

CALIBRATED CONFIDENCE INTERVALS FOR INTENSITIES OF A TWO STAGE OPEN QUEUEING NETWORK WITH FEEDBACK

GEDAM V.K.¹ AND PATHARE S.B.^{2*}

¹Department of Statistics, University of Pune- 411007, MS, India. ²Indira College of Commerce and Science, Pune- 411033, MS, India. *Corresponding Author: Email- sureshpathare23@gmail.com

Received: August 02, 2013; Accepted: August 22, 2013

Abstract- The aim of this paper is to provide an approximate 100(1-α)% calibrated CAN, Exact t, Standard Bootstrap, Bootstrap-t, Variancestabilized Bootstrap-t, Bayesian Bootstrap, Percentile Bootstrap and Bias-corrected and accelerated bootstrap confidence intervals for intensity parameters of a two stage open queueing network with feedback with distribution-free interval and service times. Numerical simulation study is conducted to demonstrate performances of the confidence intervals by using calibration technique. We consider a measure, named relative coverage, to evaluate performances of the said intervals.

Keywords- Calibration, calibrated confidence intervals, Coverage percentage, Relative coverage

Citation: Gedam V.K. and Pathare S.B. (2013) Calibrated Confidence Intervals for Intensities of a Two Stage Open Queueing Network with Feedback. Journal of Statistics and Mathematics, ISSN: 0976-8807 & E-ISSN: 0976-8815, Volume 4, Issue 1, pp.-151-161.

Copyright: Copyright©2013 Gedam V.K. and Pathare S.B. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Introduction

Calibration technique is used for improving the coverage accuracy of any system of approximate confidence intervals. The general theory of calibration is reviewed in Efron and Tibshirani [6], following ideas of Loh [16], Beran [1], Hall [11] and Hall and Martin [12]. The bootstrap calibration technique was introduced by Loh [16,17]. The idea of the bootstrap calibration is to first use bootstrap to estimate the true coverage of confidence intervals and the intervals is then adjusted by comparing with the target nominal level. As we aware that in literature, no work regarding the calibration technique in queueing networks is found. So it is tempting to use calibration technique to construct new confidence intervals called calibrated confidence interval for intensity parameters of a two stage open queueing network whose true coverage probabilities come closer to desired value.

Consider a network model of a computer system with feedback in which a job may return to previously visited nodes. The system consists of two nodes CPU node and I/O node with respective service rates μ_1 and μ_2 . The external arrival rate is λ . After service

completion at CPU node, the job proceeds to the I/O node with probability p_1 , and departs from the system with probability p_0 where $p_0=1-p_1$. Jobs leaving the I/O node are always feed back to the CPU node [Fig-1]. The successive service time at both nodes are assumed to be mutually independent and independent of the state of the system.

The traffic intensities at the CPU node and I/O node are respectively given by

$$\rho_1 = \frac{\lambda}{p_0 \mu_1}, \rho_2 = \frac{p_1 \lambda}{p_0 \mu_2} \tag{1}$$

where ρ_1 and ρ_2 can be interpreted as expected number of arrivals per mean service time. The condition for stability of the system is both ρ_1 and ρ_2 are less than unity.

Burke [2] has shown that the output of an M/M/1 queue is also Poisson with rate λ . Jackson [14] showed that the product form solution also applies to open network of Markovian queues with feedback, also Jackson's theorem states that each node behaves like an independent queue. Disney [3] introduces basic properties of queueing networks. Thiruvaiyaru, Basawa and Bhat [23] established maximum likelihood estimators of the parameters of an open Jackson network. Thiruvaiyaru and Basawa [22] considered the problem of estimation for the parameters in a Jackson's type queueing network.

Efron [7-9] the greatest statistician in the field of nonparametric resampling approach, originally developed and proposed the boot-strap, which is a resampling technique that can be effectively ap-

plied to estimate the sampling distribution of any statistic. For necessary background on bootstrap technique, we refer to Efron and Gong [4], Efron and Tibshirani [5], Guntur [10], Mooney and Duval [19], Young [24], Rubin [21], Miller [18]. Ke and Chu [15] constructed various confidence intervals for intensity parameter of a queueing system.

Nonparametric Statistical Inference of Intensities

Let (X_i , Y_i , i = 1,2) be nonnegative random variables representing the inter-arrival and service times of CPU and I/O node respectively. Once a job complete CPU node burst, it will proceed to I/O node for further service with probability p_1 and departs from the system with probability p_0 where $p_0 = 1-p_1$. Then the intensities are defined as follows:

$$\rho_1 = \frac{p_0 \mu_{Y_1}}{\mu_{X_1}} \text{ and } \rho_2 = \frac{p_0 \mu_{Y_2}}{p_1 \mu_{X_2}}$$

Where μ_{x_1} and μ_{x_2} denote the mean inter-arrival times and μ_{x_1} and μ_{x_2} denote the mean service times of CPU node and I/O node respectively.

Assume that (X₁, p₀Y₁, j= 1,2...n) is a random sample drawn from (X₁, Y₁) and (p₁X₂, p₀Y₂, j= 1,2...n) is a random sample drawn from (X₂, Y₂). Define ($\overline{X}_i, \overline{Y}_i, i = 1,2$) to be the sample means of (X_i, Y_i, i= 1,2) respectively. Thus according to the Strong Law of Large Numbers [20]; we know that ($\overline{X}_i, \overline{Y}_i, i = 1,2$) are strongly consistent estimator of ($\mu_{X_i}, \mu_{Y_i}, i = 1,2$) respectively. Thus strongly consistent estimators of intensities are given by $\hat{\rho}_i = \frac{\overline{Y}_i}{\overline{X}_i}$, *i*=1,2. The true distributions of (X_i, Y_i, i= 1,2) are not often known in practice so the exact distributions of $\hat{\rho}_i$, i= 1,2 cannot be derived. But under the assumption that X_i and Y_i being independent, the asymptotical distributions of $\hat{\rho}_i$ i= 1,2 can be developed as the following procedures. By Central Limit Theorem and Slutsky's theorem [13], we have

Where

$$\sqrt{n}(\hat{\rho}_i - \rho_i) \xrightarrow{D} N(0, \sigma_i^2), \ i = 1, 2.$$

 $\sigma_1^2 = (\mu_{X_1}^2 \sigma_{Y_1}^2 + p_0^2 \mu_{Y_1}^2 \sigma_{X_1}^2) / \mu_{X_1}^4 \text{ and } \sigma_2^2 = (p_1^2 \mu_{X_2}^2 \sigma_{Y_2}^2 + p_0^2 \mu_{Y_2}^2 \sigma_{X_2}^2) / (p_1^2 \mu_{X_2}^4)$

Also, \xrightarrow{D} denotes convergence in distribution.

