
|| Bioinfo Publications ||  153 

 

Advances in Computational Research 
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 6, Issue 1, 2014, pp.-153-158. 

Available online at http://www.bioinfopublication.org/jouarchive.php?opt=&jouid=BPJ0000187 

AYLAJ B.1* AND BELKASMI M.2 
1Department of Mats, MMID, Faculty of Science El jadida, Chouaib Doukkali University, Morocco. 
2SIME Labo, National School of Computer Science and Systems Analysis (ENSIAS), Rabat, Mohammed V-Souisi University, Morocco. 
*Corresponding Author: Email- bouchaib_aylaj@yahoo.fr  

Received: August 02, 2014; Accepted: September 01, 2014 

Introduction 

The idea of Simulated Annealing (SA), is Based on statistical me-
chanics reasoning, applied to a solidification problem, Metropolis, et 
al [1] introduced a simple algorithm that can be used to accomplish 
an efficient simulation of a system of atoms in equilibrium at a given 
temperature. The concepts of annealing in combinatorial optimiza-
tion are introduced in the early 1983’s by Kirkpatrick, et al [2], these 
concepts are based on a strong analogy between the idea of the 
Metropolis algorithm applied to a physical annealing process of 
solids and the problem of solving large combinatorial optimization 
problems to search for feasible solutions and converge to an opti-

mal solution. 

SA method is studied extensively and has many successful solu-
tions [3-6]. It is a non-numerical algorithm which is simple and glob-
ally optimal, mathematically SA has been proved that it is possible 
to converge to globally solution [7], and SA is suited well for solving 
the large-scale combinatorial optimization problems and its applica-
tion [8] to diverse areas are in progress used in VLSI design, image 
processing, molecular physics, job shop scheduling, event based 
learning situations, strategy scheduling for capital products with 
complex product structure, umpire scheduling in US open tennis 
tournament and jigsaw puzzle to name a few . In coding theory, El 
Gamal, et al [9] used SA to the construction of good source codes, 
constant weight error-correcting codes, and spherical codes for 
certain sets of parameters codes that are better than any other 
known previously have been found. Zhang, et al [10] applied SA to 

computer the minimum distance of linear block codes, computer 
simulations indicate that SA is useful in providing good upper 

bounds to the minimum distance of general linear block codes.  

In this paper we present a method to find a good estimate of mini-
mum distance of linear block codes using a new idea of the use of 
simulated annealing, with this method we can approach the lower 
bound of the minimum distance which can be achieved by linear 
block codes especially Bose-Chaudhuri-Hocquenghem (BCH) that 
are characterized by their designed minimum distance: d-design 
(see chapter 7. Section 6 in [23]) and Quadratic Residue (QR) 

codes [11,12]. 

The minimum distance of a linear block code is an important param-
eter as it determines the error-correcting and detecting capabilities 
of the code. But it’s not easy to estimate its true value by classical 
methods because it is a NP-hard problem [13], therefore the prob-
lem has been attacked in the literature with heuristic methods such 
as genetic algorithms [14-17], and search local error using a Soft-In 
decoder when applied to the problem of determining the true mini-
mum distance of a linear block code [18], large excellent works 
have found the minimum distance in [19] Walis, et al have present-
ed a different genetics techniques applied to find an estimate of the 
minimum distance for some (BCH) codes, in [20] Askali, et al have 
computed the minimum distance of linear block codes by heuristic 
methods, in [22] Ajitha, et al have studied the performance of the 
Metropolis algorithm for the problem of finding the minimum weight 

code. 
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Minimum Distance and Encoding of Linear Block Codes 

Minimum Distance 

Let C(n,k) denote a linear block code of length n and dimension k, 
each element V ϵ C is called a codeword there are a total of 2k 
codeword which is a k-dimensional subspace of the vector space 
GF(2)n, where the modulo-2 sum of two codewords is also a code-
word. The Hamming weight WH(V) is the number of nonzero com-
ponents of V and the Hamming distance d (V1,V2) between two 
codewords V1 and V2 is the number of places in which V1 and V2 
differ. The minimum Hamming distance dmin (or the minimum dis-
tance) of the code C is the Hamming distance between the pair of 

codewords with smallest Hamming distance. That is 

    (1) 

It can easily be proved that the minimum distance of the linear block 
code C is also equal to the minimum Hamming weight of non zero 

codewords is written as follows 

    (2) 

 

Encoding for a Linear Block Codes 

The encoder transforms each input information vector U into n-tuple 

codeword V, with n > k, [Fig-1] 

Fig. 1- A simplified Encoder representation 

The General Case 

Let G = (gij)kxn be the generator matrix of the code C, whose rows 
constitute a set of basis vectors for subspace. Then every code-
word V = (v1, v2,…, vn) can be uniquely represented as a linear com-

bination of the rows of G. 

