVs). GEBVs 
are computed using a reference population of animals that have a high diversity 
genotype as well as phenotypic information 
 
Review Category: Milk production traits 
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