
227 
Bioinfo Publications 

IJBR  
International Journal of Bioinformatics Research 
ISSN: 0975–3087, E-ISSN: 0975–9115, Vol. 3, Issue 2, 2011, pp-227-235 
Available online at http://www.bioinfo.in/contents.php?id=21  
 
 
THE USE OF THE ANT COLONY ALGORITHM FOR THE DETECTION OF MARKER 
ASSOCIATIONS IN THE PRESENCE OF GENE INTERACTIONS 
 
ROBBINS K.1, BERTRAND K.1 AND REKAYA R.1,2,3* 
1 Department of Animal and Dairy Science, University of Georgia, Athens, USA 
2 Department of Statistics, University of Georgia, Athens, USA 
3 Institute of Bioinformatics, University of Georgia, Athens, USA 
* Corresponding Author: Email: rrekaya@uga.edu 
 

Received: September 29, 2011; Accepted: October 29, 2011 
 
Abstract - In recent years there has been much focus on the use of single nucleotide polymorphism (SNP) fine genome 
mapping to identify causative mutations for traits of interest; however, many studies focus only on the marginal effects of 
markers, ignoring potential gene interactions. Simulation studies have shown that this approach may not be powerful 
enough to detect important loci when gene interactions are present. Although several attempts have been made to study 
potential gene interaction, the number of SNP markers considered in these studies is often limited. Given the prohibitive 
computation cost of modeling interactions in studies involving a large number SNP, there is a need for methods that can 
account for potential gene interactions in a computationally efficient manner to be developed. In this study, the ant colony 
optimization algorithm (ACA) and logistic regression on large number of SNP genotypes were used. Our procedure was 
compared to sliding window (SW/H), and single locus genotype association (RG) methods used in haplotype analyses. A 
binary trait simulated using an epistatic model and HapMap ENCODE SNP genotypes was used to evaluate each algorithm. 
Results show that the ACA outperformed SW/H and RG under several simulation scenarios, yielding substantial increases in 
power to detect genomic regions associated with the simulated trait.    
Key Words: Ant Colony, Marker association, Gene interaction     
 
Introduction 
With the advent of high-throughput, cost effective 
genotyping platforms, there has been much focus on the 
use of high-density single nucleotide polymorphism 
(SNP) genotyping to identify causative mutations for 
traits of interest, and while putative mutations have been 
identified for several traits, these studies tend to focus on 
SNP with large marginal effects [1, 2].  However, several 
studies have found that gene interactions may play 
important roles in many complex traits [3, 4].  Given the 
high density of SNP maker maps, examining all possible 
interactions is seldom possible computationally. As a 
result, studies examining gene interactions tend to focus 
on a small number of SNP, previously identified as 
having strong marginal associations.  
While this approach has shown some success, 
simulation studies conducted by [5] and [6] showed that, 
in the presence of several types of gene interactions, 
there is reduced power to detect causative loci with 
models estimating only marginal effects. Using an 
exhaustive search of all two-way interactions, Marchini et 
al. achieved greater power to detect causative mutations 
than when estimating only marginal effects. Due to the 
high computational cost of this approach, a two-stage 
model was proposed, in which SNP were selected in the 
first stage based on marginal effects an then tested for 

