

Research Article

EFFECT OF DIFFERENT LEVELS OF FERTIGATION AND PLANTING SEASON ON GROWTH AND FLOWER PRODUCTION OF ASIATIC HYBRID LILIUM CULTIVARS

VINODH S.*, KANNAN M. AND JAWAHARLAL M.

Department of Floriculture and landscaping, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu *Corresponding Author: Email-vinohorts@gmail.com

Received: June 08, 2016; Revised: June 11, 2016; Accepted: June 16, 2016; Published: October 09, 2016

Abstract- A field experiment was carried out during three successive seasons at M/s. Balaji Flowers, Devashola Estate, The Nilgiris by the Dept. of Floriculture and Landscaping, Tamil Nadu Agricultural University to evaluate *Asiatic hybrid* lilium cultivars with different levels of fertigation on growth and yield characters. Among the treatments application of @ 8:4:10 g NPK/m² along with micronutrient mixtures @ 4 g/m² in the cv. Pollyanna during summer season performed best compare to other treatments. Overall plant growth, days taken for bud initiation, flower shoot length and flower yield were found to be superior under F₇ fertigation treatment in summer season over other fertigation levels and seasons. Among the four cultivars, Pollyanna showed improvement in flower shoot length, number of flower buds, diameter of flower and flower yield during summer season. A few other cultivars, *viz.*, Navona, Black Out and Tresor also exhibited higher flower yield during all three seasons. Thus, it has been observed that there is no significant difference among three seasons for flower production in Lilium cultivars but fertigation and cultivar played a significant role.

Keywords- Lilium, fertigation, Planting season, Cultivars

Citation: Vinodh S., et al., (2016) Effect of Different Levels of Fertigation and Planting Season on Growth and Flower Production of Asiatic hybrid Lilium Cultivars. International Journal of Agriculture Sciences, ISSN: 0975-3710 & E-ISSN: 0975-9107, Volume 8, Issue 45, pp.-1904-1908.

Copyright: Copyright©2016 Vinodh S., et al., This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Introduction

The genus Lilium (*Lilium spp.*) Is a herbaceous flowering plant normally growing from bulbs, has 110 species belonged to Liliaceae family. Among the lilies, some groups have been evolved through extensive improvement and referred to as 'coloured lilies' and mostly grown for cut flowers and other popular type is generally grown for garden display in India. Asiatic, Oriental and OT lilies are leading cut flower groups and in the international market, it is dominated by the Netherlands. Fertigation is one such technique of applying nutrients through micro irrigation systems directly at the site of active root zone. Though a new concept in India, it has potential for more accurate and timely crop nutrition leading to increased yields, enhanced quality and early crop maturity. Since not much work has been done in India on standardization of fertigation schedule for Lilium, this research work has been envisaged at The Nilgiris, a suitable hilly zone in South India.

Materials and Methods

Looking towards the importance and scope for cultivation of lilium research was carried out to study the nutritional requirement of the crop under protected conditions at M/s. Balaji Flowers, Devashola Estate, The Nilgiris by Dept. of Floriculture and Landscaping, Tamil Nadu Agricultural University. The mean annual temperature and relative humidity during the study was 12 – 25 degree centigrade and 70 – 90 per cent, respectively. The treatments included ten levels of fertigation, four cultivars of *Asiatic hybrid* Lilium, each raised during three seasons of planting *viz.*, summer, rainy and winter, with three replications. The experiment was laid out in a Factorial RBD. Standard package of practice was

followed.

The treatments imposed for the experiment are detailed below.

Tr. No.	Fertigation Details	Cultivar	Season
1.	4:2:5 g NPK/ m ² - F ₁	Pollyanna V.	
2.	8:4:10 g NPK/ m ² – F ₂	r uiyaiiia-vi	Summer-S1
3.	12:6:15 g NPK/ m ² – F ₃	Nevena V.	
4.	16:8:20 g NPK/ m ² – F ₄	Navolia – V2	
5.	4:2:5 g NPK/ m ² + micronutrient mixtures @ 4 g/ m ² – F₅		Deinu C
6.	8:4:10 g NPK/ m ² + micronutrient mixtures @ 4 g/ m ² - F ₆	Black Out-V3	Rainy – S ₂
7.	12:6:15 g NPK/ m ² + micronutrient mixtures @ 4 g/ m ² - F ₇		
8.	16:8:20 g NPK/ m ² + micronutrient mixtures @ 4 g/ m ² - F ₈		
9.	8:8:8 g NPK/ m ² + micronutrient mixtures @ 4 g/ m ² - F ₉	Tresor-V ₄	Winter – S3
10.	Soil alone (without fertilizer) – control - F ₁₀		