Now set $\hat{\sigma}_1^2 = \overline{X}_1^2 S_{\overline{X}_1}^2 + p_0^2 \overline{Y}_1^2 S_{\overline{X}_1}^2 / \overline{X}_1^4$ and $\hat{\sigma}_2^2 = p_1^2 \overline{X}_2^2 S_{\overline{Y}_2}^2 + p_0^2 \overline{Y}_2^2 S_{\overline{X}_2}^2 / p_1^2 \overline{X}_2^4$ where

 $S_{X_{1}}^{2} = \frac{1}{n} \sum_{j=1}^{n} (X_{1j} - \overline{X}_{1})^{2}, S_{X_{2}}^{2} = \frac{1}{n} \sum_{j=1}^{n} (p_{1}X_{2j} - \overline{X}_{2})^{2}, S_{T_{1}}^{2} = \frac{1}{n} \sum_{j=1}^{n} (p_{0}Y_{1j} - \overline{Y}_{1})^{2} \text{ and } S_{T_{2}}^{2} = \frac{1}{n} \sum_{j=1}^{n} (p_{0}Y_{2j} - \overline{Y}_{2})^{2}$

Then $\hat{\sigma}_i^2$ i= 1,2 is strongly consistent estimator of σ_i^2 i= 1,2. Again applying the Slutsky's theorem we have $\frac{\sqrt{n}(\hat{\rho}_i - \rho_i)}{\hat{\sigma}_i} \xrightarrow{D} N(0, 1), i = 1,2.$

Thus $\hat{\rho}_{i}$, i= 1,2 is strongly consistent and asymptotically normal (CAN) estimator with approximate variances $\hat{\sigma}_{i}^{2}/n$, i= 1,2.

Calibration Technique

Let a confidence limit $\rho_i[\alpha]$ is supposed to have probability α of covering the true value ρ_i , that is, $P_{Fi}\{\rho_i \leq \rho_i[\alpha]\} = \alpha$, i = 1, 2 where F_i is unknown continuous probability distribution. Thus ρ_i is supposed to be less than $\rho_i[0.95]$, 95% of the time and $\rho_i[0.05]$, 5% of the time. For an approximate confidence limit there is true probability β_i that ρ_i is less than $\rho_i[\alpha]$ say, $\beta_i(\alpha) = P_{Fi}\{\rho_i \leq \rho_i[\alpha]\}$.

The actual coverage of a confidence procedure is rarely equal to the desired coverage and often it is substantially different. If we knew the function $\beta_i(\alpha)$ then we could calibrate an approximate confidence interval to give exact coverage. Suppose we know that $\beta_i(0.03)=0.05$ and $\beta_i(0.94)=0.95$. Then instead of $(\hat{\rho}_i[0.05], \hat{\rho}_i[0.95])$ we would use $(\hat{\rho}_i[0.03], \hat{\rho}_i[0.94])$ to get a central 90% interval with correct coverage probabilities.

In practice we usually don't know the calibration function $\beta_i(\alpha)$. However we can use the bootstrap to estimate $\beta_i(\alpha)$. The bootstrap estimate of $\beta_i(\alpha)$ is $\hat{\beta}_i(\alpha) = P_{\hat{F}_i} \{\hat{\rho}_i \leq \hat{\rho}_i[\alpha]^*\}$ where \hat{F}_i and $\hat{\rho}_i$ are fixed, nonrandom quantities and $\hat{\rho}_i[\alpha]^*$ is the α^{th} confidence limit based on bootstrap dataset from \hat{F}_i . The estimate $\hat{\beta}_i(\alpha)$ is obtained by taking B bootstrap data sets and seeing what proportion of them have $\hat{\rho}_i \leq \hat{\rho}_i[\alpha]^*$.

CAN Calibrated Confidence Interval

Using the CAN estimators $\hat{\rho}_i$, i= 1,2 and its associated approximate variances $\hat{\sigma}_i^2/n$, i=1,2, we construct calibrated confidence intervals for intensities ρ_i , i= 1,2 of a two stage open queueing network with feedback. Let Z_{α} be the upper α^{th} quantile of the standard normal distribution.

Compute $\hat{\beta}(\alpha) = P\{\rho_i \le (\hat{\rho}_i - z_{\alpha/2}\hat{\sigma}_i/\sqrt{n})\}$ and $\hat{\beta}(1-\alpha) = P\{\rho_i \le (\hat{\rho}_i + z_{\alpha/2}\hat{\sigma}_i/\sqrt{n})\}$

By the asymptotic distribution of $\frac{\sqrt{n}(\hat{\rho}_i - \rho_i)}{100(1-\alpha)\%}$, i = 1,2 an approximate $100(1-\alpha)\%$ calibrated confidence intervals for ρ_{i} , i= 1,2 are given as

$$\left(\stackrel{\circ}{\rho}_{i}'-z_{\hat{\beta}(\alpha)/2}\stackrel{\circ}{\sigma}_{i}'/\sqrt{n}, \stackrel{\circ}{\rho}_{i}'+z_{(1-\hat{\beta}(1-\alpha))/2}\stackrel{\circ}{\sigma}_{i}'/\sqrt{n}\right) i=1,2$$
(2)

Exact- t Calibrated Confidence Interval

Let t_{α} be the upper α^{th} quantile of the Student's t-distribution.

Compute $\hat{\beta}(\alpha) = P\{\rho_i \le (\hat{\rho}_i - t_{(n-1),\alpha/2} \hat{\sigma}_i / \sqrt{n}\} \text{ and } \hat{\beta}(1-\alpha) = P\{\rho_i \le (\hat{\rho}_i + t_{(n-1),\alpha/2} \hat{\sigma}_i / \sqrt{n}\}$ Then an approximate 100(1- α)% exact-t calibrated confidence intervals for ρ_i , i= 1,2 are given as

$$\begin{pmatrix} \hat{\rho}_{i}' - t_{(n-1),\hat{\beta}(\alpha)/2} & \hat{\sigma}_{i}' / \sqrt{n} \\ \hat{\rho}_{i}' + t_{(n-1),(1-\hat{\beta}(1-\alpha))/2} & \hat{\sigma}_{i}' / \sqrt{n} \end{pmatrix} i = 1,2$$

$$(3)$$

Standard Bootstrap Calibrated Confidence Interval

Using bootstrap procedure, a simple random samples

 $(X_{ij}^*, p_0Y_{ij}^*, i = 1; j = 1, 2, ..., n)$ and $(p_1X_{ij}^*, p_0Y_{ij}^*, i = 2; j = 1, 2, ..., n)$ are taken from the empirical distribution functions of $(X_{ij}, p_0Y_{ij}, i=1; j=1, 2, ..., n)$ and $(p_1X_{ij}, p_0Y_{ij}, i=2; j=1, 2, ..., n)$. Bootstrap estimate of ρ_i , i=1, 2 is calculated as $\hat{\rho}_i^* = \frac{y_i}{\bar{x}_i^*}, i=1, 2$. The above resampling process is repeated *N* times and $\hat{\rho}_{i1}^*, \hat{\rho}_{i2}^*, ..., \hat{\rho}_{iN}^*, i=1, 2$ are computed from the bootstrap re-samples. Averaging the *N* bootstrap estimates we get bootstrap estimate of ρ_i , i=1, 2 as

$$\hat{\rho}_{N}(i) = \frac{1}{N} \sum_{j=1}^{N} \hat{\rho}_{ij}^{*}, i = 1,2 \text{ and standard deviation of } \hat{\rho}_{i}, i = 1,2 \text{ is}$$

$$sd(\hat{\rho}_{N}(i)) = \left\{ \frac{1}{N-1} \sum_{j=1}^{N} (\hat{\rho}_{ij}^{*} - \hat{\rho}_{N}(i))^{2} \right\}^{1/2}, i = 1,2.$$