interactions in the subsequent stage [5]. This approach 
could, however, result in the failure to detect important 
regions of the genome in the first stage of the model. As 
such, there is a need for methodologies capable of 
identifying important genomic regions in the presence of 
potential gene interactions when large numbers of 
markers are genotyped. 
Given that the examination of all possible SNP 
interactions is computationally infeasible with dense SNP 
marker maps covering large regions of a genome, an 
alternative approach must be considered. One approach 
would be to view the identification of groups of 
interacting SNP as an optimization problem, for which 
several algorithms have been developed. These 
algorithms are designed to search large sample spaces 
for globally optimal solutions and have been applied to a 
wide range of problems [7, 9].  Through the evaluation of 
groups of loci efficiently selected from different regions of 
the genome, optimization algorithms should be able to 
account for potential interactions. Kooperberg et al. [10] 
utilized an optimization algorithm, referred to as 
simulated annealing (SA), to examine interaction effects; 
however, only 32 SNP were considered in the model 
selection process. For studies involving hundreds or 
even thousands of SNP, efficient algorithms are needed 
to search the sample space for optimal solutions.  
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One algorithm, the ant colony algorithm (ACA), has been 
shown to be efficient in high-dimension data sets [11]. 
The ACA, developed by Dorigio and Gambardella [12], is 
based on the mechanism by which ant colonies find the 
shortest route to a food source. Ants communicate 
through a chemical pheromone trail, deposited as they 
transverse a given path. Ants that choose a shorter path 
will transverse the distance at a faster rate, thus 
depositing more pheromone in the process. As the 
pheromone builds, ants will begin to preferentially 
choose the shorter path leading to a positive feed back 
system. Dorigio and Gambardella [12] showed that the 
communication between ants had a synergistic effect 
allowing the ACA to reach optimal solutions in fewer 
iterations when compared to other optimization 
algorithms. In the case of SNP association studies, the 
‘path’ is represented by a selected subset of SNP 
markers, and performance is evaluated based on the fit 
of a logistic regression for binary traits.  
For this study, a modified ACA, enabling the use of 
permutation testing for global significance, was 
combined with logistic regression and implemented on a 
simulated binary trait under the influence of interacting 
genes. The performance of the ACA was evaluated and 
compared to models accounting for only marginal 
effects.  

 
Materials and Methods 
Logistic regression: Groups of SNP markers were 
evaluated based in haplotype genotype effects estimated 
as log odds ratios (lor) using logistic regression (LR). 
The relationship between the lor and the binary response 
can be expressed as: 
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where Pi = probability (yi = 1) and X is a matrix containing 
indicator variables for the haplotypes formed from the 
selected SNP. Groups of SNP markers with less than 
two corresponding observations were discarded, and 
analysis was conducting on all remaining marker groups.  
The link function of the log odds ratio βXi with the binary 
response yi gives the following equations: 
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yielding the following relationships: 
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Marginal effects model: The genotype and haplotype 
association methods were implemented using R 
functions developed by [13, 14]. The haplotype analysis 
was implemented using a sliding window approach which 
utilizes a window of k SNP in width sliding across the 
genome h SNP at a time. Individual SNP scores were 
determined as the maximum average of all haplotypes 
containing a given SNP.   
Ant colony algorithm: The ACA employs artificial ants 
that communicate through a probability density function 
(PDF) that is updated at each iteration with weights or 
“pheromone levels”, which are analogous to the chemical 
pheromones used by real ants. In the case of SNP 
association studies, the weights can be determined by 
the strength of the association between selected 
haplotypes or genotypes and the trait of interest. Using 
the notation in [12, 15], the probability of sampling SNP 
m at time t is defined as: 
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where  )(tm  is the amount of pheromone for SNP m at 
time t; m is some form of prior information on the 
expected performance of SNP m;   and   are 
parameters determining the weight given to pheromone 
deposited by ants and a priori information on the 
features, respectively 
Using the PDF as defined in equation (4), each of j 
artificial ants will select a subset kS  of n SNP from the 
sample space S  containing all SNP. Given the 
relationship between adjacent SNP, ants can randomly 
change SNP selections following a multinomial 
distribution. Changes in SNP selection are limited to the 
three adjacent SNP on either side of the originally 
selected SNP marker. The pheromone level of each 
feature m in kS  is then updated according to the 
performance of kS as:   

)()(*)1()1( ttt mmm    (4)  
where   is a constant between 0 and 1 representing 
the rate at which the pheromone trail evaporates;  