(From F_1 to F_8 , 75% of P was given as soil application in the form of SSP)

Results and Discussion

A perusal of results of 20011 -12 and mean data of the experiment [Tables-1–4] revealed that different fertigation levels and growing seasons resulted in significant variation in growth, flowering and yield characters of cultivars under study. Among the ten fertigation levels, fertigation level at F_7 significantly influenced plant height (112.36 cm), number of leaves (91.90), leaf area (846 cm²), leaf area index (5.64), days taken for the flower bud appearance (33.85) in *cv.* Pollyanna. Incremental doses of fertigation increased biometric growth of the plant. More number of leaves and growth were observed in carnation at higher

levels of nutrients as production of amino acids increase at higher dose [1]. The floral characters of Lilium were also influenced by the fertigation levels and planting season. Data indicated that the flower shoot length (83.81 cm), number of flower buds per stem (7.09), diameter of open flower (17.83 cm), days taken for harvesting (66.87) and flower yield per square meter (60.15) was superior in F_7 over other levels of fertigation. The floral characters yield and quality depend upon supply of nutrients, growth and climate. Higher dose of fertigation (F_7) resulted in

the production of better quality of flowers due to increased supply of nutrients, healthy and vigorous plants than all other treatments also recorded similar findings in Anthurium [2-4]. Time of planting also influenced the growth and yield parameters. Planting in summer influenced all the growth and yield parameters. High temperature and humidity were probably responsible for the increased plant height and more number of leaves per plant [5, 6].

	_	lab	Ie-1 Effect	of fertiga	tion, vari	ety and s	eason on growth characters of Asiatic hybrid lilium cultivars								
Treatments		Plant height (cm)		No. of leaves/ plant			Leaf Area (cm ²)				LAI		Days taken for bud initiation		
Fertigation level	S ₁	S ₂	S₃	S ₁	S ₂	S₃	S ₁	S2	S₃	S ₁	S ₂	S3	S ₁	S ₂	S₃
F ₁	87.24	86.16	84.78	64.95	63.73	62.67	598.0	586.8	577.0	3.99	3.91	3.85	38.79	39.46	40.18
F ₂	89.98	88.83	87.16	71.03	69.06	67.24	654.0	635.8	619.1	4.36	4.24	4.13	37.80	38.49	39.27
F₃	93.04	91.91	90.04	74.23	72.39	70.11	683.4	666.4	645.4	4.56	4.44	4.30	37.39	37.97	38.78
F4	95.80	94.56	92.88	76.40	74.14	72.48	703.3	682.6	667.3	4.69	4.55	4.45	37.08	37.46	38.32
F₅	99.84	97.33	95.36	80.60	78.31	75.37	742.0	720.9	693.9	4.95	4.81	4.63	36.29	36.77	37.63
F ₆	102.65	100.83	98.88	85.16	82.17	78.80	784.0	756.5	725.5	5.23	5.04	4.84	35.76	36.42	37.11
F ₇	112.36	110.32	108.46	91.90	88.90	85.43	846.0	818.4	786.5	5.64	5.46	5.24	33.85	34.83	35.48
F ₈	108.36	104.67	102.80	88.87	85.10	82.11	818.1	783.4	755.9	5.45	5.22	5.04	34.71	35.47	36.73
F ₉	88.52	87.04	84.99	69.53	66.77	65.09	640.1	614.7	599.2	4.27	4.10	3.99	38.07	38.67	39.43
F ₁₀	71.11	70.04	67.54	56.81	54.44	52.62	523.0	501.2	484.4	3.49	3.34	3.23	39.82	40.54	41.48
S.Ed	1.30	1.27	1.25	1.04	1.01	0.97	9.57	9.26	8.95	0.06	0.06	0.06	0.50	0.51	0.52
C.D (5%)	2.58	2.54	2.49	2.07	2.00	1.93	19.05	18.43	17.81	0.13	0.12	0.12	1.00	1.01	1.03
Variety	S ₁	S ₂	S ₃	S ₁	S ₂	S ₃	S ₁	S ₂	S ₃	S ₁	S ₂	S ₃	S ₁	S ₂	S₃
V1	108.83	107.80	105.97	86.54	84.03	80.91	796.7	773.6	744.9	5.31	5.16	4.97	36.63	37.48	38.34
V ₂	74.80	73.68	71.65	61.72	60.74	59.25	568.3	559.2	545.5	3.79	3.73	3.64	37.74	38.21	38.95
V_3	99.06	97.04	95.46	79.48	75.94	73.55	731.7	699.1	677.2	4.88	4.66	4.51	36.32	37.01	37.94
V4	96.87	94.14	92.07	76.04	73.30	71.04	700.0	674.8	654.1	4.67	4.50	4.36	37.14	37.74	38.53
S.Ed	0.82	0.81	0.79	0.66	0.64	0.61	6.05	5.85	5.66	0.04	0.04	0.04	0.31	0.32	0.33
C.D (5%)	1.63	1.60	1.57	1.31	1.27	1.22	12.05	11.66	11.27	0.08	0.08	0.08	0.63	0.64	0.65

