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Introduction 

A wide range of changes in genes occurs during the transformation 
of a normal cell to a cell capable of forming a cancerous growth. 
Usually cancer is caused by multiple changes in several different 
genes, although the genes that contribute to the development of 
cancer fall into broad categories. Every case of cancer is unique, 
with its own set of genetic changes and growth properties. Some 
cancers grow quickly while others can take years to become dan-
gerous to the patient. When a normal tissue becomes cancerous, 
the expression levels of genes also change since transcriptional 
changes accurately reflect the status of disease, including cancers, 
by identifying these changes in gene expression, the tissues can be 
classified as cancerous and normal. The differences between cases 
of cancer, even of the same organ, are one of the main reasons 
that treatment is so difficult. High-density DNA microarray measures 
the activities of several thousand genes simultaneously and the 
gene expression profiles have been used for the cancer classifica-
tion recently [1]. Currently, cancer diagnosis highly depends on a 
variety of histological observations, including immune histo chemi-
cal assays, which detect cancer biomarker molecules. However, 
these assays have limitations due to morphological similarity and 
lack of available biomarkers of cancers.  Microarray technology is a 
hybridization technique which allows monitoring the quantity of 
messenger RNA present in a cell for several thousand genes simul-
taneously in a single experiment on a small chip. By submitting cells 
to various experimental conditions and comparing the expression 

profiles of different genes, a better understanding of the regulation 
mechanisms and functions of each gene is expected [2].  The out-
put of these microarray experiments are the expression levels of 
different genes and these data are publicly available. This revolu-
tionized   the approach has provided a large amount of data from 
which a lot of knowledge can be explored. These datasets include a 
large number of gene expression values and need to have a good 
data mining method to extract knowledge from these microarray 
gene expression datasets [3]. A reliable and accurate classification 
is essential for successful diagnosis and treatment of cancer [4].  
Microarrays have thousands to tens-of-thousands of gene features, 
but only a few hundred patient samples are available. However, 
among the large amount of genes, only a small fraction is effective 
for performing a classification task, so the dimension reduction is 
one of the important procedures for DNA-microarray data. In con-
junction with this invention, identifying gene markers that present 
the maximum discrimination power between cancerous and normal 
cells has become one of the vital research areas in microarray data 
analysis. This trouble can be alleviated by using two types of meth-
ods: Feature Extraction and Feature selection. The goal of both the 
methods is to determine a small subset of informative features that 
reduces processing time and provides higher classification accura-
cy [5]. The basic idea of a feature extraction is simply to transform a 
high-dimensional feature vector into a low-dimensional space such 
that the transformed variables give information on the data which is 
otherwise hidden in the large data set. These methods include clus-
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tering, basic linear transforms of the input variables (Principal Com-
ponent Analysis/Singular Value Decomposition, Linear Discriminant 
Analysis), spectral transforms, wavelet transforms or convolution of 
kernels.  Feature selection aims at selecting a subset of features 
relevant in terms of discrimination capability. It avoids the drawback 
of the output interpretability, because the selected features repre-
sent a subset of the given ones. The feature selection methods are 
classified as filters, wrappers and embedded, depending upon the 
criteria used to evaluate the feature subsets [6]. The filter approach 
is widely used based on gene ranking, yet the drawback of this 
selection procedure is that, it is independent of the specific required 
prediction/classification task. The wrapper method, such as sequen-
tial forward selection and particle swarm optimization usually con-
sists of the search process and the evaluation criterion. However, 
an exhaustive search of all subsets is too expensive to implement 
for a high dimensional feature space. Unlike the filter and wrapper 
methods that separate the variable selection and training process, 
the embedded methods incorporate feature selection into the con-
struction process of the classifier or regression model [7]. A large 
number of  gene selection & extraction approaches exist, such as  t-
test, relief-F, information gain, and Principal Component Analysis 
(PCA), Linear Discriminant Analysis, independent component anal-
ysis (ICA). These methods are capable of selecting a smaller sub-
set of genes for sample classification [8]. Recently Independent 
component analysis (ICA) methods have received growing attention 
as effective data-mining tools for microarray gene expression data. 
As a technique of higher-order statistical analysis, ICA is capable of 
extracting biologically relevant gene expression features of microar-
ray data [9]. The success of ICA methods depends on the appropri-
ate choice of best gene subset from given ICA feature vector and 
choice of an appropriate classifier [10]. Several machine learning 
techniques, such as Artificial neural networks (ANN), k-nearest 
neighbor (KNN), support vector machine (SVM), Naïve Bayes, De-
cision Tree, Random Forest and kernel-based classifiers, have 
been successfully applied to microarray data and also for other 
biological data  analyses in recent years [4,11,12]. Statistical and 
machine learning approaches are popularly used to construct a 
predictive model for classifying cancer patients from normal ones 
based on gene expression data. A few of such approaches include 
the SVM-based classifier is superior, as it is less sensitive to the 
curse of dimensionality and more robust than other non-SVM classi-
fiers [13]. The biggest drawback of an SVM is that it cannot directly 
obtain the genes of importance. Thus, during the fitting of an SVM 
model, a careful gene selection has to be done first and then the 
selected genes should be used to obtain improved classification 
results. If genes are not appropriately chosen, there may be a large 
number of redundant variables in the model, severely affecting its 
performance [14]. From the study of L Chun-Hou Zheng (2006), we 
see that SVM is the best classifiers with ICA for microarray data, 
and feature subset selection from the ICA feature vector can signifi-
cantly improve the performance of classifiers [3]. In this study, the 
most discriminant features extracted by the ICA are ranked by the t-
test. The t-test compares the actual difference between two means 