)(tm  is the change in pheromone level for feature m 
based on the sum of accuracy of all kS  containing SNP 
m, and is set to zero if SNP m was not selected by any of 
the artificial ants.  
While the algorithm, in the aforementioned form, can be 
used to subjectively identify markers, it is not well suited 
for the calculation of permutation p-values. When 
updating the pheromone function, as previously 
described in equation (4), the final pheromone levels are 
relative not only to prediction accuracy, but the number 
of times a SNP marker is selected. As a result, the 
amount of pheromone deposited on a feature depends 
greatly the amount of pheromone deposited on all other 
SNP markers and can vary wildly from permutation to 
permutation. One obvious solution to this problem is to 
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use the average accuracy of all kS  containing genotypes 
for SNP m; however, this approach substantially reduces 
the ACA’s ability to efficiently burn in on good solutions, 
an attribute needed to detect unknown gene interactions 
in high-dimension data sets.  
To overcome these limitations, a two-layer pheromone 
function was developed: 
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where )(tm  is the first pheromone layer updated using 
the sum of accuracies for all kS  containing SNP m; 

)(2 tm  is the second pheromone layer updated using 
the average accuracy of all kS  containing genotypes for 
SNP m; and m ,  ,   are as previously described.  
For the current study,   and 2  were set to 1,   
was set to .3 and the prior information ( m ) was the 
prediction the accuracy of SNP marker m, obtained using 
logistic regression on genotypes. 
The pheromone for )(tm  was updated using equation 
(4) and )(2 tm  was updated using the following 
equation: 

)/()](2)(2*[)1(2 nsttttt mmm   (6) 
where t is the iteration number; )(2 tm  is the change 
in pheromone level for feature m based on the sum of 
accuracy of all kS  containing genotypes for SNP m, and 
is set to zero if feature m was not selected by any of the 
artificial ants; and ns is the number of times SNP m was 
selected at iteration t. Permutation p-values were 
calculated using )(2 tm  only. 
The procedure can be summarized in the following 
steps: 

1. Each ant selects a predetermined number of 
SNP markers. 

2. Using the selected SNP markers, accuracies 
are computed using logistic regression on 
haplotypes or genotypes. 

3. The pheromone for each selected group of 
SNP, kS , is calculated as:  

)1( acc
k accpheromone   (6)                      

4. The change in pheromone at time t is then 
calculated using equations (4) and (6). 

5. Following the update of pheromone levels 
according to equations (4) and (6), the PDF is 
updated according to equation (5) and the 
process is repeated until pheromone levels 
have converged.   

Data simulations: Genotype data on 90 unrelated 
individuals from the Japanese and Han Chinese 
populations were downloaded from the HapMap ECODE 
project website. Each simulation scenario was replicated 
five times using two 500 Kbp regions on chromosome 2, 
comprising 2047 polymorphic SNP. All SNP haplotypes 
were assumed to be known with out error. The binary 

disease trait was simulated under a two locus epistatic 
model as seen in Table 1. The loci of the causative 
mutations were selected at random; with the frequencies 
of the causative mutations being .58 and .6. Although 
these frequencies might be considered high, it was 
necessary to restrict selection to SNP with mutant allele 
frequencies greater than .5. This was done to insure a 
reasonable simulated disease incidence of 15%. A plot 
illustrating the LD of all SNP with the two causative 
mutations is shown in Fig (1). The plot shows a large 
peak of high LD with rs2049736 (SNP 409), while the 
peak of high LD with rs28953468 (SNP 2041) is 
substantially narrower, and is preceded by a plateau of 
SNP in moderate LD with rs28953468. 
Permutation testing was used to access global 
significance for all models used in the study. Statuses 
were randomly shuffled amongst subjects, with 
haplotype effects, genotype effects and association p-
values re-estimated for each new configuration of the 
response variables. The largest estimated 
haplotype/genotype effect or the smallest 
haplotype/genotype association p-value from each 
permutation was saved to form an empirical distribution 
used for calculation of p-values. One hundred 
permutations were performed, yielding p-values accurate 
to 1%. Power was calculated as the proportion of times a 
given method identified at least one SNP marker in high 
LD (r2 ≥ .80) with a causative mutation.        
 