Then by central limit theorem, the distribution of $\hat{\rho}_i$, i = 1,2 is approximately normal. Compute

 $\hat{\beta}(\alpha) = P\{\rho_i \le (\hat{\rho}_i - z_{\alpha/2}sd(\hat{\rho}_N(i)))\} \text{ and } \hat{\beta}(1-\alpha) = P\{\rho_i \le (\hat{\rho}_i + z_{\alpha/2}sd(\hat{\rho}_N(i)))\}$ Then 100(1- α)% SB calibrated confidence interval for ρ_i as,

$$\left(\hat{\rho}_{i}'-z_{\hat{\beta}(\alpha)/2}sd^{*}(\hat{\rho}_{N}(i)), \hat{\rho}_{i}'+z_{(1-\hat{\beta}(1-\alpha))/2}sd^{*}(\hat{\rho}_{N}(i))\right) \quad i=1,2$$
(4)

Bootstrap-t Calibrated Confidence Interval

Consider *N* bootstrap estimates $\hat{\rho}_{i1}^*, \hat{\rho}_{i2}^*, \dots, \hat{\rho}_{iN}^*, i = 1,2$ computed from the bootstrap resample. We compute

$$Z_{ij}^* = \frac{(\hat{\rho}_{ij}^* - \hat{\rho}_N(i))}{\mathrm{sd}(\hat{\rho}_N(i))}, i = 1, 2, j = 1, 2, \dots N \text{ and } Z_{ij}^*, i = 1, 2, j = 1, 2, \dots N$$

follow an approximate t distribution. Also compute

 $\widehat{\beta}(\alpha) = P\{\rho_i \le (\widehat{\rho}_i - t_{\alpha/2} sd(\widehat{\rho}_N(i)))\} \text{ and } \widehat{\beta}(1-\alpha) = P\{\rho_i \le (\widehat{\rho}_i + t_{\alpha/2} sd(\widehat{\rho}_N(i)))\}$

Then 100(1- α)% Bootstrap-t calibrated confidence interval for ρ_i is

$$\left(\hat{\rho}_{i}' - \hat{t}_{\hat{\rho}(\alpha)/2} \, sd'(\hat{\rho}_{N}(i)) \,, \, \hat{\rho}_{i}' + \hat{t}_{(1-\hat{\rho}(1-\alpha))/2} \, sd'(\hat{\rho}_{N}(i))\right) \, i = 1, 2 \tag{5}$$

Where $\hat{t}_{\beta(\alpha)/2}$ and $\hat{t}_{(1-\beta(1-\alpha))/2}$ equals the $\alpha/2$ and $(1-\alpha/2)$ percentile of the random sample $Z_{i1}^*, Z_{i2}^*, \dots, Z_{iN}^*, i = 1, 2$

Variance-stabilized Bootstrap-t Calibrated Confidence Interval

Let $\hat{\rho}_i$, i= 1,2 be a strongly consistent and asymptotically normal estimator with approximate variances $\hat{\sigma}_i^2/n$, i = 1,2. Let $\hat{\sigma}_i = \phi(\hat{\rho}_i)$ To find a transformation $f(\hat{\rho}_i)$ such that $Var(f(\hat{\rho}_i)) \approx$ constant, we use the first order Taylor series expansion:

 $f(\hat{\rho}_i) \approx f(\rho_i) + (\hat{\rho}_i - \rho_i)f'(\rho_i) \Rightarrow [f(\hat{\rho}_i) - f(\rho_i)]^2 \approx (\hat{\rho}_i - \rho_i)^2 (f'(\rho_i))^2$ Taking expectations on both sides, we get:

$$\Rightarrow Var[f(\hat{\rho}_i)] \approx Var(\hat{\rho}_i)(f'(\rho_i))^2 = (\phi(\rho_i))^2 (f'(\rho_i))^2, i = 1, 2.$$

Now consider $f(\hat{\rho}_i) = \sqrt{n \log(\phi(\hat{\rho}_i))}, i = 1,2$ is the variance-stabilizing transformation. Then we have,

$$V[f(\hat{\rho}_i)] \approx \left(\frac{\sqrt{n}}{\phi(\hat{\rho}_i)}\right)^2 Var[\hat{\rho}_i] = \left(\frac{\sqrt{n}}{\hat{\sigma}_i}\right)^2 Var[\hat{\rho}_i] = \frac{n}{\hat{\sigma}_i^2} \frac{\hat{\sigma}_i^2}{n} = 1, i = 1, 2$$

Here we consider *N* bootstrap estimates $\hat{\rho}_{i1}^*, \hat{\rho}_{i2}^*, \dots, \hat{\rho}_{iN}^*, i = 1, 2$ computed from the bootstrap resample.

We obtain $\theta_{ij}^{*} = (\sqrt{n} \log(\hat{\rho}_{ij}^{*}) - \sqrt{n} \log(\hat{\rho}_{i})), i = 1, 2, j = 1, 2, ..., N$ Also compute

$$\hat{\beta}(\alpha) = P\{\rho_i \le e^{\log(\hat{\rho}_i) - \frac{1}{\sqrt{n}}v_i^{\hat{\gamma}}t_{1-\alpha/2}}\} and \hat{\beta}(1-\alpha) = P\{\rho_i \le e^{\log(\hat{\rho}_i) - \frac{1}{\sqrt{n}}v_i^{\hat{\gamma}}t_{\alpha/2}}\}$$

A 100(1- α)% Variance- stabilized Bootstrap-t (VST) calibrated confidence interval for ρ_i , *i*=1,2 is

$$\begin{pmatrix} \log(\hat{\rho}_{l}) - \frac{1}{\sqrt{n}} \hat{v_{l}t}_{\hat{\beta}(\alpha)/2}, e^{\log(\hat{\rho}_{l}) - \frac{1}{\sqrt{n}} \hat{v_{l}t}_{\hat{\beta}(1-\alpha)/2}} \end{pmatrix}$$
(6)

Where $v_i t_{\hat{\beta}(\alpha)/2}$ and $v_i t_{\hat{\beta}(1-\alpha)/2}$ are $\alpha/2$ and $(1-\alpha/2)$ percentile of the random sample $\theta_{i1}^*, \theta_{i2}^*, \dots, \theta_{iN}^*, i = 1, 2$

Bayesian Bootstrap Calibrated Confidence Interval

Here each BB replication generates a posterior probability for each X_{ij}, i=1, j=1,2...n and p₁X_{ij}, i=1, j=1,2...n. One BB replication is generated by drawing n-1 uniform (0, 1) random numbers r₁,r₂,...r_{n-1}, ordering them, and calculating the gaps w_j= r_(i)-r_(i-1), j=1,2...n where r₍₀₎=0 and r_(n)=1. Then w_i=(w_{i1},w_{i2},...,w_{in}), i=1,2 is the vector of probabilities attached to the inter-arrival data values (X_{1j}, p₁X_{2j}, j=1,2...n) respectively. Next considering all BB replications gives the BB distribution of the distribution of X_i and thus of any parameter of this distribution we calculate μ_{x_i} , *i* = 1,2 (the mean of X_i), in each BB replication. Let w_{ij} be the probability that X_i = x_{ij} then we calculate $\overline{X_1}^{**} = \sum_{j=1}^{n} w_{1j}x_{1j}$ and $\overline{X_2}^{**} = p_1 \sum_{j=1}^{n} w_{2j}x_{2j}$ and the distribution of the values of $\overline{X_i}^{**}$ overall BB replications is the BB distribution of μ_{X_i} . Now generating a vector of probabilities v_i=(v_{i1},v_{i2},...,v_{in}), i=1,2 attached to the service time data values p₀Y_{ij}, i=1,2. j= 1,2...n in a BB replication.