Table-2 Effect of fertigation, variety and season on yield characters of Asiatic hybrid lilium cultivars

Treatments	Flower shoot length (cm)			No. of flower buds/ shoot			Diameter of open flower (cm)			Days tak	en for har	vesting	Flower yield (m ^{.2})		
Fertigation level	S ₁	S ₂	S ₃	S ₁	S ₂	S₃	S ₁	S ₂	S₃	S ₁	S ₂	S₃	S ₁	S ₂	S₃
F1	72.53	70.80	69.65	5.76	5.62	5.56	15.38	13.80	13.63	72.25	73.08	73.90	57.02	56.96	56.65
F ₂	74.19	72.78	71.62	6.15	5.90	5.84	15.64	14.09	14.00	71.66	72.51	72.80	57.18	57.11	57.04
F₃	76.03	74.82	73.64	6.30	6.06	5.98	15.93	14.38	14.26	70.85	71.68	72.18	57.45	57.35	57.28
F4	77.82	76.72	75.69	6.50	6.23	6.18	16.21	14.64	14.50	70.25	70.79	71.52	58.72	58.39	58.18
F₅	79.95	78.34	76.88	6.61	6.33	6.29	16.70	15.29	15.17	69.69	70.32	70.78	58.89	58.80	58.66
F ₆	81.12	79.37	78.46	6.70	6.44	6.37	16.97	15.56	15.40	68.78	69.58	70.21	59.02	58.96	58.86
F ₇	83.81	83.09	81.69	7.09	6.77	6.70	17.83	16.32	16.18	66.87	68.21	68.76	60.15	60.06	59.93
F8	82.19	80.96	79.82	6.83	6.57	6.51	17.17	15.75	15.68	67.72	68.87	69.77	59.34	59.31	59.13
F9	72.95	71.70	70.54	5.94	5.76	5.74	15.72	14.19	14.05	72.10	73.01	73.51	57.09	57.03	56.99
F ₁₀	57.81	54.93	52.39	3.65	3.40	3.36	8.04	6.98	6.85	73.81	74.63	75.78	54.15	53.95	53.31
S.Ed	1.03	1.01	1.00	0.08	0.08	0.08	0.21	0.19	0.19	1.10	0.96	0.97	0.78	0.78	0.78
C.D (5%)	2.06	2.02	2.00	0.17	0.16	0.16	0.42	0.39	0.38	2.05	1.91	1.93	1.55	1.55	1.54
Variety	S ₁	S ₂	S ₃	S ₁	S ₂	S₃	S ₁	S ₂	S₃	S ₁	S ₂	S ₃	S ₁	S ₂	S₃
V1	83.76	82.34	80.81	6.50	6.34	6.29	17.20	16.91	16.81	69.38	70.94	71.52	58.05	57.90	57.81
V2	56.87	55.58	54.59	5.58	5.52	5.51	12.96	11.36	11.24	72.42	72.33	73.12	57.79	57.61	57.20
V ₃	82.34	80.40	79.22	6.34	6.19	6.13	16.91	15.16	14.94	68.85	69.38	70.12	57.90	57.86	57.74
V4	80.40	79.08	77.52	6.19	5.58	5.48	15.16	12.96	12.88	70.94	72.42	72.93	57.86	57.79	57.66
S.Ed	0.65	0.64	0.63	0.05	0.05	0.05	0.13	0.12	0.12	0.60	0.61	0.61	0.49	0.50	0.50
C.D (5%)	1.30	1.28	1.26	0.11	0.10	0.10	0.27	0.24	0.24	1.20	1.21	1.22	0.98	0.98	0.98