   (3) 

Where    denotes modulo-2 sum, U= (u1, u2,…, uk) ϵ {0,1}k infor-

mation vector. Substituting [Eq-3] for [Eq-2] and noting the fact that  

 

We have  

                (4) 

Let  

                 (5) 

 

The Case where the Linear Block Code is Cyclic 

In case where the linear block code C(n,k) is also a cyclic code, the 
encoding operation can be efficiently using simple shift registers 
and combinatorial logic elements, on the basis of their polynomial 

representation. 

Let P(x) generator polynomial of degree (n-k) of the linear cyclic 

block code C 

To every codeword vector V a polynomial V(x) is associated  

    (6) 

And the generator polynomial of C is p(x): 

         (7) 

The information vector U can be written by the polynomial represen-

tation as follows: 

         (8) 

 

Encoding the codewords of a binary cyclic code can be either non-
systematic or systematic, depending on how the information is pro-

cessed: 

A Nonsystematic Encoding by Multiplying with p(x) 

  (9) 

 

        (10) 

Then 

        (11) 

A Systematic Encoding by Dividing with p(x) 

  (12) 

       (13) 

   (14) 

  

     (15) 

    (16) 

 

 

 

Then the minimum distance dmin of the code C is the minimum value 
of the function E(V) developed in [Eq-5], [Eq-11] or [Eq-15] depend-

ing on the type of encoding used.  

Simulated Annealing Algorithm 

Simulated annealing is physically referred to the process of heating 
up a solid and then cooling slowly until it crystallizes. Atoms of this 
material have high energies at very high temperatures. This gives 
the atoms a great deal of freedom in their ability to restructure 
themselves. As the temperature is reduced the energy of these 

atoms decreases, until a state of minimum energy is achieved. 

The analogy between Physical Annealing and SA (optimization 

problem) is shown in [Table-1] [21]. 

Beginning with a current atoms configuration, this configuration is 
equivalent to the current solution of an optimization problem. The 
energy of the atoms is analogous to the cost of the objective func-
tion and the final frozen state corresponds to the global minimum of 
the cost function. Using these mappings any combinatorial optimi-
zation problem can be converted into an annealing algorithm [2], 
especially in our case the estimation of the minimal distance of 

linear block codes, we present below SA algorithm [Algorithm-1]. 
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Table 1- Analogy between simulated annealing and optimization 

problem  

Procedure SA() 

Initialize SA parameters: number of iterations (Ni), a reducing rate, 
starting (Ts) and final (Tf) temperatures and a random starting solu-

tion (s) 

While (temperature (T) > Tf) 

{ 

 while (iteration (I) < Ni) 

  { 

get the neighborhood solution (sn); 

 Evaluate dE = eval(sn) – eval(s); 

 if dE ≤ 0 then s←sn; 

  else if random(0,1) ≤ Exp(-dE/T) then s←sn; 

  end if 

 end if 

      } 

T←cool(T); 

} 

end procedure  

Algorithm 1- The basic procedure of the SA. 

In [10], the SA algorithm used for finding the good upper bounds of 
the minimum distance of linear codes, is similar to that given in the 
[Algorithm-1], ie a classical SA algorithm, such as that given by 

Kirkpatrick[2].  

 In [10] the authors defined the state by the information vector and 
the cost function by the hamming weight of the codeword. In the 
next section we will present a new SA algoritm to find good lower 

bounds for general linear block codes. 

The Proposed Simulated Annealing Algorithm 

If we conceptualize hamming weight of codewords as an atom 
states of energy, then the analogy between the lowest energy of the 
atom and the minimum of hamming weight of codewords is appear-

ent. 

In statistical physics for particles, it happens that an atom energy 
level had sublevels and then we talk about the degeneration of 

energy and the atom is called a degenerated atom.  

Considering a degenerated atom, we model the energy levels as 
hamming weights of the information vector and each distribution of 
the nonzero components of this vector, which generates a unique 
codeword, as energy sublevel. We distinguish then two system of 
energy states : degenerated states system (DSS) (energy level : 
hamming weights of the information vector) and non degenerated 
states system (NDSS) (energy sublevel : hamming weights of cod-

word). 

