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Introduction 

Web applications do raise a number of security concerns stemming 

from improper coding. Serious weaknesses or vulnerabilities, allow 

hackers to gain direct and public access to databases in order to 

churn sensitive data. The focus of this research is on the above 

issue which is the top web application security vulnerability called 

Cross Site Scripting (CSS or XSS). The Cross Site Scripting is one 

of the most common application level attacks that hackers use to 

sneak into web applications. The web site is the target of attack and 

the user is both the victim and the innocent accomplice. XSS is 

“Cross-site scripting (XSS)” is a type of computer insecurity vulnera-

bility typically found in Web applications (such as web browsers 

through breaches of browser security) that enables attackers to 

inject client-side script into Web pages viewed by other users. the 

reason of that is the developer trusts user inputs, or miss filtering 

issues , then send back user input data to the client browser so the 

malicious code will execute. 

Types of XSS 

Three known types 

 Reflected (Non-Persistent) : Link in other website or email 

 Stored (Persistent) : Forum, bulletin board, feedback form 

 DOM based XSS : PDF Adobe Reader , FLASH player 

Reflected (Non-Persistent) 

The non-persistent (or reflected) cross-site scripting vulnerability is 
by far the most common type. These holes show up when the data 
provided by a web client, most commonly in HTTP query parame-

ters or in HTML form submissions, is used immediately by server-
side scripts to generate a page of results for that user, without 

properly sanitizing the request. 

Stored (Persistent) 

The persistent (or stored) XSS vulnerability is a more devastating 
variant of a cross-site scripting flaw: it occurs when the data provid-
ed by the attacker is saved by the server, and then permanently 
displayed on "normal" pages returned to other users in the course 
of regular browsing, without proper HTML escaping. A classic ex-
ample of this is with online message boards where users are al-
lowed to post HTML formatted messages for other users to read. 
Simply Persistent XSS is occurs when the developer stores the 
user input data into database server or simply writing it in a file with-
out a proper filtration , then sending them again to the client brows-

er. 
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Here is a PHP code that suffers from Persistent XSS:- 

<? Php 

      If (isset ($_POST ['btnSign'])) 

 { 

 $message=trim ($_POST ['mtxMessage']); 

 $name=trim ($_POST ['txtName']) 

// sanitize message input 

 $message = stripslashes ($message); 

 $message = mysql_real_escape_string($message); 

// sanitize name input 

 $name = mysql_real_escape_string ($name); 

 $query = "INSERT INTO guestbook (comment, name) VAL-

UES ('$message','$name');"; 

 $result=mysql_query ($query) or die ('<pre>'.mysql_error 

().'</pre>'); 

 } 

?> 

The two parameters in that code “message” and “name” are not 
sanitized properly ,the ,we store these parameters into the 
guestbook table, so when we displaying these parameters back the 

client browser, It will execute the malicious JavaScript code. 

DOM based XSS 

DOM-based vulnerabilities occur in the content processing stages 
performed by the client, typically in client-side JavaScript. The 
name refers to the standard model for representing HTML or XML 
contents which is called the Document Object Model (DOM) JavaS-
cript programs manipulate the state of a web page and populate it 
with dynamically-computed data primarily by acting upon the DOM. 
simply that type occurs on the JavaScript code itself that the devel-
oper use in client side for example "A typical example is a piece of 
JavaScript accessing and extracting data from the URL via the loca-

tion. 

Advanced Techniques 

There are some avoidance Techniques can be taken to protect a 

against XSS exploits but they are not 

Implementing well for example 

Tons of sites may seem vulnerable but not executing the code that 

occurs because some kind of 

Filtration methods and those may can be bypassed ,we will demon-

strate most of them. 

Method 1: Replace <script> with null string "" 

Here is the vulnerable code that suffers from reflected xss , that has 

a filtration : 

<? Php 

 If (! array_key_exists ("name", $_GET) || $_GET ['name'] == 

NULL || $_GET['name'] == '') 

 { 

 $is empty = true; 

 }  

 else  

 { 

 echo '<pre>'; 

 echo 'Hello ' . str_replace('<script>', '', $_GET['name']); 

 echo '</pre>'; 

 } 

?> 

As you can see, in the previous code, the developer replace the 

string that called "<script>" with a Null string "" . 

Method 2: Magic Quotes Filtration 

In this Technique, the developer uses technique that called magic 
quotes filtration, by using a PHP function called "add slashes()" that 
add slash before any special chars. So our traditional JavaScript 

code doesn't work. 

Conclusion 

 Cross-Site Scripting is extremely dangerous 

 Identity theft, Impersonation 

 Cause: Missing or in-sufficient input validation 

 XSS-Prevention Best Practices 

 Implement XSS-Prevention in application 

 Do not assume input values are benign 

 Do not trust client side validation  

 Check and validate all input before processing 

 Do not echo any input value without validation 

 Use one conceptual solution in all applications 
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