VINOUN S., Nannan IVI. and Jawananai IVI	Vinodh S.,	Kannan	M. and	Jawaharlal	М.
--	------------	--------	--------	------------	----

		Tab	l e-3 Intera	ction effect	among fac	tors on the	e growth a	nd yield ch	ltivars						
Treatment		Plant heigh	t	N	lo. of leaves		Ŀ	eaf Area (cm		LAI		D	for bud		
Interaction	6	(cm)	6	6	plant	c	6	,		0	<u> </u>	6	ç	Initiatio	on
гν	01 104.00	52 104.21		01 74.00	32 70.00		01 694.00	52	53 655.60	01 4 EC	52	03	51	52	53
F1 V1	66.01	65.22	64.20	74.3Z	12.30 54.09	11.Z1 52.04	409.20	407.00	405.00	4.00	4.44	4.37	38.00	39.24	40.10
F1 V2	00.21	00.32	04.29	04.1Z	04.00 65.00	62.49	490.30	497.90	495.70	3.32	3.32	3.30	39.40	40.29	41.08
F1 V3	90.20	09.37	07.20	00.10 65.19	62.07	62.40	600.10	592 50	572.20	4.00	2 00	3.90	38.25	38.91	39.20
F1 V4	106.09	105.00	104.04	70.00	77.06	75.25	702.00	711.20	572.20 602.70	4.00	3.00	3.01	38.91	39.40	40.23
E. V.	60.05	68.18	66.40	70.02 56.85	55.28	54.20	723.00 523.40	508.00	100.00	4.00	3 30	4.0Z	37.43	30.04	39.22
Fa Va	03.00	00.10	00.49	75.40	72.86	70.07	60/ 20	670.80	455.00	1.63	J.J9	3.33	38.07	38.90	39.00
Fo Va	01 30	00.16	87 30	73.96	72.00	68.45	67/ 50	652 10	630.20	4.00	4.47	4.30	37.20	37.00	30.70
Fa Va	108.83	107.00	106.81	81 12	70.03	78.20	7/6.80	735.00	720.80	4.00	4.00	4.20	37.00	27.60	20 01
Fa Va	74.49	73 52	70.49	62.12	60.80	58.34	571.90	559.80	537 10	3.81	3.73	3.58	37.03	38.60	30.01
F2 V2	95.27	93.37	92.27	78.83	75.30	73 15	725.70	693.20	673 50	4 84	4.62	1 / 10	37.03	37.62	38.42
F2 V4	93.57	92.83	90.57	74.83	73.61	70.64	688.90	677 70	650.30	4.59	4.52	4.43	37.62	37.80	38.87
F4 V1	110 09	110.37	108 39	83,95	81.27	80.34	772 90	748 20	739 60	5,15	4,99	4 02	36.94	37.28	38.16
F4 V2	79.24	78 19	75.24	64.08	62.86	61 48	590.00	578 70	566.00	3.93	3.86	3 77	37.46	37.20	38.67
F4 V3	97 39	96.02	95 39	81.93	78 16	76 71	754 30	719.60	706.20	5.03	4 80	4 71	36.80	37.13	38.02
F4 V4	96.49	93.65	92.49	75.62	74.27	71.39	696.20	683.80	657.30	4.64	4.56	4.38	37.13	37.46	38.42
F5 V1	113.32	111.98	110.37	92.08	88.32	85.12	847.70	813.10	783.70	5.65	5.42	5.22	36 10	36.87	37.28
F ₅ V ₂	82.30	81.64	79.30	68.15	67.83	64.79	627.40	624.50	596.50	4.18	4.16	3.98	36.86	37.17	38.02
F ₅ V ₃	103.28	99.47	97.28	84.10	80.75	78.15	774.30	743.40	719.50	5.16	4.96	4.80	36.02	36.19	37.62
F ₅ V ₄	100.47	96.21	94.47	78.06	76.32	73.42	718.70	702.60	675.90	4.79	4.68	4.51	36.19	36.86	37.61
F ₆ V ₁	115.28	114.36	113.20	97.94	94.61	88.20	901.70	871.00	812.00	6.01	5.81	5.41	35.50	36.26	37.01
F ₆ V ₂	84.45	82.38	81.45	70.08	69.60	68.47	645.20	640.80	630.40	4.30	4.27	4.20	36.41	37.13	37.86
F6 V3	106.49	106.92	104.49	88.28	84.20	80.49	812.70	775.20	741.00	5.42	5.17	4.94	35.26	35.87	36.16
F6 V4	104.39	99.64	96.39	84.32	80.26	78.04	776.30	738.90	718.50	5.18	4.93	4.79	35.87	36.41	37.42
F7 V1	123.06	120.63	118.49	105.06	103.70	98.48	967.20	954.70	906.70	6.45	6.36	6.04	33.60	34.94	35.29
F7V2	87.01	86.63	84.01	74.68	73.24	71.54	687.50	674.30	658.60	4.58	4.50	4.39	35.24	35.55	36.12
Treatment		Plant heigh	t	No.	of leaves/pla	ant	L.	eaf Area (cm	2)		LAI		Days taken for bud initiation		
interaction	S.	(cm)	S.	ę,	C.	S.	ę,	<u>e</u> ,	, 	C.	¢.,	C.	e.	C.	Ç.
F ₇ V ₂	120.49	118 74	117 49	95.16	90.32	86.34	876.10	831.50	794 90	5.84	5 54	5.30	32/17	33.60	35.02
F7 V4	118 86	115.27	113.86	92.68	88.32	85.34	853.30	813 10	785 70	5.69	5 42	5.00	34.08	35.00	35.02
F8 V1	120.64	117.31	115.38	103.90	98.83	95.64	956.60	909.90	880.50	6.38	6.07	5.87	34 14	35.83	36 71
F ₈ V ₂	85.49	83.51	82.49	72,12	70.80	70.05	664.00	651.80	644.90	4,43	4,35	4.30	35.81	36 16	37.52
F ₈ V ₃	115.02	109.22	108.02	90.28	86.16	82.64	831.20	793.20	760.80	5.54	5.29	5.07	34.02	34.08	35.86
F ₈ V ₄	112.29	108.62	105.29	89.16	84.60	80.09	820.80	778.90	737.30	5.47	5.19	4.92	34.86	35.81	36.82
F ₉ V ₁	105.30	104.80	102.19	78.17	76.86	73.42	719.70	707.60	675.90	4.80	4.72	4.51	37.57	37.92	39.46
F ₉ V ₂	67.48	66.20	64.48	54.92	52.80	51.34	505.60	486.10	472.70	3.37	3.24	3.15	38.77	39.09	39.72
F ₉ V ₃	91.83	89.90	87.83	74.63	70.17	68.46	687.10	646.00	630.30	4.58	4.31	4.20	37.04	38.90	39.02
F ₉ V ₄	89.47	87.27	85.47	70.38	67.26	67.12	648.00	619.20	617.90	4.32	4.13	4.12	38.90	38.77	39.53
F ₁₀ V ₁	81.48	80.51	77.19	70.23	67.21	63.05	646.60	618.80	580.50	4.31	4.13	3.87	39.38	40.21	41.32
$F_{10}V_2$	52.29	51.27	48.29	40.12	40.06	38.49	369.40	368.80	354.40	2.46	2.46	2.36	40.86	41.07	41.82
$F_{10}V_3$	77.19	76.28	74.19	60.02	56.26	55.14	552.60	518.00	507.60	3.68	3.45	3.38	39.02	40.01	41.26
F ₁₀ V ₄	73.47	72.10	70.47	56.86	54.21	53.79	523.50	499.10	495.20	3.49	3.33	3.30	40.01	40.86	41.53
S.Ed	2.60	2.55	2.50	2.08	2.01	1.94	19.13	18.51	17.89	0.13	0.12	0.12	1.00	1.01	1.04
C.D (5%)	5.17	5.07	4.97	4.14	4.00	3.87	38.10	36.86	35.63	0.25	0.24	0.24	2.00	2.02	2.06

