DERMATOPHYTOSIS CAUSED BY *Trichophyton verrucosum* IN A THREE MONTH OLD CALF IN SHENDAM, PLATEAU STATE, NIGERIA

DALIS J.S.1*, KAZEEM H.M.2, KWAGA J.K.P.3, KWANASHIE C.N.2, MUHAMMED M.1, OKEWOLE P.A.1, SHAMAKI D.1 AND AHMED M.S.1

1National Veterinary Research Institute, Vom, Nigeria.
2Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria.
3Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University Zaria, Nigeria.
*Corresponding Author: Email- dalisjames280@yahoo.com

Received: March 02, 2014; Accepted: May 15, 2014

Abstract- A three-month-old calf was seen to have skin lesions involving the head and neck especially around the eyes. The lesions were circular, circumscribed, crusty, grayish-white and perceptibly raised above the skin. Skin scrapings and hair pullouts were aseptically collected and processed for mycology. Direct examination of hair in 20% KOH showed chains of ectothrix spores. Microscopic examination of the isolate stained with lactophenol cotton blue revealed septate hyphae with numerous clavate microconidia borne laterally from the hyphae and a single longish, thick, smooth-walled, and multi-septated macroconidia with characteristic rat tail (string bean shaped) suggestive of *T. verrucosum*. There was no growth on casein vitamin free agar but good growth was observed on medium containing thiamine and inositol. Information on bovine dermatophytosis from Nigeria is scanty.

This finding is significant as it indicates that bovine dermatophytosis may be present in an economically important proportion among cattle especially young animals in Nigeria. The need to carry out more studies on the disease among the cattle population in the country with a view to instituting prevention and control measures was emphasized.

Keywords- Dermatophytosis, *Trichophyton verrucosum*, calf, Shendam, Plateau state, Nigeria

Copyright: Copyright©2014 Dalis J.S., et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Introduction

Dermatophytosis (ringworm) is a superficial infection of the keratinaceous epidermal layers of the skin, hair and nails caused by dermatophytes (*Microsporum*, *Trichophyton* and *Epidermophyton*). The Genus *Epidermophyton* has only one pathogenic species (*E. floccosum*) causing disease only in human beings while *Microsporum* and *Trichophyton* are complex and comprise of multiple species that are pathogenic to both man and animals [1,2]. Dermatophytes have been classified based on their natural habitat as geophilic, zoophilic or anthropophilic [1]. Ringworm fungi are found all over the world but grow best in warm and humid environments and are therefore, more common in tropical and subtropical regions where they cause considerable losses as a result of decreased production, public health concern, premature culling, treatment costs and downgrading of hides and skin [3-5].

Ringworm is zoonotic and highly contagious. Once the disease is introduced into a herd, it spreads rapidly among susceptible animals. Close confinement, age, breed of animal and production system coupled with prolonged wetting are believed to be important predisposing factors [5,6]. The typical lesion on cattle is a heavy, grey-white crust, circular and raised above the skin most frequently found on the head and neck, especially around the eyes and face, but may, in severe cases, be found all over the body [7,8]. It had been observed that the greatest economic and human health problems in the developed countries come from dermatophytosis of domestic cats and cattle. Approximately 60% of children were affected by tinea capitis in some regions, and more than 50% of the population in some parts of Europe was reported to have tinea pedis [9]. Ringworm in humans is usually characterized by pruritus and inflammation that is most severe at the edges, with erythema, scaling and occasionally blister formation. Central clearing is sometimes seen, particularly in tinea corporis resulting in the formation of a classic “ringworm” lesion [9]. In spite of the significance of ringworm in global economy, the disease has not been adequately studied in Nigeria. Although some attempts have been made at documenting human dermatophytosis in the country [4,10,11], information on ringworm of animals is scanty and rarely reported [12].

This paper presents a report of dermatophytosis due to *T. verrucosum* in a three-month old calf in Shendam, Plateau State, Nigeria.

