
|| Bioinfo Publications || 233

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 7, Issue 1, 2015, pp.-233-235.

Available online at http://www.bioinfopublication.org/jouarchive.php?opt=&jouid=BPJ0000187

GHODKE A.S.* AND SEN L.

Sinhgad Institute of Business Administration & Computer Application, Lonavala - 410 401, MS, India
*Corresponding Author: Email- ghodke.a@gmail.com

Received: December 18, 2014; Revised: January 05, 2015; Accepted: January 15, 2015

Introduction

Web applications do raise a number of security concerns stemming

from improper coding. Serious weaknesses or vulnerabilities, allow

hackers to gain direct and public access to databases in order to

churn sensitive data. The focus of this research is on the above

issue which is the top web application security vulnerability called

Cross Site Scripting (CSS or XSS). The Cross Site Scripting is one

of the most common application level attacks that hackers use to

sneak into web applications. The web site is the target of attack and

the user is both the victim and the innocent accomplice. XSS is

“Cross-site scripting (XSS)” is a type of computer insecurity vulnera-

bility typically found in Web applications (such as web browsers

through breaches of browser security) that enables attackers to

inject client-side script into Web pages viewed by other users. the

reason of that is the developer trusts user inputs, or miss filtering

issues , then send back user input data to the client browser so the

malicious code will execute.

Types of XSS

Three known types

 Reflected (Non-Persistent) : Link in other website or email

 Stored (Persistent) : Forum, bulletin board, feedback form

 DOM based XSS : PDF Adobe Reader , FLASH player

Reflected (Non-Persistent)

The non-persistent (or reflected) cross-site scripting vulnerability is
by far the most common type. These holes show up when the data
provided by a web client, most commonly in HTTP query parame-

ters or in HTML form submissions, is used immediately by server-
side scripts to generate a page of results for that user, without

properly sanitizing the request.

Stored (Persistent)

The persistent (or stored) XSS vulnerability is a more devastating
variant of a cross-site scripting flaw: it occurs when the data provid-
ed by the attacker is saved by the server, and then permanently
displayed on "normal" pages returned to other users in the course
of regular browsing, without proper HTML escaping. A classic ex-
ample of this is with online message boards where users are al-
lowed to post HTML formatted messages for other users to read.
Simply Persistent XSS is occurs when the developer stores the
user input data into database server or simply writing it in a file with-
out a proper filtration , then sending them again to the client brows-

er.

Citation: Ghodke A.S. and Sen L. (2015) Cross-Site-Scripting - Attack and Protection Mechanisms. Advances in Computational Research,

ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 7, Issue 1, pp.-233-235.

Copyright: Copyright©2015 Ghodke A.S. and Sen L. This is an open-access article distributed under the terms of the Creative Commons At-
tribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are cred-

ited.

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 7, Issue 1, 2015

Abstract- In today’s world more than 80% of the web applications are vulnerable to XSS threats. User friendly web applications are developed
to increase the customer base and hackers utilize the features provided by the web applications. This paper surveys such vulnerabilities with
the current solutions. The strengths and weaknesses of all approaches are discussed. Cross Site Scripting (XSS) is a type of computer securi-
ty exploit where information from one context, where it is not trusted, can be inserted into another context, where it is. The trusted website is
used to store, transport, or deliver malicious content to the victim. The target is to trick the client browser to execute malicious scripting com-
mands.

Keywords- Application-level web Security, Cross-site scripting, Computer Security, Security vulnerabilities

CROSS-SITE-SCRIPTING - ATTACK AND PROTECTION MECHANISMS

|| Bioinfo Publications || 234

Here is a PHP code that suffers from Persistent XSS:-

<? Php

 If (isset ($_POST ['btnSign']))

 {

 $message=trim ($_POST ['mtxMessage']);

 $name=trim ($_POST ['txtName'])

// sanitize message input

 $message = stripslashes ($message);

 $message = mysql_real_escape_string($message);

// sanitize name input

 $name = mysql_real_escape_string ($name);

 $query = "INSERT INTO guestbook (comment, name) VAL-

UES ('$message','$name');";

 $result=mysql_query ($query) or die ('<pre>'.mysql_error

().'</pre>');

 }

?>

The two parameters in that code “message” and “name” are not
sanitized properly ,the ,we store these parameters into the
guestbook table, so when we displaying these parameters back the

client browser, It will execute the malicious JavaScript code.

DOM based XSS

DOM-based vulnerabilities occur in the content processing stages
performed by the client, typically in client-side JavaScript. The
name refers to the standard model for representing HTML or XML
contents which is called the Document Object Model (DOM) JavaS-
cript programs manipulate the state of a web page and populate it
with dynamically-computed data primarily by acting upon the DOM.
simply that type occurs on the JavaScript code itself that the devel-
oper use in client side for example "A typical example is a piece of
JavaScript accessing and extracting data from the URL via the loca-

tion.

Advanced Techniques

There are some avoidance Techniques can be taken to protect a

against XSS exploits but they are not

Implementing well for example

Tons of sites may seem vulnerable but not executing the code that

occurs because some kind of

Filtration methods and those may can be bypassed ,we will demon-

strate most of them.

Method 1: Replace <script> with null string ""

Here is the vulnerable code that suffers from reflected xss , that has

a filtration :

<? Php

 If (! array_key_exists ("name", $_GET) || $_GET ['name'] ==

NULL || $_GET['name'] == '')

 {

 $is empty = true;

 }

 else

 {

 echo '<pre>';

 echo 'Hello ' . str_replace('<script>', '', $_GET['name']);

 echo '</pre>';

 }

?>

As you can see, in the previous code, the developer replace the

string that called "<script>" with a Null string "" .

Method 2: Magic Quotes Filtration

In this Technique, the developer uses technique that called magic
quotes filtration, by using a PHP function called "add slashes()" that
add slash before any special chars. So our traditional JavaScript

code doesn't work.

Conclusion

 Cross-Site Scripting is extremely dangerous

 Identity theft, Impersonation

 Cause: Missing or in-sufficient input validation

 XSS-Prevention Best Practices

 Implement XSS-Prevention in application

 Do not assume input values are benign

 Do not trust client side validation

 Check and validate all input before processing

 Do not echo any input value without validation

 Use one conceptual solution in all applications

Conflicts of Interest: None declared.

References

[1] Kirda E., Jovanovic N., Kruegel C. & Vigna G. (2009) Comput-

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 7, Issue 1, 2015

Cross-Site-Scripting - Attack and Protection Mechanisms

|| Bioinfo Publications || 235

ers & Security, 28(7), 592-604.

[2] Bicho D. (2004) PHP-nuke reviews module cross-site scripting

vulnerability, 10493.

[3] Jovanovic N., Kruegel C. & Kirda E. (2006) Proceedings of the
2006 ACM workshop on Programming languages and analysis

for security, 27-36.

[4] Kirda E., Kruegel C., Vigna G. & Jovanovic N. (2006) Proceed-
ings of the 2006 ACM symposium on Applied computing, 330-

337.

[5] Kossel A. (2004) eBay-Passwortklau

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 7, Issue 1, 2015

Ghodke A.S. and Sen L.