Among the varieties cv. Pollyanna (V1) registered increased plant height (108.83 cm), more number of leaves (86.54), leaf area (86.54 cm²), leaf area index (5.31) and less number of days for flower bud appearance (36.63) and thus showed its superiority over other three cultivars during the summer season. The growth of the plant is governed by the genetic potential and nutritional supply reported that varietal performance is specific to individual potential of the cultivar and growing conditions [7]. The floral characters of cultivars of present study different significantly with each other. Among them V1 showed its superiority through the flower shoot length (83.76 cm), number of flower buds per stem (6.50), diameter of open flower (17.20 cm), days taken for harvesting (69.38) and flower yield per square meter (58.05) which was followed by V₃ (Black Out) during summer season planting. The cultivar V1 has defined ability to express better during summer season. Better performance by V1 might to be due to induction of dominance in phenotypic characters. The results are in agreement in Anthurium [8, 9].

The interaction of F₇V₁ expressed the best performance in biometric growth over other treatment combinations during summer season of planting. The F_7V_1 combination registered improvement in plant height (123.06 cm), number of leaves (105.06), leaf area (967.20 cm²), leaf area index (6.45) and days taken for the flower bud appearance (33.60) during summer season planting. This might be due to the availability of sufficient nutrients available to the plants and performing ability of the cultivar. The floral characters of Lilium were also significantly superior F₇V₁ combination, which was observed through increased flower shoot length (90.38 cm), number of flower buds per stem (7.58) and flower yield per square meter (60.28). The treatment combination in experiment I have shown a consistent F7V1 increase in yield of flower stems during all the three seasons. Hence, it has been observed that there was no difference among three seasons for yield parameters with respect to the best treatment combination. Diameter of open flower and flower yield was on par in F_7V_1 and F_7V_3 . It was observed that number

of flower buds per stem in varieties had a significant positive effect due to higher doses of fertigation. Thus, the overall effect of F_7V_1 combination was found to be superior over other interactions and similar such results in Anthurium [10].