For Example 

Let H(7,4,3) the Hamming code and U ϵ {0,1}4 information vector. 

If the encoding operation is systematic then we have 5 Energy lev-

els: 

 Energy level= WH(U)=0 with 1 energy sublevel (1codword). 

 Energy level= WH(U)=1 with 4 energy sublevels (4codwords). 

 Energy level= WH(U)=2 with 6 energy sublevels (6codwords). 

 Energy level= WH(U)=3 with 4 energy sublevels (4codwords). 

 Energy level= WH(U)=4 with 1 energy sublevel (1codword). 

In this case SA is brought to search the global state of minimum 

energy between the two systems  DSS and NDSS.  

Having two systems allows us to search the best solution locally in 
the case of NDSS system ensured by the perturbation2 mechanism 
(see next subsection) and to make an external research in the case 
of DSS system ensured by the perturbation1 mechanism (see next 
subsection). Thus, the exploitation of the search space and the 
movements between its different regions became possible. Also, in 
each system, research is intensified by accepting all movements 
improvers and it is diversified by accepting the movements non im-
provers. Note that diversification decreases with the decrease in 

temperature throughout of the algorithm.  

The Proposed Simulated Annealing (PSA) algorithm used for esti-
mating the minimal distance of a linear block codes is outlined as 

follows [Algorithm-2]: 

Procedure PSA () 

Define Initial Configuration  

Random Starting State = U0 

Starting states system= DSS 

Starting temperature= TS 

While (T > Tf ) 

{ 

Calculate the number of iterations (Ni) associated to Ti;  

 while (iteration (I) < Ni) 

 { 

if (states system== DSS) then get the neighborhood state (Ui+1) 

from perturbation1; 

 else get the neighborhood state (Ui+1) from perturbation2; 
end if 

 Evaluate ∆E = E(Ui+1) – E(Ui); 

if ∆E ≤ 0 then Ui←Ui+1; 

 else if (random(0,1) ≤ Exp(-∆E/T)) then    Ui←Ui+1; 

 end if 

end if 

 } 

if (the criterion of transition is satisfied) then switch states system; 

end if 

T←cool(T); 

} 

end procedure  

Algorithm 2- The basic procedure of the PSA. 
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Physical Annealing Optimization Problem 

State Feasible solution 

Energy Cost 

Change of State Neighboring Solutions (Perturbation) 

Temperature Control Parameter 

Frozen state Optimal solution 
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At a certain temperature Ts, starting from a randomly selected state 
of the DSS system, here the state corresponds to the vector infor-
mation (Hamming weight), we subject the information vector to the 
perturbation1 and then we check the cost function which is the func-
tion E (V) already established above. We iterate this process, keep-
ing the temperature constant, until the equilibrium is reached for the 
current system; on other words, after a sufficient number of perturba-
tions. When the equilibrium is reached, according to a criterion of 
transition we check the possibility of transition between DSS and 
NDSS systems and we decrease the temperature, before making a 

new series of perturbations on the current system.  

Perturbation Schemes 

The fact that we have two systems of states allows us to define two 

types of perturbations: Perturbation-1 and Perturbation-2. 

The perturbation mechanism is an operation to create new state 
from the current state. In other words it is an operation to explore the 
neighborhood of the current state creating small changes in the cur-
rent state. The perturbation mechanism is an important factor for the 
convergence of SA algorithm, a good choice usually gives a good 

quality solution (global or a better optimum). 

The exploration of neighborhood states can be made as follow. A 
state Ui is defined as a vector information representing the hamming 
weights of level or sublevel energy in the search states space S=
{0,1}k-{0}. A new state Ui+1 is generated using a switch vector bi = 
(bi1,..., bik) or a circular permutation σL of order L to create a pertur-

bation from the current state.  

Perturbation-1 

Let Ui = (ui1,..., uik) ϵ S the current state where uij ϵ {0,1} and βi = 
(βi1,..., βik) where βij ϵ {0,1}  is a switch vector of the Hamming weight 
WH(bi) which is between 1 and k; βi is generated randomly. A neigh-
bor state Ui+1 is then produced from Ui according to the following 

rules: 

    (17) 

Where denotes modulo-2 sum between the elements of Ui and 

bi 

The hamming weight WH(Ui+1) must be between 1 and du, where du 
is an uperbound on the minimum distance of linear block code and 

du<k 

Ui+1ϵ S 

Perturbation-2 

Let σL is the circular permutation of order L, an operator which shift 

a rank of elements to the right with L positions.  

