
|| Bioinfo Publications || 187

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 7, Issue 1, 2015, pp.-187-190.

Available online at http://www.bioinfopublication.org/jouarchive.php?opt=&jouid=BPJ0000187

SHINDE L.K.*, TANGDE Y.S. AND KULKARNI R.P.

MCA Department, Marathwada Institute of Technology, Aurangabad- 431 028, MS, India.
*Corresponding Author: Email- shinde.laxmikant88@gmail.com

Received: December 18, 2014; Revised: January 05, 2015; Accepted: January 15, 2015

Introduction

Software Development Life Cycle is systematic process of develop-
ing software application. Typically it includes various framework
activities from early project initiation activity to post implementation
activity and we can see this approach of development is common in
various types of software development activity. Operational, Transi-
tional and Revision are the characteristics of the software. These
attributes motivates the technical team to develop good quality
software that will fulfill requirement of user in any circumstances
and even with least maintenance effort. Here type of development
approach plays important role for deciding high degree of integrity
and robustness. Currently there are two SDLC methodologies
which are utilized by most system developers, namely traditional
development and agile development. In section 4 we compare and
contrast these two methodologies in detail in following sections.

Finally the conclusion is presented.

Traditional Software Development

This software development is also called as “Generic Software
Models” or “Prescriptive Software Model” or “Plan-driven Software
Model” or “Heavy-Weight Software development”. These methodol-
ogies follow the predefined order and sequential stages of software
development where each succeeding step or stage depends on
proceeding steps. Traditional software models generally have the

following activities. They are:

a) Communication

b) Planning

c) Modeling

d) Construction

e) Deployment

Fig. 1- Traditional Software Development

Step 1: Communication and Requirement Gathering

This activity starts with the intention that all detail requirements for
the software are well understood on the basis of this, system and
software requirements are understood and analyzed, after that fea-
sibility report and software requirement specification (SRS) is creat-
ed. This feasibility report and software requirement specification
(SRS) will help the system analyst and development team to decide

whether they can practically implement the solution or not.

Step 2: Planning

This phase includes following important activities

a) Estimation of the resources (people, tools, time, and technolo-
gy) required for software development and software project

management.

b) Identification, forecasting and management of all the types of
software development risk regarding project, process and prod-

Citation: Shinde L.K., Tangde Y.S. and Kulkarni R.P. (2015) Traditional vs. Modern Software Engineering - An Overview of Similarities and

Differences. Advances in Computational Research, ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 7, Issue 1, pp.-187-190.

Copyright: Copyright©2015 Shinde L.K., et al. This is an open-access article distributed under the terms of the Creative Commons Attribution

License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 7, Issue 1, 2015

Abstract- Software Development Life Cycle (SDLC) is important part of every complete software project management. Most of the times suc-
cess or failure of software project management is crucial and depends on chosen software life cycle. In Software Engineering there are many
software development approaches. Most of them follows the systematic approach of development such as Traditional Software Development
and others other categories don’t follow the structure but their emphasis is on rapid and adaptive approach such as Agile Software Develop-
ment and many more. This paper reviews traditional software development and agile software development and explains advantages and

disadvantages of both the methodologies and finally the conclusion is presented.

Keywords- Software Development Life Cycle (SDLC), Traditional Software Development, Agile Software Development

TRADITIONAL Vs. MODERN SOFTWARE ENGINEERING - AN OVERVIEW OF SIMILARITIES
AND DIFFERENCES

|| Bioinfo Publications || 188

uct that are then categorized into proactive risks and reactive
risks. Experienced development team usually refers the docu-
mentation of previous completed project for identifying known

and unknown patterns of risk factors.

c) Software project management and scheduling this activity is
considered as most important activity from the perspective of
monitoring the software development project. Because the pro-

ject manager has to manage the project according to:

 Total number of people (effort) required for project develop-

ment.

 Duration of software project development (Minimum, average

and maximum time)

 Partition of Software project development (Functionality) de-
pending on total no. of modules or components to be devel-

oped.

 Definition of project milestones and outcomes in each phase of

software project development.

 Defining Team structure of development teams in case project
is critical to implement or development team includes inexperi-
enced people in the team. And many more activities are carried
in this phase. The scope and management of this phase de-

pends on complexity and size of the software project.

Step 3: Modeling

In third phase of software project development the complete soft-
ware that is to be developed is viewed and studied from operational
and technical point of view and only those important aspects and
dimension of proposed software product are abstracted, analyzed
and presented in graphical notation so that system analyst will vali-
date the requirements and verify it from stakeholder or user. Finally
these verified requirements are given to technical team as mile-
stone and on the basis of that pre-defined outcomes are set associ-
ated to the requirements. This approach is generally treated as
“Modeling”. In software engineering modeling is called as bridge
between developing software and development software. Modeling
basically focuses on two important activities i.e. “Analysis” and

“Design”.

Software analysis is nothing but understanding the software product
for the needed requirements after that feasible requirements are
elicited, observed or analyzed and then recorded. On the basis of
this analysis it becomes practically clear to system analyst whether

they can proceed practically to implement the solution or not.