		Ta	ble-4 Inte	eraction eff	ect amon	g factors	rs on the growth and yield characters of Asiatic hybrid lilium cultivars									
Treatment	Flowe	r shoot leng	gth	No. o	f flower bu	ds/	Diameter	of open flow	ver (cm)	Davs ta	aken for ha	rvesting	Flower vield (m ⁻²)			
interaction		(cm)			shoot		-							, j	,	
	S1	S2	S3	S1	S2	S3	S1	S2	S3	S1	S2	S3	S1	S ₂	S ₃	
F1 V1	81.20	80.39	/8.62	5.98	5.92	5.86	17.03	16.96	16.90	/1.51	72.37	/3.16	57.11	57.01	56.86	
F1 V2	50.39	48.29	47.86	5.42	5.40	5.32	12.96	10.71	10.60	74.04	74.38	75.30	56.96	56.85	56.08	
F1 V3	80.39	/8.15	77.02	5.92	5.72	5.66	16.96	14.56	14.20	/1.06	/1.51	/1.86	57.01	57.00	56.86	
F ₁ V ₄	/8.15	/6.35	75.08	5.72	5.42	5.40	14.56	12.96	12.80	/2.3/	/4.04	/5.26	57.00	56.96	56.80	
F2 V1	82.97	82.67	80.16	6.56	6.40	6.28	17.28	17.23	17.16	/0.64	/1.69	72.08	57.29	57.20	57.14	
F2 V2	51.48	50.67	50.08	5.61	5.56	5.50	13.16	11.08	11.01	/3.94	/3./6	74.08	57.05	57.01	56.96	
F2 V3	82.67	79.64	/8.61	6.40	6.04	6.01	17.23	14.90	14.72	/0.3/	70.64	71.02	57.20	57.16	57.05	
F2 V4	/9.64	/8.12	//.61	6.04	5.61	5.58	14.90	13.16	13.10	/1.69	73.94	74.01	57.16	57.05	57.01	
F3 V1	84.43	83.15	81.22	6.70	6.52	6.41	17.42	17.42	17.35	69.78	70.80	/1.1/	57.59	57.45	57.40	
F3 V2	56.39	55.34	54.32	5.69	5.75	5.68	13.42	11.21	11.16	/3.48	/2.64	/3.61	57.35	57.20	57.06	
F3 V3	83.15	80.15	80.01	6.52	6.28	6.20	17.42	15.45	15.16	69.35	69.78	70.72	57.45	57.40	57.36	
F3 V4	80.15	80.62	79.02	6.28	5.69	5.61	15.45	13.42	13.36	/0.80	73.48	73.20	57.40	57.35	57.30	
F4 V1	85.39	84.47	82.86	6.84	6.70	6.63	17.74	17.68	17.49	69.18	70.64	71.06	58.82	58.72	58.60	
F4 V2	59.24	58.64	57.63	5.8/	5.76	5.82	13.60	11.46	11.38	/2.18	/1.16	72.64	58.64	57.48	57.20	
F4 V3	84.47	82.18	81.66	0.70	6.59	b.5/	17.08	15.82	15.60	69.01	69.18 70.40	70.20	58.72	58.70	58.61	
F4 V4	82.18	81.57	80.62	0.59	5.8/	5.70	15.82	13.60	13.52	70.64	72.18	72.12	58.70	58.64	58.32	
F5 V1	87.38	85.81	84.01	6.95	5.01	6.79	18.40	18.23	18.16	08.97	69.79	70.03	58.97	58.91	58.82	
F5V2	01.94	00.39	59.28	5.92	0.70	5.91	13.01	12.78	12.04	/ 1.04	70.89	/ 1.00	58.80	58.61	58.42	
F5 V3	85.81	84.68	83.01	0.81	0.70	6.69	18.23	10.34	10.10	08.35	08.97	69.5Z	58.91	58.86	58.72	
F5 V4	84.68	82.46	81.20	0.70	5.92	5.78	16.34	13.81	13.76	69.79	/1.64	71.90	58.86	58.80	58.68	