The current state Ui is perturbed to generate Ui+1  according to the 

following rule: 

We generate a random integer L between 1 and (k-1), then we ap-

ply the circular permutation σL on Ui : 

   (18) 

Starting and Final Temperature  

The starting temperature Ts must be large enough to enable the 
algorithm to move off a local state. This is related to the acceptance 
probability PH of a worst state that depends on temperature and 
magnitude of cost function E. In this context, the starting tempera-

ture was determined as follow: 

      (19) 

Where        , PH should be high probability 

Then 

   (20) 

The final temperature Tf must be small enough to enable the algo-
rithm not to move off a global state. A similar reasoning can be 

applied to determine the final temperature Tf as follow: 

   (21) 

Where     , Pl should be small probability 

      (22) 

Tf is used as stop criterion for the algorithm during the simulation 

Cooling Schedule 

The cooling schedule was implemented using a geometric rule for 

temperature variation: 

     (23)  

A value of a = 0.9 was found to give good results. 

The number of iterations varies according to the temperature, in 
order to allow the global system to reach thermal equilibrium. The 

number of iterations at temperature Ti is set as follows: 

    (24) 

This allows us to have a large number of iterations (several perturba-
tions) at low temperature, and a small number of iterations at high 

temperature. 

Criterion of Transition  

To switch between the two systems DSS and NDSS, we defined 

two types of transition criterions: 

 Criterion 1: the transition is made, if the probability Pc= Exp(-

|∆F|/T)  is higher than R  

Where R is a random value between (0-1) and ∆F=Fi-1-Fi is the dif-
ference between the average energy (Σ(energy of state accepted)/ 

number of iterations) of the current and the previous system 

 Criterion 2: the transition is done randomly 

Computational Experiment Results 

Verification and Validation of the PSA Algorithm 

In this work, we used a simulation program of PSA developed by 
language C and a computer with Intel Core (TM) 2 Duo CPU T5750 

@ 2.00 GHz processor and 2 GB RAM. 

All computational experiments were made with PSA parameters 

following: 

 A systematic encoding by dividing with p(x) 

 transition criterion: Criterion2 

 PH=0.9 , Pl=0.000001 

As a first step, we verified the PSA algorithm by comparing himself 
with the classic SA algorithm developed by authors in [10] by verify-
ing the minimum distance for BCH codes, which the minimum dis-

tance is known. 
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Table 2- comparison between our proposed simulated annealing with a classic simulated annealing 

dSA: minimum distance obtained  by the classic simulated  annealing developed by [10] 

dPSA: minimum distance obtained by the proposed simulated annealing 
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Codes BCH (n,  k,  d-design) 
SA PSA 

dSA Number of iterations Run Time (s) dPSA Number of iterations Run Time (s) 

BCH(15,11,3) 3 792 1 3 17 <1 

BCH(31,26,3) 3 2082 7 3 25 <1 

BCH(63,24,15) 15 2064 16 15 71 <1 

BCH(127,64,21) 27 411520 495 21 17028 1 

BCH(255,91,51) 75 1295840 2537 54 934120 468 

In the [Table-2], for the three first BCH codes listed, SA and PSA 
algorithms found the true minimum distance. However, for the two 
last BCH codes, the gap between the minimum distance obtained 
by the SA algorithm and the true value is still large, while our PSA 
algorithm finds this true minimum distance. Moreover we note that 
the PSA is generally less complex than the SA in term of run time, 

and PSA uses a very small number of iterations compared to SA. 

After that, as a second step, we validated the algorithm for some 
linear codes: BCH codes, Quadratic residue Codes, for which the 
minimum distance is known. The results are summarized in the 

[Table-3], [Table-4]. 

Table 3- Validation of some QR codes with known minimum dis-

tance 

Table 4- Validation of some BCH codes with known minimum dis-

tance 

PSA  Algorithm vs Other Optimization Techniques 

The [Table-5] shows the results obtained by the other optimization 
techniques: developed by Askali, et al [18] which use two versions of 
genetic algorithm (GA-A and GA-B), the work of Walis, et al [19] 

which  use techniques (genetic algorithm (GA), Hill-Climbing  and 
Tabu Search) and the work of Ajitha, et al [22] which use Metropolis 

Algorithms for the Minimum Weight Code Word Problem.  