Software design is representation of the finalized requirement
though different graphical notations such as UML Diagrams, E-R
Diagram, Component Design, Architecture Design, and few Runa-
ble Interfaces. This software design is very important and useful for
development team to communicate and understand the integrity,

dependency and architecture of the proposed software product.

Step 4: Construction

In traditional software development the fourth phase is called as
construction phase, this generally includes “Coding and Testing”.
First manual or automated code generation techniques are applied
to all the forms, components and module. Then simultaneously
Software Quality Assurance Activity is applied to ensure that all the
errors have been uncovered during code generation. SQA largely
involves different types and levels of testing from white-box testing
to black box testing and from unit testing to user acceptance testing

vice versa.

Step 5: Deployment

Software Deployment phase is the last phase in software develop-
ment as if all the requirements are stable and acceptable from user
point of view. Otherwise an iteration of software developments is
carryout out. During each iteration of software development soft-
ware as a complete entity or partial entity is delivered to the user or
customer. Customer has to evaluate it and depending on the
changes feedback is given in return. In such way the iteration of
software development generally take place that generally carried
out to develop the small increments of the proposed software
(partially completed software) or complete version of the software.
In traditional software development all these steps or phases are
implemented or carried out in sequence commencing from commu-
nication activity and culminating at Deployment activity. The degree
of complexity, size and type of proposed software may decide the

iteration required to complete the software project.

There are different types of traditional software development that
are follows the sequential and planned driver approach, which are
Waterfall Model, V-Model, Iterative development Model, Evolution-

ary Software models such as Prototyping and Spiral.

Agile Software Development

In modern software engineering agile software development is also
called as “Value Driven Software Model”. In agile there is no proper
“Structure” or “Model” is followed to develop the software but some
of the important facts has influenced socially and have found very
effective for human factor like development team and customer they

are:

 Flexible communication

 Promoting teamwork among software development activity

 Endorsing value based collaboration of human factor and tech-
nical factors (customer, individuals in development team, pro-

ject manager, tools)

 Adaptability of process throughout the life cycle of the project

 Effective Change management of user requirements and pro-

ject management and development.

Fig. 2- Agile Software Development

All these factors of development gives flexibility in the implementing
the solution so that during software development and management

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 7, Issue 1, 2015

Traditional vs. Modern Software Engineering - An Overview of Similarities and Differences

|| Bioinfo Publications || 189

there is possibility to increase efficiency of work and to maintain the
balance between demanding stakeholder and fragile nature of tech-
nical team. Generally the activities that are take place in traditional
software development are similar but the approach of implementa-
tion is different in any other software development same is the fact
with agile software development. Here presenting precisely follow-
ing are the various steps or phases or activities comes in agile soft-

ware development. They are:

 Requirement Gathering

 Architecture and Design

 Development

 Test and Feedback

In modern software engineering such as agile software develop-
ment, there is no proper flow of process has been defined or used.
But the approach is commonly focused to satisfy the customer and
technical team through intensive collaboration and flexible commu-
nication as earliest as possible with minimal planning done and to
increase the scope of project development. So that more creative
solution can be possible to implement practically. In agile software
development following are the main activities take place rapidly.

They are:

The iteration cycles in agile software development are kept very

short that includes two to three weeks.

Step 1: Requirement Gathering

During each iteration cycle more refined requirements are gathered
then they are analyzed focusing on core elements or components of

proposed software then requirement are finalized.

Step 2: Architecture and Design

Moving ahead software architecture is designed and developed;
some graphical design notation is used to understand relationship

and inter-dependencies of software component.

Step 3: Development

Coding is done for each of the form, module and component using

manual or automated code generation.

Step 4: Test and Feedback

Each of the partially completed entity or complete version is tested
to see no bugs reside into it. And that tested component will be

delivered to customer for feedback for further adaption in it if any.

In each iteration all these activities take place in such short time
frame so frequently that any kind of change may be possible to
implement at any time at any phase of the development. The ap-
plicability and degree of efficiency of this flexible and rapid ap-
proach depends on following manifesto of agile software develop-

ment. They are:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contact negotiation

 Responding to change over following a plan [1]

There are seven software development approaches that come in
agile software development. They are XP Programming (XP), Adap-
tive Software development (ASD), Dynamic System Development
Method (DSDM), Scrum, Crystal, Feature Driven Development

(FDD), and Lean Software Development [1].

Discussion

Both traditional software engineering and agile software engineer-
ing offers numerous advantages to the software development. The
selection of these approaches and any other software development
process depends on two important factor complexity and functional-
ity of proposed software and other factors includes nature of project
to be developed, size of software, type of software, availability of
the resources such as people, process, tools and importantly time
required, solution accepted in terms of duration of time and so on.

Following are the noticeable similarities and differences have been

found in both the approaches. They are:

Documentation vs. Working Software

One major difference between traditional software development and
agile development is Documentation which is not found in agile
software development but working software is used as a reference

and source of information in agile software development.