Materials and methods

A three- month- old calf having alopecic, circular, circumscribed, crusty, grayish-white, raised, skin lesion involving mostly the head...
and neck especially around the eyes was examined. This calf was in the same herd with ten other cattle aged between 2 to 5 years but only the calf showed visible skin lesions. Three of the adult animals had at different times developed a similar lesion when they were about the same age with the calf in this study and were treated with local herbs. Skin scrapings were collected at the edge of the lesions together with some hair pull outs after cleaning with cotton wool soaked in 70% alcohol and sent to the Mycology Laboratory, National Veterinary Research Institute, Vom for laboratory diagnosis.

Laboratory Examination
The sample was divided into two portions. One part was used for direct microscopic examination and the remaining part was used for fungal isolation by culture.

Direct Microscopic Examination
The hair sample was placed on a clean glass slide containing a drop of 20% potassium hydroxide solution and covered with a cover slip. The slide was gently heated over a flame from a Bunsen burner and examined for the presence of spores and hyphae under a light microscope following the standard laboratory procedures.

Fungal Culture, Isolation and Identification
The portion for fungal isolation was seeded onto Dermasel agar (OXOID) containing: Mycological peptone, 10.0 g/L; Glucose, 20.0g/L; Agar, 14.5g/L; Cyclohexamide, 0.4g/L and Chloramphenicol, 0.05g/L, pH 6.9, incubated at 37°C for 2-6 weeks and examined for fungal growth. Suspicious colonies were sub-cultured onto fresh Dermasel agar and incubated at 37°C for 21days. Identification of fungal growth was carried out by both macroscopic and microscopic examination which included growth rate, general topography, surface and reverse pigmentation. Microscopic identification of positive fungal cultures was carried out using the method described by koneman [13]. A drop of lactophenol cotton blue stain was placed on a clean glass slide. A portion of mycelium was transferred onto the lactophenol cotton blue stain and teased with a 22 gauge nichrome needle to separate the filaments. Cover slip was placed on the preparation and examined under low and high power magnification for microscopic fungal structures.

Nutritional Requirements
The organism was inoculated onto casein vitamin free-agar (T1 agar), T1+inostol (T2), T1+inositol+thiamine (T3), T1+thiamine (T4) and incubated at room temperature for 14 days.

Results
Alopecic, circular circumscribed, crusty, grayish-white, raised skin lesions were seen on the head and neck particularly around the eyes [Fig-1]. Chains of large ectothrix spores were observed on infected hair by direct examination. Colonies on SDA were white, cottony, heaped, raised and slightly folded [Fig-2]. Microscopic examination of isolates stained with lactophenol cotton blue revealed septate hyphae with numerous clavate microconidia borne laterally from the hyphae some of which were breaking into arthrospores [Fig-3]. A single longish, thick, smooth- walled and multi-septated macroconidia with characteristic rat tail (string bean shaped) typical of T. verrucosum [Fig-4]. There was no growth on T1 and T4, minimal submerged growth on T2 while good growth was observed on T3 [Fig-5].
cies level by this method. Culture is therefore, a valuable and often
theless, it is limited because a fungus cannot be identified to spe-
ture. Although, it is a highly efficient screening technique [19], nev-
for confirmation of diagnosis quite obvious. The presence of ecto-
mange [14]. This makes the importance of laboratory examination
confused with other skin diseases such as dermatophilosis and
of ringworm in cattle is not always typical and can sometimes be
around the eyes of the animal. However, the clinical manifestation
raised skin lesions, seen on the neck and head region especially
previous studies [7,8] the main lesions of ringworm seen in this
report were alopecic, circular circumscribed, crusty, grayish-white,
white, with a smooth folded surface. Colonies of T. verrucosum in
this report were slow growing, white, with a smooth folded surface.
Colonies of T. verrucosum in this report were slow growing, white,
cottony, heaped, smooth and slightly folded with some submerged
growth and yellow reverse pigment. This observation is consistent
with the findings of AL-Ani, et al [7], Rosen [16] and Forbes, et al
[17]. It however, differs from the report of Shams-Gahfarokhi, et al
[20] who described the growth of T. verrucosum on selective agar
for pathogenic fungi medium as small, button-like, white-cream
colored, with suede-like to velvety surface, a raised centre and flat
periphery with some submerged growth. This difference could be
as a result variation in the strains studied. Microscopically, septate
hyphae with numerous clavate microconidia borne laterally from the
hyphae, with a single longish, thick and smooth-walled, multi-
septated macroconidia with characteristic rat tail (string bean
shaped) typical of T. verrucosum. This is consistent with the find-
ings of Kane & Smitka [21] who reported the production of macro-
conidia in 8 out of 35 isolates of T. verrucosum when they grew the
organisms on Bromocresol purple casein yeast extract agar. Not all
species of T. verrucosum produce conidia [16]. However, many
researchers have reported the microconidia producing strain
[15,17,21]. Nevertheless, the presence of typical macro conidia had
been described as diagnostic [15].