Results 
Estimates of power for the three methods can be found 
in Table 2. Methods employing the ACA showed 
substantial increases in power when compared to the 
methods accounting for only marginal effects. Due to the 
fact that the trait was simulated under a dominance 
model, analysis of genotypes tended yielded superior 
results when compared to haplotype analysis. Despite 
the inherent advantage of genotype analysis using a 
dominance model, the ACA using haplotypes (ACA/H) 
still showed greater power than RG/D in both scenarios. 
For scenario 2, all models showed a reduction in power; 
however, the superiority of the ACA methodologies 
remained constant, with the ACA using LG on genotypes 
assuming a dominance model (ACA/G/D) yielding 66.7% 
increase in power for both scenarios when compared to 
the next best method, RG/D.  
Plots of the associative effects, obtained using SW/H, 
ACA/G/D, and RG/D, are shown in Fig. (2) and (3). 
When compared to the LD plot (Fig. (1)) all methods 
show good correspondence for scenario 1, though only 
the ACA/G/D was able to identify markers for both 
causative mutations in all replicates. In scenario 2, where 
the genetic effect was greatly reduced, plots of 
associative effects tended to be noisier for all models, 
with the ACA/G/D again showing superior performance, 
identifying several SNP markers having only moderate 
LD with causative mutation rs28953468.   
To determine the effectiveness of the permutation on 
pheromone levels, the cumulative distribution, based on 
LD with causative mutations, of SNP identified as being 
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significantly associated with simulated trait by ACA/G/D 
and RG/D were plotted and can be found in Fig. (4). 
Despite similarities in the average number of SNP 
identified by ACA/G/D (15.4) and RG/D (22), the 
distributions of these SNP, differed substantially. In 
contrast to RG/D, the ACA/G/D identified a large number 
of SNP having LD between .35-.45. These SNP 
corresponded to the broad plateau of SNP in LD with 
SNP 2041. Unlike RG/D, the ACA/G/D also identified 
several SNP (5.19%) having less than .10 LD with either 
of the causative mutations, an unexpected result given 
the strict family-wise significance thresholds (α=0.05) 
imposed on all models. Surprisingly, both methodologies 
identified a large number of SNP having LD of 
approximately ~.2. Upon closer examination it was found 
that these SNP had LD of ~.2 with both causative 
mutations, likely artifacts of the data resulting from the 
relatively small sample size. The LD with both causative 
mutations imparted a portion of the epistatic effect on 
these SNP, resulting in significant associations with the 
simulated traits.            
 
Discussion 
The substantial increase in power observed when using 
ACA/LR demonstrates the effectiveness of the ACA in 
accounting for epistasis. The first layer of the pheromone 
function allows the ants to burn-in on optimal groups of 
SNP, in this case, SNP epistatically interacting. The 
second layer of the pheromone function yields a 
measurement of accuracy for a given SNP, accounting 
for its interaction with other SNP loci. Initially these loci 
are randomly selected based only on marginal effects; 
however, as the algorithm burns in, the interacting SNP 
begins to selected together more frequently, increasing 
the contribution of the epistatic effects to the pheromone 
used for permutation testing. For the scenarios simulated 
in this study, this positive feedback allowed the ACA to 
efficiently identify SNP in high to moderate LD with the 
causative mutations that had no significant marginal 
effects, as evidenced by the decreased power of the 
marginal effects models.  
The relatively high error rates observed when using the 
ACA/G/D were somewhat surprising given the strict 
control placed on family-wise error. One would expect, 
given the number of replications, that detection of false 
positives would be between 0 and 1, in this study. The 
ACA/G/D detected significant associations for a total of 8 
SNP markers having LD less than .1 with causative 
mutations. One possible explanation could be the small 
number of permutations conducted, as 100 permutations 
yield p-values accurate to only one tenth. The use of 500 
permutations would be more adequate; unfortunately, 
given the high number of replicates conducted in this 
study, 500 permutations would be too computationally 
costly.    
Regardless of the cause, a false positive rate of 5.19% 
would generally be considered acceptable in high-
dimension association studies for which the goal was to 
identify a small subset of markers for further evaluation 
[16], especially when considering the increase in power 