in relation to the variation in the data. 

In this paper, the features extracted by the ICA are ranked by the t-
test of the DNA microarray data for support vector machine (SVM) 
classification. The proposed approach consists of two main steps, 
feature extraction by FastICA and extract feature ranked by t-test 
technique, which will be introduced in section 2. The next section 
explains the classification procedure of SVM, followed by the details 

of used datasets and preprocessing step of datasets. Section 5, 
represent the experimental results on five microarray datasets, 
which shows that the proposed approach can not only improve the 
average classification accuracy rates but also reduce the variation 
of classification performance. Finally, the concluding section dis-

cusses the applicability of our proposed methods used [Fig-1]. 

Fig. 1- The procedure of the method used in this paper. 

Proposed Approach 

Feature Extraction by ICA 

ICA is a statistical method for transforming an observed multidimen-
sional random vector into components that are mutually as inde-
pendent as possible, which was proposed by Hyvarinen and has 
been proven successful in many applications [15]. ICA is a useful 
extension of PCA that has been acquired in context with blind sepa-
ration of independent sources from their linear mixtures. PCA pro-
jects the data into a new space spanned by the principal compo-
nents. In contrast to PCA, the goal of ICA is to find a linear repre-
sentation of non-Gaussian data so that the components are statisti-
cally independent [16]. ICA provides a more biologically plausible 
model for gene expression data by assuming a non-Gaussian data 
distribution. ICA provides a data-driven method for exploring func-
tional relationships and grouping genes into transcriptional mod-
ules. Independent component analysis (ICA) is a signal processing 
technique whose goal is to express a set of random variables as 
linear combinations of statistically inde­pendent component varia-
bles. Two interesting applications of ICA are blind source separa-

tion and feature extraction. 