The absence of growth on casein vitamin free agar coupled with
good fungal growth on medium containing thiamine and inositol,
confirmed the report of Weitzman, et al [22] Who observed en-
hanced growth of T. verrucosum on Trichophyton 2 and 3 agars.
T. verrucosum has been documented as the most common cause
of ringworm in cattle, sheep and goats [7,8,23] and has been isolat-
ed from different animals in many parts of the world : from cattle in
Iran [20,24], China [25], Australia [26], from Camels and a goat in
Sudan [27,28] and recently from a horse in Nigeria [29].

Animals are the major reservoirs of zoophilic dermatophytes. T.
verrucosum is able to survive in skin lesions of the infected animals
for several months. In most animals, symptoms of mycoses are
recognized too late and are often left untreated, leading to transfer
of infections to humans [24]. Human dermatophytosis caused by T.
verrucosum resulting from close contact with cattle has been report-
ed [4,10,11,30].

Apart from human involvement, cattle ringworm causes serious
economic effects on affected farms due to decrease in meat and
milk production, reduced growth rate and poor quality hides due to
skin damage [5].

Treatment of bovine ringworm is expensive, time consuming and
often failed. Wabacha, et al [3] found out that lesions of trichophyto-
sis persisted during more than 17 weeks and most of the calves did
not respond to topical treatment with various antifungal drugs within
the anticipated period of 9 weeks. Systemic antifungal therapies
were often associated with deleterious effects such as gastro intes-
tinal disorders, allergic reactions and photo-dermatitis, renal and
hepatic dysfunctions [31,32].

Mikaili, et al [33] in a study that evaluated the efficacy of immuniza-
tion with a live T. verrucosum vaccine against bovine ringworm
concluded that the vaccine could produce protective immunity
against dermatophytosis in vaccinated cattle. Meanwhile, Arslan, et

Consequently, several authors [34-36] have considered *T. verrucosum* vaccine a better option for the treatment of cattle ringworm than other antifungal agents in time and efficiency.

The literature is replete with reports of the occurrence of ringworm in humans associated with animal contact in our country [4,10,11]. Ameh and Okolo [37] in a study of dermatophytosis among school children observed that, of the two hundred and fifty-six pupils diagnosed of dermatophytosis, 26.25% were due to *T. verrucosum* infection, second only to *T. mentagrophytes* (29.75%). However, there have not been much coordinated attempts at studying the disease among animals in Nigeria. It is recommended that concerted efforts should be made at determining the prevalence of ringworm among the cattle population in the country and all dermatophytes involved should be isolated and characterized so that the most prevalent species can be used to produce vaccine for the protection of livestock against the disease as practiced in Norway and some other parts of the world.

Acknowledgement

We thank the Executive Director, National Veterinary Research Institute, Vom, Nigeria for permission to publish this work.

Conflicts of Interest: None declared.

References