We calculate $\bar{Y}_i^{**} = p_0 \sum_{j=1}^{n} v_{ij} y_{ij}$ for μ_{X_i} . Thus estimate of Intensity ρ_i be calculated from BB replications as

$$\hat{\rho}_i^{**} = \frac{\bar{Y}_i^{**}}{\bar{X}_i^{**}}, i = 1, 2.$$

The above BB process can be repeated N times. The NBB estimates $\hat{\rho}_{i1}^*, \hat{\rho}_{i2}^*, \cdots, \hat{\rho}_{iN}^*, i = 1,2$ are computed from the BB replications. Averaging the N BB estimates, we obtain that

$$\hat{\rho}_{\text{BB}}(i) = \frac{1}{N} \sum_{j=1}^{N} \hat{\rho}_{ij}^{**}, i = 1,2 \text{ is the BB estimate of } \rho_i, i=1,2 \text{ and the stand-}$$

ard deviation of $\hat{\rho}_i$ can be estimated by

$$\mathrm{sd}(\hat{\rho}_{\mathrm{BB}}(i)) = \left\{\frac{1}{N-1}\sum_{j=1}^{N} (\hat{\rho}_{ij}^{**} - \hat{\rho}_{\mathrm{BB}}(i))^2\right\}^{\frac{1}{2}}, i = 1, 2.$$

Find $\hat{\beta}(\alpha) = P\{\rho_i \le (\hat{\rho}_i - z_{\alpha/2}sd(\hat{\rho}_{BB}(i)))\}$ and $\hat{\beta}(1-\alpha) = P\{\rho_i \le (\hat{\rho}_i + z_{\alpha/2}sd(\hat{\rho}_{BB}(i)))\}$ Applying the asymptotical normality of $\hat{\rho}_i$, *i*= 1,2, The 100(1- α)% BB calibrated confidence interval for ρ_i , *i*= 1,2 is

$$\begin{pmatrix} \stackrel{\wedge}{\rho}_{i}' - z_{\hat{\beta}(\alpha)/2} sd'(\hat{\rho}_{BB}(i)) , \stackrel{\wedge}{\rho}_{i}' + z_{(1-\beta(1-\alpha))/2} sd'(\hat{\rho}_{BB}(i)) \end{pmatrix} i = 1,2$$
(7)

Percentile Bootstrap Calibrated Confidence Interval

Now call $\hat{\rho}_{i1}^{*}, \hat{\rho}_{i2}^{*}, \dots, \hat{\rho}_{iN}^{*}, i = 1,2$ the bootstrap distribution of $\hat{\rho}_{i}$, i = 1,2. Let $\hat{\rho}_{i}^{*}(1), \hat{\rho}_{i}^{*}(2), \dots, \hat{\rho}_{i}^{*}(N), i = 1,2$ be the order statistics of $\hat{\rho}_{i1}^{*}, \hat{\rho}_{i2}^{*}, \dots, \hat{\rho}_{iN}^{*}, i = 1,2$.

Compute $\hat{\beta}(\alpha) = P\{\rho_i \le \hat{\rho}_i^*([N(\frac{\alpha}{2})])\}$ and $\hat{\beta}(1-\alpha) = P\{\rho_i \le \hat{\rho}_i^*([N(1-\frac{\alpha}{2})])\}$ Then utilizing the $100(\alpha/2)^{th}$ and $100(1-\alpha/2)^{th}$ percentage points of the bootstrap distribution, a $100(1-\alpha)\%$ PB calibrated confidence interval for ρ_i , *i*= 1,2 are obtained as

$$\left((\hat{\rho}_{i}^{*}([N(\frac{\hat{\beta}(\alpha)}{2})]), \ \hat{\rho}_{i}^{*}([N(1-\frac{(1-\hat{\beta}(1-\alpha))}{2})]))\right) \ i = 1, 2$$
(8)

where [x] denotes the greatest integer less than or equal to x.

Bias-corrected and Accelerated Bootstrap Calibrated Confidence Interval

The bootstrap distribution $\hat{\rho}_{i1}^*, \hat{\rho}_{i2}^*, \dots, \hat{\rho}_{iN}^*, i = 1,2$ may be biased, consequently the Percentile Bootstrap confidence interval of intensity method is designed to correct this potential bias of the bootstrap designed.

Set
$$p_i = \frac{1}{N} \sum_{i=1}^{N} I(\hat{\rho}_{ij}^* < \hat{\rho}_i), i = 1,2$$
 where $I(\cdot)$ is the indicator function.

Define $\hat{z}_i = \phi^{-1}(p_i), i = 1,2$, where Φ^{-1} denotes the inverse function of the standard normal distribution Φ . Except for correcting the potential bias of the bootstrap distribution, we can accelerate convergence of bootstrap distribution. Let $(\widetilde{X}_i(k), p_0 \widetilde{Y}_i(k)), i = 1, k = 1, 2...n)$ and $(p_1 \widetilde{X}_i(k), p_0 \widetilde{Y}_i(k)), i = 2, k = 1, 2, ..., n)$ denote the original samples with the k^{th} observation deleted, also $\hat{\rho}_{ik}, i = 1, 2$ be the estimator of ρ_i , i = 1,2 calculated as

$$\widetilde{\rho}_{i} = \frac{1}{n} \sum_{k=1}^{n} \widehat{\rho}_{ik}, i = 1, 2 \text{ and } \widehat{a}_{i} = \frac{\sum_{k=1}^{n} (\widetilde{\rho}_{i} - \widehat{\rho}_{ik})^{3}}{\left\{ \frac{6(\sum_{k=1}^{n} (\widetilde{\rho}_{i} - \widehat{\rho}_{ik})^{2})^{\binom{3}{2}}}{k} \right\}^{, i = 1, 2}}, i = 1, 2$$

Where \hat{z}_i and \hat{a}_i , i = 1,2 are named bias-correction and acceleration respectively. Also compute

$$\hat{\beta}(\alpha) = P\{\rho_i \le \hat{\rho}_i^*([N\alpha_{i1}])\} and \quad \hat{\beta}(1-\alpha) = P\{\rho_i \le \hat{\rho}_i^*([N\alpha_{i2}])\}$$
where $\alpha_{i1} = \phi \left\{ \hat{z}_i + \frac{(\hat{z}_i - z_{\alpha'_2})}{1 - \hat{a}_i(\hat{z}_i - z_{\alpha'_2})} \right\}, \alpha_{i2} = \phi \left\{ \hat{z}_i + \frac{(\hat{z}_i + z_{\alpha'_2})}{1 - \hat{a}_i(\hat{z}_i + z_{\alpha'_2})} \right\}, i = 1, 2$