F6 V1	88.83	86.12	85.76	7.03	6.89 5.00	0.82	18.52	18.40	18.32	07.89	69.48 70.40	70.12	59.06	59.06	59.01	
F6V2	03.50	01.20	00.20	0.04	5.99	0.01	14.08	12.00	12.72	70.45	70.49	71.01	58.96	58.79	58.61	
F6 V3	00.12 95.06	00.90	04.72	0.09	0.00 6.04	0.70	10.40	10.00	10.00	07.29	07.09	70.69	59.06	59.01	59.00	
	00.90	04.10	03.10	0.00	0.04	0.00 7.12	10.00	14.00	14.01	09.40 65.14	70.40 69.57	70.00 60.06	59.01	58.96	58.82	
F7 V1	90.30	00.00 60 E0	67.20	6.27	6.21	6.22	19.30	12.20	19.12	60.46	60.67	70.00	60.28	60.15 50.05	60.06	
Treatment	00.30	00.00 r shoot leng	07.20	0.37 No. o	0.31 f flower bu	0.32 de/	14.00	13.23 13.00		09.40 09.07 70.00			00.05 59.95 59.00			
interaction	TIOWE	(cm)	Jui	NO. 0	Shoot	us/	Diameter of open flo		wer (cm) Day		Days taken for harvesting			Flower yield (m ⁻²)		
	S ₁	S ₂	S₃	S ₁	S ₂	S₃	S ₁	S ₂	S₃	S ₁	S ₂	S₃	S ₁	S ₂	S₃	
F ₇ V ₃	88.58	87.89	86.02	7.21	7.18	7.06	19.26	17.85	17.72	64.29	65.14	66.26	60.15	60.10	60.06	
F ₇ V ₄	87.89	87.29	86.20	7.18	6.37	6.30	17.85	14.86	14.80	68.57	69.46	69.62	60.10	60.05	60.01	
F ₈ V ₁	89.04	86.67	86.16	7.12	7.06	7.01	18.73	18.68	18.58	66.48	68.90	69.82	59.59	59.34	59.19	
F ₈ V ₂	66.38	64.67	63.82	6.14	6.08	6.08	14.20	13.06	12.96	70.09	70.01	70.86	59.14	59.47	59.12	
F ₈ V ₃	86.67	86.66	85.28	7.06	7.01	6.92	18.68	17.05	17.01	65.39	66.48	67.92	59.34	59.28	59.12	
F ₈ V ₄	86.66	85.84	84.01	7.01	6.14	6.01	17.05	14.20	14.16	68.90	70.09	70.46	59.28	59.14	59.08	
F ₉ V ₁	81.58	81.24	80.06	6.24	6.03	6.16	17.10	17.08	17.01	71.02	72.89	72.86	57.17	57.08	57.01	
F ₉ V ₂	50.58	49.34	48.26	5.56	5.50	5.48	13.06	10.96	10.84	74.01	74.12	74.86	57.04	56.93	56.91	
F ₉ V ₃	81.24	78.40	77.64	6.03	5.94	5.89	17.08	15.64	15.36	70.48	71.02	71.52	57.08	57.06	57.02	
F ₉ V ₄	78.40	77.81	76.20	5.94	5.56	5.43	15.64	13.06	13.00	72.89	74.01	74.80	57.06	57.04	57.01	
F10 V1	66.38	64.29	62.02	4.03	3.84	3.82	10.38	8.20	8.05	73.18	74.27	75.20	54.65	54.05	54.01	
F ₁₀ V ₂	40.30	38.58	37.21	3.14	3.05	3.01	6.48	6.16	6.01	74.86	76.19	77.66	53.89	53.85	52.06	
F ₁₀ V ₃	64.29	60.27	58.22	3.84	3.57	3.49	8.20	7.08	7.01	72.93	73.18	73.06	54.05	54.01	53.61	
F ₁₀ V ₄	60.27	56.56	52.10	3.57	3.14	3.10	7.08	6.48	6.32	74.27	74.86	77.20	54.01	53.89	53.56	
S.Ed	2.07	2.03	2.00	0.17	0.16	0.16	0.43	0.39	0.38	2.01	1.92	1.94	1.56	1.56	1.55	
C.D (5%)	4.12	4.04	4.00	0.33	0.32	0.32	0.85	0.77	0.77	4.08	3.83	3.86	3.11	3.10	3.09	