In the simplest form of ICA we observe the expression levels of all 
genes are n scalar random variables x1, x2,.. xn, which are assumed 
to be linear combinations of m unknown independent components 
S1, S2,… Sm that is mutually statistically independent, and zero-
mean. Let us arrange the expression levels  xj into a vector X = (x1, 
x2, ..., xn) T which are modeled as linear combination of m random 

variable S = (s1, s2,… sm) T [17]: 

for all                    (1)  

                

(2) 

 

Where X, is (n × m) matrix which denote microarray gene expres-
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sion data, with n genes and m samples, and   in X  are some real 
ratio of intensities, represent the expression level of ith genes in the 
jth sample, and number of genes are much greater than that of the 
sample m where, n >> m. This is a basic ICA model of microarray 
gene expression data. Since we assume that the observed varia-
bles are independent components, these are latent variable, which 
cannot be directly observed. Also the mixing matrix A is assumed to 
be unknown matrix. We only observe the random variable xj  and 
we estimate both the matrix S and A using X, since we can invert 

the mixing matrix as: 

                                               (3) 

Then ICA can be applied to find a matrix W that provides the trans-
formation    of the observed matrix X under which, the transformed 
random variables   called the independent components are as inde-
pendent as possible. Theoretical framework of ICA algorithms of 
microarray gene expression data shown in [Fig-2], as previously 

demonstrated by Wei Kong et al [18]. 

Fig. 2- Theoretical framework of ICA algorithms of microarray gene 

expression data 

A fixed point algorithm is a computationally highly efficient method 
for performing the estimation of ICA for microarray data [19]. It is 
based on a fixed-point iteration scheme that has been found in in-
dependent experiments to be 10-100 times faster than conventional 
gradient descent methods for ICA. In the fixed point algorithm of 
ICA (FastICA), maximizing negentropy is used as the contrast func-
tion since negentropy is an excellent measure of nonguassianity 

and is approximated by: 

                                                    (4) 

where uG  is a Gaussian random vector of the same covariance 
matrix as vector u. Mutual information I, is known as natural meas-
ure independence of random variables; it is widely used as the cri-

terion in ICA algorithm and can be measured by: 

                (5) 

 

where             is the marginal entropy of the 
variable ui, p (.) is a probabilistic density function. The independent 
components are determined, when mutual information I is mini-
mized. From [Eq-5] it is clearly shown that minimizing the mutual 
information I is equivalent to maximizing the negentropy J (u). To 
estimate the negentropy of,         an approximation to 
identify independent components one by one is designed as fol-
lows: 
              (6) 

Where, G can be practically any non-quadratic function, E (.) de-
notes the expectation, and v is a Gaussian variable of zero mean 

and unit variance [20]. 

Feature Selection by t-Test Technique 

The t-statistic measure is used to select the best gene from the 
given ICA feature vector for good separability of the classification 
task. A central issue associated with ICA is, it generally extracts the 
number of components, which are equal to the observational varia-
bles m for which again 2m gene subsets exist [5]. The evaluation of 
all possible gene subsets leads to computational problem for large 
values of m. To solve this problem of identifying the most relevant 

gene we applied t-test method.  

In this paper, we use t-test for ranking the genes which is extracted 
by ICA, t-test (t-score or TS) is a statistical method and is used to 
measure how large the difference is in between the distributions of 
two groups of samples.  We shall focus on the classification prob-
lems with two classes, labeled by 1 and 2, respectively, and let mk 
denote the sample size for class k; i.e., m1 +m2 = m. The response 

variable yj, j = 1. . . m, takes on the values of +1 or −1 for the two 

classes, respectively. The t-statistic measures the separability be-
tween classes using a standardized distance for a single gene, 
which gives a relevance score for each gene [21]. The ranking crite-

rion is given as: 

 

 

 

Where, TSi is a t-statistic measures for the gene i, and xki to denote 
the vector of values on the ith row of X for gene i, that belong the 
class k ∈{1, 2}. The mean of the values in xki is denoted by    , and 

the sample standard deviation by ski  [22]. 

The genes with largest TS, put in the first place in the ranking list, 
followed by the gene with the second largest TS, and so on.  To 
measure the relevance of a gene, the t-test is widely used, assum-
ing that there are two classes of samples in a gene expression data 
set. The t-test is computed for one class versus the other classes. It 
compares the actual difference between two means in relation to 
the variation in the data. The test values are calculated as the test 
statistic t is used to detect the difference between the means of two 
populations and it has two versions depending on whether or not 
the two variances of the two populations are equal. The statistics is 
not only used for two class prediction problems, but they also apply 

to the class discovery [23]. 