Thus a 100(1- α)% Bias-corrected and accelerated bootstrap (BCaB) calibrated confidence interval of intensities ρ_{i} , *i*= 1,2 are constructed by

$$(\hat{\rho}_{i}^{*}([N\alpha'_{i1}]) , \hat{\rho}_{i}^{*}([N\alpha'_{i2}])), i = 1, 2.$$
(9)

where

$$\alpha'_{11} = \phi \left\{ \hat{z}_i' + \frac{(\hat{z}_i' - z_{\hat{\beta}(\alpha)/2})}{1 - \hat{a}_i'(\hat{z}_i' - z_{\hat{\beta}(\alpha)/2})} \right\}, \quad \alpha'_{12} = \phi \left\{ \hat{z}_i' + \frac{(\hat{z}_i' + z_{\hat{\beta}(1 - \alpha))/2})}{1 - \hat{a}_i'(\hat{z}_i' + z_{\hat{\beta}(1 - \alpha))/2})} \right\}, \quad i = 1, 2$$

Simulation Study

To evaluate performances of calibrated confidence intervals, nu-

merical simulation study was undertaken. Relative coverage is defined as the ratio of coverage percentage to average length of confidence interval. Larger relative coverage implies the better performances of the corresponding confidence intervals. Here we set a continuous distribution with mean $1/\lambda$ on inter-arrival time of X₁ and X₂ and a continuous distribution with mean $1/\mu_1$ on the service time Y₁ at CPU node and that of $1/\mu_2$ on Y₂ at I/O node. We have considered the values $\rho_i < 1$, *i*=1, 2 for simulation study from [Table-1]. The intensity parameters ρ_i , *i*=1, 2 are calculated using [Eq-1]. The different values of λ , μ_1 , μ_2 , p_0 and p_1 are considered as shown in [Table-1].

Table 1- Different levels of intensity parameters considered in the simulation study

		λ=0.1, µ1	=1, µ2=2	λ=0.5, µ1	=1, µ2=2	λ=0.9, µ1	l=1, µ2=2
ро	p1	ρ1	ρ2	ρ1	ρ2	ρ1	ρ2
0.1	0.9	1	0.45	5	2.25	9	4.05
0.2	0.8	0.5	0.2	2.5	1	4.5	1.8
0.3	0.7	0.33	0.12	1.67	0.58	3	1.05
0.4	0.6	0.25	0.08	1.25	0.38	2.25	0.68
0.5	0.5	0.2	0.05	1	0.25	1.8	0.45
0.6	0.4	0.17	0.03	0.83	0.17	1.5	0.3
0.7	0.3	0.14	0.02	0.71	0.11	1.29	0.19
0.8	0.2	0.13	0.01	0.63	0.06	1.13	0.11
0.9	0.1	0.11	0.01	0.56	0.03	1	0.05
		λ=0.1, µ1	=2, µ2=1	λ=0.5,µ1	=2,µ2=1	λ=0.9, µ1	=2, µ2=1
ро	р1	λ=0.1, μ1 ρ1	=2, μ2=1 ρ2	λ=0.5,μ1 ρ1	=2,μ2=1 ρ2	λ=0.9, μ1 ρ1	l =2, μ2=1 ρ2
ро 0.1	р1 0.9	λ=0.1, μ1 ρ1 0.5	=2, μ2=1 ρ2 0.9	λ=0.5,μ1 ρ1 2.5	=2,μ2=1 ρ2 4.5	λ=0.9, μ1 ρ1 4.5	l =2, μ2=1 ρ2 8.1
ро 0.1 0.2	p1 0.9 0.8	λ=0.1, μ1 ρ1 0.5 0.25	=2, μ2=1 ρ2 0.9 0.4	λ=0.5,μ1 ρ1 2.5 1.25	=2,μ2=1 ρ2 4.5 2	<mark>λ=0.9, μ1</mark> ρ1 4.5 2.25	μ =2, μ2=1 ρ2 8.1 3.6
po 0.1 0.2 0.3	p1 0.9 0.8 0.7	λ=0.1, μ1 ρ1 0.5 0.25 0.17	=2, μ2=1 ρ2 0.9 0.4 0.23	λ=0.5,μ1 ρ1 2.5 1.25 0.83	=2,μ2=1 ρ2 4.5 2 1.17	λ=0.9, μ1 ρ1 4.5 2.25 1.5	μ=2, μ2=1 ρ2 8.1 3.6 2.1
po 0.1 0.2 0.3 0.4	p1 0.9 0.8 0.7 0.6	λ=0.1, μ1 ρ1 0.5 0.25 0.17 0.13	=2, μ2=1 ρ2 0.9 0.4 0.23 0.15	λ=0.5,μ1 ρ1 2.5 1.25 0.83 0.63	-2,μ2=1 ρ2 4.5 2 1.17 0.75	λ=0.9, μ1 ρ1 4.5 2.25 1.5 1.13	μ=2, μ2=1 ρ2 8.1 3.6 2.1 1.35
ро 0.1 0.2 0.3 0.4 0.5	p1 0.9 0.8 0.7 0.6 0.5	λ=0.1, μ1 ρ1 0.5 0.25 0.17 0.13 0.1	2, μ2=1 ρ2 0.9 0.4 0.23 0.15 0.1	λ=0.5,μ1 ρ1 2.5 1.25 0.83 0.63 0.5	ρ2 4.521.170.750.5	λ=0.9, μ1 ρ1 4.5 2.25 1.5 1.13 0.9	ρ2 8.1 3.6 2.1 1.35 0.9
po 0.1 0.2 0.3 0.4 0.5 0.6	p1 0.9 0.8 0.7 0.6 0.5 0.4	λ=0.1, μ1 ρ1 0.5 0.25 0.17 0.13 0.1 0.08	=2, μ2=1 ρ2 0.9 0.4 0.23 0.15 0.1 0.07	λ=0.5,μ1 ρ1 2.5 1.25 0.83 0.63 0.5 0.42	μ=2,μ2=1 ρ2 4.5 2 1.17 0.75 0.5 0.33	λ=0.9, μ1 ρ1 4.5 2.25 1.5 1.13 0.9 0.75	μ <mark>=2, μ2=1</mark> ρ2 8.1 3.6 2.1 1.35 0.9 0.6
po 0.1 0.2 0.3 0.4 0.5 0.6 0.7	p1 0.9 0.8 0.7 0.6 0.5 0.4 0.3	λ=0.1, μ1 ρ1 0.5 0.25 0.17 0.13 0.1 0.08 0.07	=2, μ2=1 ρ2 0.9 0.4 0.23 0.15 0.1 0.07 0.04	λ=0.5,μ1 ρ1 2.5 1.25 0.63 0.5 0.42 0.36	=2,μ2=1 ρ2 4.5 2 1.17 0.75 0.5 0.33 0.21	λ=0.9, μ1 ρ1 4.5 2.25 1.5 1.13 0.9 0.75 0.64	μ <mark>=2, μ2=1</mark> ρ2 8.1 3.6 2.1 1.35 0.9 0.6 0.39
po 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	p1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2	λ=0.1, μ1 ρ1 0.5 0.25 0.17 0.13 0.1 0.08 0.07 0.06	=2, μ2=1 ρ2 0.9 0.4 0.23 0.15 0.1 0.07 0.04 0.03	λ=0.5,μ1 ρ1 2.5 1.25 0.83 0.63 0.5 0.42 0.36 0.31	=2,μ2=1 ρ2 4.5 2 1.17 0.75 0.5 0.33 0.21 0.13	λ=0.9, μ1 ρ1 4.5 2.25 1.5 1.13 0.9 0.75 0.64 0.56	μ <mark>=2, μ2=1</mark> ρ2 8.1 3.6 2.1 1.35 0.9 0.6 0.39 0.23