Conclusion

The overall plant growth and flower production was found to be superior when applied with a fertigation dose of 12:6:15 g NPK/ m^2 + micronutrient mixtures (**Q** 4 g/ m^2 compared to other treatments during all three seasons of planting. Cultivar 'Pollyanna' exhibited improved flower stem length, number of flower buds and diameter of open flower among the cultivars, The other cultivars *viz.*, Navona, Black Out and Tresor were found to be on par with each other in its performance during all three seasons. Thus, it has been observed that there was no difference among the seasons for flower production in Lilium cultivars, but fertigation and

cultivar played a significant role.

Conflict of Interest: None declared

References

- Sunitha D., Gupta A.K. and Sehrawat S.K. (2003) Haryana J.Hort. Sci., 32(3/4), 345-348.
- [2] Dufour L., Horst W. J., Schenk M.K. and Burkert A. (2001) International Plant Nutrition Colloquium, Hannover, Germany. 784-785.

- [3] Jawaharlal M., Joshua J.P., Arumugam T., Subramanian S. and Vijayakumar M. (2001) South Indian Hort., 49, 342-344.
- [4] Karuna K., Patil P., Narayanasamy P. and Kale R.D. (1999) Crop Research, 17, 253-257.
- [5] Asahira T., Imanishi H. and Tsukamoto Y. (1968) Mem. Coll. Agric. Kyoto Univ. 93, 21-34.
- [6] Imanishi H., Sasaki K., Oen M. (1970)Bull Univ. Oska Pref. Ser. B. 22, 7-17.
- [7] Srinivas V. (2006) Crop Research, 31, 75-777.
- [8] Praneetha S., Jawaharlal M., Misra R.L. and Misra S. (2002) Performance of anthuriums under shade net condition yercaurd. *Proceeding of the National Symposium on Indian Floriculture*, Lal Bagh, Bangalore. Pp: 328-329.
- [9] Wang Y.T. (1999) Horticulture Technology, 3, 409-412.
- [10] Jadhav G., Shriram N.A., VAsudev Naik P., Hiremath J.S., Yogesh Killari and Patil M.S. (2011) *Res. J. Agrl. Sci.*, 2(3), 560-563.