Classifiers 

SVM Classifier 

The support vector machine (SVM) is a widely used tool for 2-class 
classification and it is inspired by the idea of maximizing the geo-
metric margin. SVM performs classification by constructing an opti-
mal hyperplane which separates the data into different classes [24]. 
The SVM is a linear classifier that maximizes the margin between 
the separating hyperplane and the training data points. It has no 
local minima, i.e. it works out a convex optimization problem. The 
algorithm can automatically define a network architecture. For these 
causes, it is a lot more attractive in application areas than the other 
neural networks. Basically SVM is designed for binary classification 
problems, and many different forms of SVM algorithms have been 
introduced for different purposes.  In case of linearly separable 

data, the goal of training phase of SVM is to find the linear function: 

    (7) 

which is the border for two different data classes and divides the 
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space into two classes according to the condition: 

 

The separating plane is defined by                             , and the dis-

tance between the two parallel hyperplane is equal to 

This quantity is termed as the classification margin as shown in [Fig
-3]. For maximizing the classification margin the SVM requires the 

solution of the following optimization problem [25]: 

        (8) 

 

In case of nonlinearly separable data, SVM has to map the data 
from the input space into a higher-dimensional feature space, 
where the classes can then be separated by a hyperplane. The 
function that performs this mapping is called a kernel function.  In 

SVM the following four basic Kernel functions are used [26]: 

 

 

 

 

 

where r, d  and  γ is a kernel parameter. 

For nonlinearly separable data, SVM requires the solution of the 

following optimization problem: 

  

 (9) 

 

where  are slack variables that allow the elements of the 
training data set to be at the margin or to be misclassified. So, 
these points which are on the margin are called support vectors 

[27]. In this study, SVM with RBF kernel as the classifier is used. 

Fig. 3- Maximum margin hyperplanes for SVM divides the plane 

into two classes 

Dataset 

We evaluate the performance of the proposed feature selection 
approach on five publicly available microarray data sets of Colon 
cancer [28], Acute leukemia [29], Prostate cancer [30] Lung cancer-
II [31], and high-grade Glioma data [32] dataset, taken from  Kent 
ridge an online repository of high-dimensional biomedical data sets, 
(http://datam.i2r.astar.edu.sg/datasets/krbd/index.html) to study the 
cancer classification problem. [Table-1] shows an overview of the 
characteristics of five datasets for the five binary cancer classifica-

tion problems. 

These datasets are preprocessed by setting thresholds and log-
transformation on the original data. Threshold technique is mostly 
achieved by restricting gene expression levels to be larger than 20. 
In other words, the expression levels that are smaller than 20 will be 
set to 20. Regarding the log-transformation, the natural logarithm of 
the expression levels is usually taken. In addition, no further prepro-
cessing is applied to the rest of the dataset. After preprocessing the 
data, it is divided into training and test set, further independent com-
ponent analysis is performed to reduce the dimensionality of train 
data. For ICA, the FastICA algorithm software package for Matlab 
(R2010a) is applied. Then t-test is used to rank the genes of inde-
pendent component feature vectors. For validation, the data are 
classified with these reduced numbers of features by using the SVM 
classifier. The classifier and feature selection method was imple-

mented with MATLAB™ software.  

Table 1- Summary of five high dimensional biomedical microarray 

Datasets (Kent ridge online repository) 

Experimental Result 

To check the performance of the proposed approach with SVM 
classifier, the above mentioned combination has been applied on 
the five DNA microarray gene expression datasets. Since all data 
samples in the five datasets have already been assigned to a train-
ing set or test set. The training dataset is used to do gene selection 
and then built the model for classification of the test dataset to eval-
uate the performances of classifiers. To show the efficiency and 
feasibility of our proposed method, the results of the other five 
methods with the same classifier are also listed in [Table-2], [Table-
3], [Table-4], [Table-5] for comparison. We use 4 kernels of the 
SVM classifier to check the performance of SVM with our proposed 
methods using five DNA microarray datasets. [Table-2], [Table-3], 
[Table-4], [Table-5]  shows the classification accuracy of SVM using 
Linear, Polynomial, Radial basis function and Sigmoid Kernels with 
each datasets. In method 1, the microarray data are classified by 
SVM directly with all features. In Method 2, the features are select-
ed by t-test for classification. In the Method 3, all the features are 
extracted by principle component analysis and the same is applied 
for method 4 except using ICA for feature extraction.  In Method 5 
and 6 t-test is used to rank the ICA and PCA features vector for 

SVM classification. 