obtained when using the ACA/LR. However, given the 
larger number of SNP in low LD with causative mutations 
identified by ACA/G/D when compared to other methods, 
there was concern that the increased power associated 
with the ACA could be the result of less stringent 
thresholds being applied to the ACA. To belay these 
concerns a more stringent threshold (α=0.03) was 
applied to the ACA/G/D. Using this threshold, only one 
SNP, having LD less than 0.1 with the causative 
mutations, was identified. While power was slightly 
reduced, ACA/G/D still yielded increases in power of 
50.0% and 33.3% over RG/D for scenarios 1 and 2, 
respectively.            
Since association studies involving large numbers of 
SNP are generally exploratory in nature, the number of 
potentially interacting SNP would be unknown. This 
would necessitate the ACA be robust relative to the 
number of SNP used to form groups and the number of 
SNP interacting to control the trait of interest. In this 
regard the number of SNP used by the ACA, relative to 
the number of SNP interacting in the simulated model, 
did show variation, but this variation showed no 
discernable trends. Although these results suggest some 
level of robustness, several runs of the algorithm, 
selecting various group sizes of SNP formation, might 
best insure that optimal results are reached, a practice 
often used for analysis of haplotypes using sliding 
windows. 
 
Conclusion 
In the presence of simulated epistasis, the proposed 
optimization methodology obtained substantial increases 
in power, demonstrating the effectiveness of machine 
learning approaches for the analysis of marker 
association studies in which gene interactions may be 
present. Although the ACA methods identified more SNP 
markers that could be construed as false positives, the 
use of a more stringent threshold eliminated the problem 
without greatly reducing the advantage of the ACA, in 
terms of power, when compared to other methods. The 
results of this study provide compelling evidence that 
methodologies capable of efficiently modeling gene 
interactions, such as the model proposed in this study, 
could yield superior performance detecting important 
SNP markers for complex traits.     
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Table-1 -  Relative risk for simulated traita. 
 Scenario 1 Scenario 2 
 AB aB Ab ab AB aB Ab ab 
AB 1 1 1 1 1 1 1 1 
aB 1 1 1 1 1 1 1 1 
Ab 1 1 1 1 1 1 1 1 
Ab 1 1 1 15 1 1 1 10 

a Risks are relative to the aa/bb genotype. 
 

Table 2 -  Power calculationsa. 
  Scenario 1   Scenario 2  
 1 locus 2 locus 3 locus 1 locus 2 locus 3 locus 
ACA/G/D ___ 1.00 0.90 ___ 0.50 0.40 
ACA/G/C ___ 0.70 0.80 ___ 0.40 0.40 
ACA/HAP ___ 0.60 0.70 ___ 0.50 0.40 
RG/D 0.60 ___ ___ 0.30 ___ ___ 
RG/C 0.30 ___ ___ 0.30 ___ ___ 
SW/HAP ___ 0.10 0.20 ___ 0.00 0.00 

a Power was calculated as the proportion of times at least one SNP in high linkage disequilibrium (>.8) with a causative 
mutations was detected by the model at α=.05 for genome-wide significance. 

 
Fig.1-Plots of each marker’s linkage disequilibrium (LD) with the two causative mutations. The light grey line represents LD 
with the causative mutation located at position 409. The black line represents LD with the causative mutation located at 
position 2041. 
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2 (b) 

 
     2 (c) 
Fig. 2-Association plots of SNP markers for the simulated trait under scenario 1. Plots were obtained using 2 SNP 
haplotypes analyzed by a. SW/LR and b. ACA/LR. Vertical lines represent the position of the two causative mutations, and 
horizontal lines represent the threshold at which associations are significant at α=.05. 
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3 (a) 

 
3 (b) 

 
    3 (c) 
Fig. 3-Association plots of SNP markers for the simulated trait under scenario 2. Plots were obtained using 3 SNP 
haplotypes analyzed by a. SW/LR, b. ACA/LR, and c. RG. Vertical lines represent the position of the two causative 
mutations, and horizontal lines represent the threshold at which associations are significant at α=.05.  
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4 (a) 

 
     4 (b) 
Fig.4-Plot of the cumulative distribution of SNP, identified as have significant associations when using a) ACA/G/D using 2 
loci model (5.19%)  b) RG/D , based on linkage disequilibrium with the causative mutations. 
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