We note that the PSA algorithm outperformed the results of Walis, et 
al and it has the same results as Askali’s Genetic Algorithms and 
Ajitha’s Metropolis Algorithms for BCH codes less than 255 in length; 

and outperformed the results of 

Askali’s Genetic Algorithms and Ajitha’s Metropolis Algorithms for 

length equal to 511. 

In our computational experiment, we observed that the PSA algo-
rithm performances are affected by the parameters of the perturba-
tions mechanism and the choice of the transition criterion. We noted 
in perturbation1, On the one hand the PSA converges fastest when 
the value of the Hamming weight Wb of the switch vector b ranges 
from 1 to du for a large code length n>127, and for n< 127 the value 
Wb  ranges from 1 to k for QR codes and BCH codes. On the other 
hand It appears that the value of hamming weight WH(Vi+1)  be-
tween 1 and du/y where 1 ≤ y ≤ 4,  significantly improves the perfor-

mance of the PSA algorithm  for certain codes. 

In [Table-6], we analyze the  choice between the two transition crite-
rions on the convergence of the PSA algorithm for QR(223 ,112,31), 

BCH(127,64,21)  and BCH(255 ,131 ,37) codes. 

We show that the randomly transition (criterion2) seems to perform 
significantly better than the criterion1 in term of minimum distance, 

run time and number of iterations.  

We also determined the probabilities of transition between DSS and 
NDSS systems; we show that the values of the Transition Probabili-
ties converge almost towards the same value at the end of simula-

tion. 

We refer by: 

P11 the transition probability from DSS to DSS 

P12 the transition probability from DSS to NDS 

P21 the transition probability from NDSS to DSS 

P22 the transition probability from NDSS to NDSS 

Codes QR (n,  k,  d) dPSA Number of iterations Run Time (s) 

QR (127, 64, 19) 19 13899 1 

QR (137, 69, 21) 21 1736 1 

QR (151, 76, 19) 19 30704 2 

QR (223, 112, 31) 32 188037 17 

Codes BCH (n,  k,  d-design) dPSA Number of iterations Run Time (s) 

BCH (127, 50, 27) 27 13285 1 

BCH (127, 85, 13) 13 23491 1 

BCH (255, 45, 87) 87 9178 1 

BCH (255, 55, 63) 63 953631 58 

Table 5- Comparison of our PSA algorithm with other optimization techniques for some BCH codes 

Codes BCH 
(n, k, da-design) 

PSA 
Askali’s  GA-A 10000 

individuals 
Askali’s  GA-B 10000 

individuals 
Wallis’s GA Hill-Climbing Tabu Search 

Ajitha’s Metropolis Algo-
rithm 

BCH (127, 64, 21) 21 21 21 21 28 24 21 

BCH (255, 79, 55) 56 57 57 60 74 64 57 

BCH (255, 91, 51) 54 58 53 59 72 69 54 

BCH (511, 304, 51) 70 87 74 79 90 85 73 

BCH (511, 286, 55) 73 98 84 84 96 92 78 
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Table 6- The transition criterions of the PSA algorithm 
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Transition 
Criterions   

Codes  (n,  k,  d) dPSA Run Time (s) 
Number of 
iterations 

Number of 
transitions 

Transition Probabilities  

P11 P12 P21 P22 

Criterion1 
BCH (255,131, 37) 

38 394 2567830 507 0.75 0.25 0.003 0.996 

Criterion2 37 230 1543678 507 0.474 0.525 0.519 0.48 

Criterion1 
QR (223,112,31) 

32 146 1564786 502 0.995 0.004 0.058 0.411 

Criterion2 32 15 159687 502 0.484 0.515 0.574 0.425 

Criterion1 
BCH (127, 64, 21) 

21 3 20452 484 0.956 0.043 0.008 0.991 

Criterion2 21 1 17676 484 0.529 0.47 0.485 0.514 

Conclusion and Perspectives 

In this paper we have used the property of degeneration of energy 
into a new modified simulated annealing algorithm to find a good 
value of minimum distance of linear block codes. The Simulation 
results of the proposed simulated annealing algorithm shows that 
we have successfully speeded up the optimization  process while 
achieving to quite good optimum solutions compared to many opti-
mization methods that are applied to estimate of minimum distance 
of codes. In the perspectives of this work, we plan to apply this 
rapid method to construct good linear block codes, and use this 
method in combination with other optimization methods such as 

genetic algorithms. 
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