International Journal of Bioinformatics Research 
ISSN: 0975-3087 & E-ISSN: 0975-9115, Volume 6, Issue 1, 2015 

t-Independent Component Analysis for SVM Classification of DNA- Microarray Data 

Data set 
No. of 

Classes 
No. of  

Features 
No. of 

Samples 
(+\-) 

Colon cancer [28] 2 2000 62 (40\22) 

Acute leukemia [29] 2 7129 72 (47\25) 

Prostate tumor [30] 2 12600 102 (52\50) 

High-grade Glioma  [32] 2 12625 64 (35\29) 

Lung cancer II [31] 2 12533 181 (31\150) 
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Due to the small sample size of microarray data Leave-One-Out 
Cross-Validation (LOOCV) accuracy rates are used to give a rela-
tively comprehensive comparison of the performances of alternative 
methods. In LOOCV method of cross validation the number of parti-
tions of data set is equal to the number of sample size (m). Each 
test set consists of a different singleton set and each training set 
consists of all (m-1) cases not in the corresponding test set. Given a 
dataset containing m samples, (m-1) samples are used to construct 
a classifier and then apply the remaining one data sample to test 
this classifier. By repeating this process of successively using each 
data samples (xi) as the testing data sample, totally m prediction ei 
= c(xi) (i = 1–m) are obtained. The performance of the classifier is 

then measured by the average misclassification rate: 

 

 

Where yi, is the true class label, for instance xi, and 

 

 

It can be seen from [Table-2], [Table-3], [Table-4], [Table-5] that t-
test+PCA and t-test+ICA perform better than PCA and ICA in micro-
array data analysis, which demonstrates the effectiveness of the 

proposed approach.  

Table 2- Classification Accuracy (CA) rates and variance (V) in (%)  
on five data set with different genes selection method using a linear 

kernel function with SVM classifier. 

Table 3- Classification Accuracy(CA) rates and variance(V) in  (%)  
on five data set with different  genes selection method using polyno-

mial kernel function with SVM  classifier. 

As for the comparison between the former two classification rules, t-
test+ICA perform obviously better than t-test+PCA in terms of clas-
sification accuracy. It is clear that the classification accuracy of 
SVM with our proposed method compared to other five gene selec-
tion methods with same classifiers is more accurate, feasible and 
reduces the variation of classification performance. From the accu-
racy table of different Kernel function 2-5 with five datasets, the 
performance of the proposed method is better as compared with the 
all other 5 methods simultaneously the results are much better with 
RBF Kernel function compared with other three Kernels. So, the 
proposed approach improves the classification performance of the 

SVM classifier for microarray data. 

[Fig-4], [Fig-5], [Fig-6], [Fig-7] shows the graph of the average error 
rate of the SVM classifier with four Kernel function for the five da-
tasets with different gene selection methods. It clearly shows from 
the figures that SVM classifier with RBF kernel performs better than 
other kernel function because of the reduced error rate.  It is evident 
from the graph that when we use top ranked genes based on t-test 
from PCA then the percentage error rate is minimized, so the 
PCA+t - test method performs better than PCA method with SVM 
classifier. In [Fig-8] the proposed method ICA + t-test with SVM 
gives the minimized error rate, which shows the significance of the 

proposed method with the other existing methods. 
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SNo Datasets 
Feature selection 
method 