Contract Negotiation vs. Collaboration

Second major difference is that, in traditional software development
the focus of development is on contracts, plans, and processes and
tools where as agile development emphasizes on extensive cus-
tomer collaboration suggesting and taking participation in develop-

ment for visualizing and responding to change.

Clear Requirements vs. Fuzzy Requirements

Third notable difference is that in order to choose traditional soft-
ware development it is implicitly stated that all the requirements for
developing software must be clear and complete but this explicit
condition is not seen as important factor in selecting agile software
development even fuzzy or unclear ideas and requirements can be

granted for initial development.

Plan Driven vs. Value Driven

Fourth difference in traditional software development and agile is
that, traditional software development always follow pre defined
plan and structure and accordingly all the activities, actions or task
has to be carried out. In case any ambiguity or problem takes place
then also pre determined solution is followed. Agile software basi-
cally follows short or minimal plan and evolutionary approach but
the structure of implementation is very different and philosophy is
that developing each increment as early as possible in short time
frame and responding to the changes and generally focused on
satisfying the user utmost, moving ahead with more clear needs in

creative manner.

Customer Participation vs. Customer Collaboration

Fifth difference is in traditional software and agile software develop-
ment is related with review meetings. In traditional software devel-
opment when one iteration of development over, then technical
team has to first conduct the meeting with their project manager.
Then project manager reviews the entire work task completed by
each one of the member and then depending of the quality of the
milestone and completion of task, he approves it and then at the
end that particular entity of software (partially or complete) is deliv-
ered to customer for evaluation and verification. Extensive commu-
nication among customer, technical team and project manager and
involvement of customer throughout the development of software in
agile software development makes it more effective and creative for
management and thus technical team directly holds the meeting

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 7, Issue 1, 2015

Shinde L.K., Tangde Y.S. and Kulkarni R.P.

|| Bioinfo Publications || 190

with customer without involvement of project manager. There are
many differences that have been found in agile and software devel-

opment some of them have been precisely stated and others are

presented in [Table-1].

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 7, Issue 1, 2015

Traditional vs. Modern Software Engineering - An Overview of Similarities and Differences

Table 1- Difference between Traditional and Agile development

 Traditional Development Agile Development

Fundamental Hypothesis
Systems are fully specifiable, predictable and are developed
through extended and detailed planning

High quality adaptive software is developed by small teams that
use the principle of continuous improvement of design and
testing based on fast feedback and change.

Management Style Command and control Leadership and collaboration

Knowledge management Explicit Tacit

Communication Formal Informal

Development model Life cycle model (Waterfall, spiral or modified models) Evolutionary delivery model

Organizational structure
Mechanic(bureaucratic, high formalization), targeting large
organization

Organic(flexible and participative, encourages social coopera-
tion), targeting small and medium organization

Quality control Difficult planning and strict control. difficult and late testing
Permanent control or requirements, design and solutions.
Permanent testing

User requirements Detailed and defined before coding Interactive input

Cost of restart High Low

Development direction Fixed Easily changeable

Testing After coding is implemented Every iteration

Client involvement Low High

Additional abilities required from developers Nothing in particular Interpersonal abilities and basic knowledge of business

Appropriate scale of the project Large scale Low and medium scale

Developers
Oriented on plan, with adequate abilities, access to external
knowledge

Agile, with advanced knowledge, co-located and cooperative

Clients
With access to knowledge, cooperative, representative and
empowered

Dedicated, knowledgeable, cooperative, representative and
empowered

Requirements Very stable, known in advance Emergent, with rapid change

Architecture Design for current and predictable requirements Design for current requirements

Remodeling Expensive Not expensive

Size Large teams and projects Small teams and projects

Primary objectives High safety Quick value

Conclusion

In Traditional and modern software engineering, the software devel-
opment paradigms are technique of systematic management, de-
velopment and maintenance of software product In spite of many
fragile factors of traditional software development approach, it sug-
gests the good practice of development especially for the new
learner i.e. “Think and analyzes the problem before implementation
and then prepare the final solution and always carry out the plan
and follow the structure”. Traditional software development has
been significantly recommended for large mission critical project
where planning is critical. In the same manner agile software devel-
opment also need to improvise in its scope so that team should be
close to the process instead of providing alternative way of doing for
the solution but that isn’t hampering practically in implementation,
when solution is provided in open environment. Agile development
proposes the philosophy of “social learning” i.e. “No matter whether
you don’t follow the roadmap, no matter what you stick to imple-
ment it, but do it in efficient way with the help of each other on trial

and error basis in creative manner”.

Conflicts of Interest: None declared.

References

[1] Pressman R.S. (2001) Software engineering: a practitioner’s

approach, McGraw-Hill, 466-472.

[2] Stoica M., Mircea M. & Ghilic-Micu B. (2013) Informatica Eco-

nomica, 17(4), 64-76.

[3] Leau Y.B., Loo W.K., Tham W.Y. & Tan S.F. (2012) Software
Development Life Cycle AGILE vs Traditional Approaches, In-
ternational Conference on Information and Network Technolo-

gy, 37(1), 162-167.