For each level of ρ_1 random samples of inter-arrival times and service times (X_{1j}, p₀Y_{1j}, j= 1,2...*n*) are drawn from (X₁,Y₁) respectively. Also for each level of ρ_2 random samples of inter-arrival times and service times (p₁X_{2i}, p₀Y_{2i}, j= 1,2...n) are drawn from (X₂,Y₂) respectively. Next N=1000 bootstrap resamples each of size n = 10 and 29 are drawn from the original samples, as well as N=1000 BB replications are simulated for the original samples. According to [Eq-2] to [Eq-9], we obtain 90% calibrated confidence intervals for intensities ρ_i , *i*=1, 2. The above simulation process is replicated N=1000 times and we compute coverage percentages, average lengths and relative coverage of the above mentioned calibrated confidence intervals. We utilize a PC Dual Core and apply Matlab®7.0.1 to accomplish all simulations. Here C.V. represents coefficient of variation corresponding to the inter-arrival/service time distribution. M represents exponential distribution, E₄ a 4-stage Erlang distribution, H^{Pe}₄ a 4-stage hyper-exponential distribution and H^{P0}₄ a 4-stage hypo-exponential distribution. Simulated results of $\hat{\beta}(\alpha)$, $\hat{\beta}(1-\alpha)$, coverage percentage, average lengths and relative coverage for intensities ρ_i , *i*=1, 2 of a two stage open queueing network models (presented in [Table -2]) for 90% calibrated confidence intervals with short run are shown in [Table-3], [Table-4], [Table-5], [Table-6].

Table 2- Different queueing network models simulated for study

Queueing Networks type	Models simulated	C.V. of interarrival time for CPU node	C.V. of interarrival time for I/O node	C.V. of service time for CPU node	C.V. of service time for I/O node
M/G/1 to G/M/1	M/E ₄ /1 to E ₄ /M/1	1	1/2	1/2	1
	$M/H_4^{Pe}/1$ to $H_4^{Pe}/M/1$	1	>1	>1	1
	$E_4/H_4{}^{\rm Pe}/1$ to $H_4{}^{\rm Pe}/E_4/1$	1/2	>1	>1	1/2
6/6/1 (0 6/6/1	$E_4/H_4{}^{\rm Po}/1$ to $H_4{}^{\rm Po}/E_4/1$	1/2	<1	<1	1/2

According to the simulation results shown in [Tables 3-6], we find that average lengths are decreasing but both coverage percentages and relative coverage's are increasing with sample size n. Also we observe that the coverage percentage can approaches to 90% when n increases to 29.

From [Table-7], we observe that under M/G/1 to G/M/1 model the calibrated confidence intervals with inter-arrival distribution and service time distribution of small CV (<1) have greater relative coverage than those of large CV (>1) for intensities ρ_1 and ρ_2 . The estimation approaches Variance-Stabilized Bootstrap-t (VST), Bootstrap-t and Bias-corrected and accelerated bootstrap (BCaB) calibrated confidence interval has the greatest relative coverage. Also the calibrated confidence intervals of model M/E₄/1 to E₄/M/1shows the greatest relative coverage for ρ_1 and ρ_2 . Similarly under G/G/1 to G/G/1 models the calibrated confidence interval with inter-arrival distribution and service time distribution of large CV(>1) have greatest relative coverage than those of small CV(<1) for intensities ρ_1 and ρ_2 . The estimation approaches BCaB, VST, PB, Bootstrap-t and BB has the greatest relative coverage. Also the calibrated confidence intervals of model $E_4/H_4^{Pe}/1$ to $H_4^{Pe}/E_4/1$ show the greatest relative coverage for ρ_1 and ρ_2 . Further we observe that average lengths are decreasing and relative coverage increasing with n increases for ρ_1 and ρ_2 . It is important to point out that, some poor coverage percentage of above confidence intervals with respect to the nominal level 90% may be due to small sample size n.

Conclusions

This paper provides the calibrated confidence intervals for intensities ρ_1 and ρ_2 of two stage open queueing network with feedback. The relative coverage is adopted to understand, compare and assess performance of the resulted confidence intervals. The simulation results imply that VST, Boot-t and BCaB method has the best performance for M/G/1 to G/M/1 and under G/G/1 to G/G/1 the estimation approach PB, VST, Boot-t, BCaB and BB out performs. The above mentioned approaches are easily applied to practical queueing network such as all types of open, closed, mixed queueing networks as well as cyclic, retrial queueing models.

Journal of Statistics and Mathematics ISSN: 0976-8807 & E-ISSN: 0976-8815, Volume 4, Issue 1, 2013

Gedam V.K. and Pathare S.B.

Table 3- Q	Queueing	network	model:	M/E₄/1	to E	₄/M/1.
------------	----------	---------	--------	--------	------	--------