Mean 
Accuracy 

Error Variance 

1 Colon cancer 

1.SVM 88.29 11.71 0.071 

2.t-test +SVM 75.23 24.77 0.069 

3. PCA+SVM 75.15 24.85 0.061 

4. ICA+SVM 78.09 21.91 0.059 

5. PCA+t-test+SVM 82.44 17.56 0.042 

6. ICA+t-test+SVM 89.09 10.91 0.036 

2 Acute leukemia 

1.SVM 89.21 10.79 0.072 

2.t-test +SVM 84.32 15.68 0.066 

3. PCA+SVM 76.02 23.98 0.059 

4. ICA+SVM 86.13 13.87 0.042 

5. PCA+t-test+SVM 89.23 10.77 0.036 

6. ICA+t-test+SVM 92.28 7.72 0.023 

3 Prostate tumor 

1.SVM 78.26 21.74 0.106 

2.t-test +SVM 79.53 20.47 0.096 

3. PCA+SVM 73.23 26.77 0.098 

4. ICA+SVM 79.88 20.12 0.089 

5. PCA+t-test+SVM 82.13 17.87 0.078 

6. ICA+t-test+SVM 86.12 13.88 0.039 

4 High-grade Glioma 

1.SVM 69.93 30.07 0.068 

2.t-test +SVM 70.12 29.88 0.069 

3. PCA+SVM 69.62 30.38 0.052 

4. ICA+SVM 70.23 29.77 0.046 

5. PCA+t-test+SVM 72.32 27.68 0.045 

6. ICA+t-test+SVM 76.21 23.79 0.038 

5 Lung cancer II 

1.SVM 75.21 24.79 0.084 

2.t-test +SVM 74.33 25.67 0.079 

3. PCA+SVM 74.2 25.8 0.071 

4. ICA+SVM 78.12 21.88 0.081 

5. PCA+t-test+SVM 82.21 17.79 0.052 

6. ICA+t-test+SVM 89.21 10.79 0.034 

SNo Datasets 
Feature selection 
method 

Mean 
Accuracy 

Error Variance 

1 Colon cancer 

1.SVM 87.71 12.29 0.056 

2.t-test +SVM 77.51 22.49 0.049 

3. PCA+SVM 75.23 24.77 0.054 

4. ICA+SVM 77.99 22.01 0.063 

5. PCA+t-test+SVM 83.34 16.66 0.038 

6. ICA+t-test+SVM 90.01 9.99 0.022 

2 Acute leukemia 

1.SVM 91.21 8.79 0.071 

2.t-test +SVM 86.91 13.09 0.076 

3. PCA+SVM 78.97 21.03 0.054 

4. ICA+SVM 87.33 12.67 0.049 

5. PCA+t-test+SVM 89.33 10.67 0.037 

6. ICA+t-test+SVM 91.2 8.8 0.019 

3 Prostate tumor 

1.SVM 78.13 21.87 0.104 

2.t-test +SVM 80.82 19.18 0.981 

3. PCA+SVM 74.53 25.47 0.106 

4. ICA+SVM 79.99 20.01 0.099 

5. PCA+t-test+SVM 81.39 18.61 0.079 

6. ICA+t-test+SVM 86.22 13.78 0.049 

4 High-grade Glioma 

1.SVM 68.33 31.67 0.065 

2.t-test +SVM 69.68 30.32 0.056 

3. PCA+SVM 69.92 30.08 0.049 

4. ICA+SVM 70.19 29.81 0.047 

5. PCA+t-test+SVM 72.36 27.64 0.046 

6. ICA+t-test+SVM 76.92 23.08 0.039 

5 Lung cancer II 

1.SVM 76.01 23.99 0.076 

2.t-test +SVM 81.82 18.18 0.069 

3. PCA+SVM 75.43 24.57 0.079 

4. ICA+SVM 78.88 21.12 0.089 

5. PCA+t-test+SVM 83.44 16.56 0.066 

6. ICA+t-test+SVM 89.44 10.56 0.027 
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Table 4- Classification Accuracy (CA) rates and variance (V) in  (%)  
on five data set with different genes selection method using RBF 

kernel function with SVM  classifier. 

Fig. 4- Average error rate of classifier for five datasets with different 

gene selection methods Using Linear Kernel. 

Therefore, with this proposed approach, discarding redundant, 
noise-corrupted or unimportant genes, we can reduce the dimen-
sionality of any type of microarray data to speed up the classifica-
tion process of SVM, increase the accuracy rate of the classification 

and making the computational expenses affordable. 

Since, a small number of features are not enough for classification, 
while a large number of features may add noise and cause over 
fitting, we used t-test to rank the ICA feature vectors and the termi-
nation criterion in our method is based on the classification rate of 

the classifier. 

Table 5- Classification Accuracy (CA) rates and variance (V) in  (%)  
on five data set with different genes selection method using sigmoid 

kernel function with SVM  classifier. 

Fig. 5- Average error rate of classifier for five datasets with different 

gene selection methods using Polynomial Kernel. 
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SNo Datasets 
Feature selection 
method 

Mean 
Accuracy 

Error Variance 

1 Colon cancer 

1.SVM 88.19 11.81 0.061 

2.t-test +SVM 81.33 18.67 0.051 

3. PCA+SVM 75.15 24.85 0.053 

4. ICA+SVM 79.19 20.81 0.052 

5. PCA+t-test+SVM 82.34 17.66 0.032 

6. ICA+t-test+SVM 90.09 9.91 0.026 

2 Acute leukemia 

1.SVM 92.21 7.79 0.071 

2.t-test +SVM 89.23 10.77 0.065 

3. PCA+SVM 76.67 23.33 0.054 

4. ICA+SVM 88.23 11.77 0.039 

5. PCA+t-test+SVM 91.23 8.77 0.03 

6. ICA+t-test+SVM 92.99 7.01 0.013 

3 Prostate tumor 

1.SVM 78.43 21.57 0.102 

2.t-test +SVM 81.23 18.77 0.093 

3. PCA+SVM 75.43 24.57 0.101 

4. ICA+SVM 80.45 19.55 0.092 

5. PCA+t-test+SVM 83.23 16.77 0.076 

6. ICA+t-test+SVM 88.12 11.88 0.043 

4 High-grade Glioma 

1.SVM 69.21 30.79 0.067 

2.t-test +SVM 71.34 28.66 0.051 

3. PCA+SVM 69.72 30.28 0.039 

4. ICA+SVM 70.21 29.79 0.041 

5. PCA+t-test+SVM 73.32 26.68 0.043 

6. ICA+t-test+SVM 75.66 24.34 0.042 

5 Lung cancer II 

1.SVM 76.34 23.66 0.084 

2.t-test +SVM 79.99 20.01 0.054 

3. PCA+SVM 75.69 24.31 0.079 

4. ICA+SVM 80.12 19.88 0.091 

5. PCA+t-test+SVM 83.21 16.79 0.064 

6. ICA+t-test+SVM 89.46 10.54 0.029 

SNo Datasets 
Feature selection 
method 

Mean 
Accuracy 

Error Variance 

1 Colon cancer 

1. SVM 89.17 10.83 0.051 

2.t-test +SVM 82.11 17.89 0.05 

3. PCA+SVM 74.13 25.87 0.052 

4. ICA+SVM 78.19 21.81 0.062 

5. PCA+t-test+SVM 84.44 15.56 0.036 

6. ICA+t-test+SVM 91.09 8.91 0.021 

2 Acute leukemia 

1.SVM 91.21 8.79 0.071 

2.t-test +SVM 87.21 12.79 0.067 

3. PCA+SVM 77.17 22.83 0.044 

4. ICA+SVM 88.33 11.67 0.039 

5. PCA+t-test+SVM 90.13 9.87 0.031 

6. ICA+t-test+SVM 93.2 6.8 0.017 

3 Prostate tumor 

1.SVM 78.43 21.57 0.102 

2.t-test +SVM 81.22 18.78 0.991 

3. PCA+SVM 75.43 24.57 0.101 

4. ICA+SVM 80.45 19.55 0.092 

5. PCA+t-test+SVM 82.23 17.77 0.076 

6. ICA+t-test+SVM 87.12 12.88 0.043 

4 High-grade Glioma 

1.SVM 69.23 30.77 0.067 

2.t-test +SVM 74.65 25.35 0.054 

3. PCA+SVM 69.72 30.28 0.042 

4. ICA+SVM 70.21 29.79 0.043 

5. PCA+t-test+SVM 72.32 27.68 0.047 

6. ICA+t-test+SVM 77.21 22.79 0.041 

5 Lung cancer II 

1.SVM 76.21 23.79 0.074 

2.t-test +SVM 83.22 16.78 0.065 

3. PCA+SVM 75.23 24.77 0.081 

4. ICA+SVM 79.12 20.88 0.091 

5. PCA+t-test+SVM 84.21 15.79 0.062 

6. ICA+t-test+SVM 90.23 9.77 0.024 