		n=	=10	n	=29	Coverage I	Percentages	Average	Lengths	Relative	Coverage
Intensity Parameters	Estimation Approaches	$\hat{\hat{eta}}(lpha)$	$\hat{\beta}(1-\alpha)$	$\hat{\hat{oldsymbol{eta}}}(lpha)$	$\hat{\beta}(1-\alpha)$	<i>n</i> =10	<i>n</i> =29	<i>n</i> =10	n=29	<i>n</i> =10	<i>n</i> =29
	CAN1	0.033	0.904	0.036	0.92	0.829	0.875	0.582	0.337	1.425	2.598
	CAN2	0.021	0.879	0.02	0.91	0.79	0.856	0.22	0.139	3.592	6.164
		0.012	0.940	0.023	0.933	0.919	0.91	0.271	0.405	0.092	Z.248 5.048
	Boott1	0.015	0.875	0.010	0.910	0.022	0.855	0.563	0.147	1 436	2 613
	Boott2	0.015	0.851	0.015	0.898	0.753	0.863	0.188	0.13	4.005	6.624
po=0.2	VST1	0.075	0.919	0.054	0.931	0.774	0.847	0.513	0.324	1.508	2.611
p1=0.8 o1=0.5	VST2	0.083	0.931	0.053	0.943	0.791	0.87	0.212	0.136	3.738	6.405
and	SB1	0.021	0.929	0.032	0.931	0.891	0.901	0.803	0.372	1.109	2.424
ρ2=0.2	SB2	0.024	0.874	0.019	0.909	0.776	0.856	0.212	0.139	3.665	6.168
	BB1	0.037	0.907	0.035	0.919	0.831	0.878	0.595	0.338	1.397	2.6
	PB1	0.03	0.000	0.022	0.900	0.751	0.045	0.192	0.133	1 131	0.341 2.471
	PB2	0.051	0.894	0.033	0.92	0.769	0.861	0.183	0.127	4.197	6.799
	BCaB1	0.097	0.949	0.073	0.951	0.773	0.843	0.625	0.34	1.237	2.478
	BCaB2	0.055	0.892	0.031	0.917	0.761	0.857	0.178	0.125	4.273	6.85
	CAN1	0.046	0.902	0.048	0.931	0.833	0.872	0.911	0.55	0.914	1.586
	CAN2	0.022	0.867	0.026	0.892	0.777	0.834	0.179	0.108	4.335	7.687
	tCAN1	0.02	0.94	0.036	0.94	0.939	0.916	1.54	0.642	0.61	1.427
	tCAN2 Roott1	0.016	0.888	0.022	0.899	0.809	0.855	0.218	0.116	3.717	1.3/1
	Boott2	0.02	0.00	0.027	0.910	0.010	0.875	0.903	0.50	0.902 4 811	8.052
po=0.6	VST1	0.093	0.92	0.068	0.941	0.772	0.849	0.803	0.525	0.962	1.618
p1=0.4	VST2	0.07	0.928	0.053	0.94	0.785	0.859	0.187	0.113	4.197	7.634
ρ1=0.83 and	SB1	0.029	0.936	0.038	0.936	0.914	0.895	1.279	0.609	0.715	1.469
o2=0.17	SB2	0.022	0.864	0.026	0.888	0.773	0.832	0.176	0.107	4.381	7.755
P= •···	BB1	0.047	0.91	0.047	0.93	0.846	0.865	0.947	0.549	0.893	1.576
	BB2	0.028	0.853	0.028	0.884	0.743	0.816	0.158	0.103	4.698	7.892
	PB1	0.133	0.949	0.093	0.959	0.734	0.83	1.032	0.58	0.712	1.432
	PBZ BCaB1	0.041	0.000	0.030	0.907	0.772	0.833	0.154	0.101	4.997	8.31 1.503
	BCaB2	0.039	0.887	0.037	0.955	0.762	0.836	0.152	0.101	5.006	8.31
	CAN1	0.034	0.891	0.038	0.916	0.843	0.883	0.571	0.335	1.475	2.632
	CAN2	0.015	0.865	0.029	0.902	0.777	0.853	1.02	0.592	0.762	1.441
	tCAN1	0.017	0.946	0.03	0.933	0.938	0.923	0.991	0.395	0.947	2.337
	tCAN2	0.012	0.886	0.028	0.907	0.806	0.86	1.231	0.619	0.655	1.389
	Boott1	0.015	0.873	0.026	0.894	0.8	0.855	0.552	0.321	1.45	2.667
po=0.1	Boott2	0.013	0.833	0.023	0.881	0.744	0.832	0.831	0.549	0.895	1.517
p1=0.9	VST1 VST2	0.009	0.914	0.055	0.929	0.763	0.009	0.524	0.320	0.805	2.039
ρ1=0.5	SB1	0.025	0.922	0.032	0.922	0.906	0.903	0.782	0.369	1.159	2.449
and	SB2	0.017	0.864	0.032	0.905	0.77	0.851	0.989	0.585	0.778	1.455
μ2-0.9	BB1	0.033	0.901	0.041	0.916	0.848	0.878	0.605	0.331	1.403	2.657
	BB2	0.027	0.851	0.034	0.902	0.741	0.842	0.862	0.564	0.86	1.492
	PB1	0.116	0.957	0.081	0.947	0.746	0.83	0.681	0.339	1.096	2.447
	PB2	0.04	0.884	0.046	0.915	0.762	0.839	0.831	0.547	0.917	1.535
	BCaB1 BCaB2	0.111	0.955	0.08	0.946	0.74	0.827	0.043	0.334	1.101 0.032	2.479
	CAN1	0.042	0.000	0.043	0.010	0.863	0.000	0.706	0.340	1 223	1.000
	CAN2	0.023	0.871	0.03	0.905	0.78	0.839	0.795	0.489	0.981	1.716
	tCAN1	0.018	0.933	0.024	0.956	0.942	0.938	1.163	0.537	0.81	1.746
	tCAN2	0.013	0.891	0.026	0.91	0.811	0.844	1.004	0.52	0.808	1.623
	Boott1	0.017	0.878	0.018	0.925	0.842	0.883	0.684	0.447	1.231	1.974
no=0.4	Boott2	0.013	0.835	0.024	0.893	0.732	0.831	0.683	0.463	1.071	1.795
p1=0.6	VST1	0.071	0.916	0.062	0.957	0.816	0.86	0.644	0.42	1.267	2.046
ρ1=0.63	VS12	0.093	0.931	0.059 0.021	0.941	U./81 0.017	U.854	U./5 0.027	0.495	1.041	1./26
and	501 602	0.020 0.021	0.919	0.031	0.903 0 005	0.917	0.913 0.913	0.937	0.490	0.979 0 QR1	1.041
ρ2=0.75	BB1	0.021	0.9	0.045	0.948	0.87	0.872	0.727	0.438	1.196	1.989
	BB2	0.032	0.853	0.033	0.901	0.741	0.825	0.688	0.467	1.078	1.767
	PB1	0.114	0.943	0.09	0.966	0.787	0.835	0.763	0.459	1.031	1.819
	PB2	0.05	0.895	0.042	0.921	0.764	0.838	0.683	0.464	1.119	1.806
	BCaB1	0.105	0.938	0.085	0.962	0.788	0.84	0.727	0.44	1.083	1.908
	BCaB2	0.046	0.889	0.046	0.918	0.756	0.825	0.668	0.452	1.131	1.825

Table 3- Continue...

Internetter	Fatimation	n	=10	n	=29	Coverage F	Percentages	Average	Lengths	Relative	Coverage
Parameters	Approaches	$\hat{\hat{oldsymbol{eta}}}(lpha)$	$\hat{\beta}(1-\alpha)$	$\hat{\hat{oldsymbol{eta}}}(lpha)$	$\hat{\beta}(1-\alpha)$	<i>n</i> =10	<i>n</i> =29	<i>n</i> =10	n=29	<i>n</i> =10	n=29
	CAN1	0.043	0.904	0.045	0.925	0.834	0.884	0.56	0.331	1.49	2.67
	CAN2	0.017	0.852	0.034	0.904	0.753	0.827	0.107	0.064	7.046	12.905
	tCAN1	0.016	0.943	0.032	0.938	0.948	0.922	0.97	0.393	0.977	2.343
	tCAN2	0.011	0.871	0.031	0.909	0.784	0.84	0.133	0.068	5.902	12.429
	Boott1	0.015	0.877	0.018	0.913	0.82	0.885	0.552	0.345	1.486	2.563
po=0.9	Boott2	0.013	0.822	0.027	0.886	0.72	0.818	0.089	0.06	8.122	13.588
p1=0.1	VST1	0.093	0.919	0.066	0.937	0.774	0.855	0.485	0.317	1.596	2.698
ρ1=0.5	VST2	0.084	0.921	0.077	0.936	0.772	0.829	0.102	0.061	7.564	13.521
and	SB1	0.029	0.93	0.039	0.936	0.914	0.908	0.763	0.368	1.197	2.469
ρ2=0.1	SB2	0.021	0.85	0.036	0.903	0.741	0.824	0.103	0.063	7.215	13.037
	BB1	0.044	0.907	0.046	0.924	0.842	0.883	0.578	0.329	1.458	2.687
	BB2	0.029	0.842	0.041	0.901	0.723	0.809	0.092	0.06	7.9	13.383
	PB1	0.133	0.957	0.095	0.954	0.777	0.831	0.659	0.341	1.179	2.435
	BCaB1	0.123	0.952	0.090	0.950	0.768	0.826	0.614	0.331	1.251	2.495
	BCaB2	0.047	0.874	0.057	0.914	0.738	0.819	0.085	0.058	8.666	14.083