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Fig. 6- Average error rate of classifier for five datasets with different 

gene selection methods using RBF Kernel. 

Fig. 7- Average error rate of classifier for five datasets with different 

gene selection methods using Sigmoid Kernel. 

Table 6- Classification accuracy rates using RBF Kernel function 

with different numbers of genes for 5 datasets 

In order to study the behavior of a proposed feature selection ap-
proach, we applied it to the Colon, Leukemia, Prostate, High-grade 
Glioma  and Lung cancer II data set for SVM classification, a graph 
is plotted between the number of genes and classification accuracy 

rates. 

[Fig-8] shows the graph between the number of selected genes and 
the classification accuracy, using SVM classifier with RBF Kernel 
for five data sets based on the proposed gene selection method. 
The t-test technique is used to rank the independent components 
feature vector. With the help of top ranked gene, we managed to 
enhance the mean classification accuracy significantly. The mean 
improvement in classification accuracy was verified by adding 10 

genes, each time in training sets. The peak of the graphs shows the 
best means classification accuracy for five data sets. As shown in 
[Table-6], with five data sets using SVM classifier with RBF Kernel 
with ICA feature vector, the highest mean accuracy obtained was 
78.19%, 88.33%, 80.45 %, 70.21%  and 79.12 % respectively. 
When the t - test is used to rank independent component feature 
vector, one managed to get 91.09%, 93.20 %, 87.12%, 77.21% and 
90.23 % mean classification accuracies with 30, 30, 50, 20 and 60 
genes respectively for SVM classifier with RBF Kernel. These re-
sults clearly show that the t-test approach with ICA performs better 

than the other existing methods. 

Fig. 8- Number of selected genes V/s Classification accuracy using 
SVM classifier with RBF Kernel on five datasets, based on pro-

posed methods. 

Conclusion 

This paper presents a t-test based feature selection approach in 
ICA feature vector for SVM classification of microarray data where 
the methodologies involve dimension reduction of microarray data 
using ICA, followed by the feature ranking using t-test. The ap-
proach was tested by classifying five data sets. The experimental 
results show that our combination of gene selection methods of an 
existing algorithm together with SVM classifier is giving better re-
sults as compared to other existing approaches. Our experimental 
results on five microarray datasets demonstrate the effectiveness of 
the proposed approach in improving the classification performance 
of the SVM classifier in microarray data analysis. It is also found 
that the proposed method can obtain better classification accuracy 
with a smaller number of selected genes than the other existing 
methods, so our proposed method is effective and efficient for SVM 

classifier. 
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SNo Data sets 20 30 40 50 60 70 80 

1 Colon cancer 86.04 91.09 87.11 82.91 79.19 _ _ 

2 Acute leukemia 91.55 93.2 92.11 92.07 91.03 88.77 _ 

3 Prostate tumor 81.23 85.17 86.22 88.12 86.01 84.87 84.05 

4 High-grade Glioma 77.21 75.09 75.22 72.05 70.99 _ _ 

5 Lung cancer II 84.44 86.56 88.23 89.89 90.23 88.63 87.33 
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