		Tab	le 4- Queu	eing netwo	ork model:	$M/H_4^{Pe}/1$ to	o H₄ ^p e/M/1.				
Interester	Fatimation	n	=10	n	=29	Coverage F	Percentages	Average	Lengths	Relative	Coverage
Parameters	Approaches	$\hat{\hat{eta}}(lpha)$	$\hat{\beta}(1-\alpha)$	$\hat{\hat{eta}}(lpha)$	$\hat{\beta}(1-\alpha)$	<i>n</i> =10	<i>n</i> =29	<i>n</i> =10	n=29	<i>n</i> =10	<i>n</i> =29
	CAN1	0.033	0.895	0.039	0.912	0.828	0.878	0.592	0.340	1.399	2.581
	CAN2	0.017	0.867	0.023	0.905	0.788	0.846	0.229	0.141	3.434	6.004
	tCAN1	0.014	0.937	0.024	0.927	0.929	0.912	1.011	0.413	0.919	2.210
	tCAN2	0.009	0.880	0.019	0.907	0.814	0.859	0.295	0.151	2.755	5.690
	Boott1	0.013	0.874	0.020	0.893	0.814	0.861	0.570	0.335	1.429	2.570
	Boott2	0.012	0.838	0.018	0.886	0.761	0.846	0.192	0.130	3.959	6.499
po=0.2	VST1	0.081	0.921	0.064	0.931	0.784	0.864	0.526	0.327	1.490	2.644
p1=0.8	VST2	0.063	0.921	0.057	0.941	0.822	0.861	0.235	0.139	3.491	6.211
p1-0.5	SB1	0.020	0.921	0.030	0.923	0.890	0.903	0.814	0.383	1.093	2.359
o2=0.2	SB2	0.020	0.865	0.024	0.905	0.787	0.846	0.225	0.140	3.496	6.023
1	BB1	0.035	0.900	0.038	0.911	0.833	0.877	0.613	0.341	1.360	2.571
	BB2	0.023	0.859	0.026	0.901	0.767	0.838	0.205	0.135	3.737	6.213
	PB1	0.122	0.953	0.077	0.950	0.779	0.859	0.669	0.355	1.164	2.418
	PB2	0.035	0.889	0.046	0.917	0.794	0.846	0.195	0.127	4.068	6.684
	BCaB1	0.113	0.947	0.077	0.943	0.771	0.855	0.627	0.340	1.229	2.512
	BCaB2	0.033	0.887	0.046	0.923	0.786	0.849	0.193	0.128	4.081	6.631
	CAN1	0.030	0.884	0.041	0.918	0.829	0.855	0.964	0.564	0.860	1.515
	CAN2	0.022	0.858	0.020	0.906	0.753	0.844	0.181	0.120	4.154	7.018
	tCAN1	0.007	0.935	0.024	0.938	0.924	0.902	1.832	0.697	0.504	1.293
	tCAN2	0.014	0.879	0.020	0.917	0.791	0.869	0.228	0.128	3.472	6.809
	Boott1	0.009	0.858	0.018	0.895	0.818	0.841	0.910	0.561	0.899	1.499
	Boott2	0.018	0.829	0.017	0.888	0.697	0.836	0.151	0.110	4.603	7.606
po=0.6	VST1	0.076	0.911	0.058	0.940	0.799	0.843	0.862	0.560	0.927	1.505
p1=0.4	VST2	0.067	0.925	0.059	0.945	0.774	0.849	0.191	0.116	4.044	7.333
p1-0.05	SB1	0.016	0.918	0.032	0.929	0.894	0.888	1.376	0.634	0.649	1.401
$0^{2}=0.17$	SB2	0.020	0.858	0.022	0.904	0.759	0.842	0.184	0.118	4.124	7.109
p= 0	BB1	0.031	0.893	0.037	0.918	0.838	0.859	1.010	0.572	0.830	1.502
	BB2	0.028	0.846	0.027	0.900	0.728	0.825	0.162	0.112	4.492	7.382
	PB1	0.111	0.949	0.078	0.953	0.795	0.837	1.085	0.593	0.733	1.413
	PB2	0.043	0.887	0.045	0.929	0.758	0.833	0.158	0.110	4.812	7.595
	BCaB1	0.102	0.940	0.074	0.950	0.803	0.832	1.004	0.579	0.800	1.436
	BCaB2	0.042	0.884	0.047	0.929	0.741	0.830	0.155	0.109	4.786	7.630
	CAN1	0.037	0.892	0.042	0.920	0.827	0.874	0.593	0.346	1.395	2.525
	CAN2	0.022	0.872	0.026	0.900	0.786	0.851	1.014	0.620	0.775	1.371
	tCAN1	0.012	0.929	0.030	0.940	0.923	0.914	1.040	0.417	0.888	2.189
po=0.1	tCAN2	0.012	0.886	0.021	0.905	0.810	0.869	1.295	0.669	0.626	1.299
p1=0.9	Boott1	0.011	0.867	0.018	0.896	0.810	0.852	0.576	0.345	1.406	2.470
p1=0.5	Boott2	0.013	0.842	0.021	0.889	0.749	0.846	0.874	0.581	0.857	1.455
02=0.9	VST1	0.083	0.917	0.068	0.939	0.777	0.843	0.532	0.331	1.461	2.545
P2 0.0	VST2	0.071	0.922	0.059	0.941	0.790	0.862	1.034	0.620	0.764	1.390
	SB1	0.022	0.910	0.037	0.933	0.890	0.897	0.808	0.385	1.102	2.331
	SB2	0.021	0.869	0.025	0.901	0.783	0.852	1.020	0.625	0.767	1.363

Table 4- Continue...

lateres to a	Fatimation	n	=10	n	=29	Coverage F	Percentages	Average	Lengths	Relative	Coverage
Parameters	Approaches	$\hat{\hat{oldsymbol{eta}}}(lpha)$	$\hat{\beta}(1-\alpha)$	$\hat{\hat{oldsymbol{eta}}}(lpha)$	$\hat{\beta}(1-\alpha)$	<i>n</i> =10	<i>n</i> =29	<i>n</i> =10	<i>n</i> =29	<i>n</i> =10	<i>n</i> =29
	BB1	0.036	0.893	0.041	0.924	0.836	0.881	0.616	0.350	1.357	2.516
po=0.1	BB2	0.027	0.857	0.028	0.898	0.756	0.839	0.907	0.598	0.834	1.402
p1-0.9 o1-0.5	PB1	0.117	0.942	0.083	0.952	0.764	0.835	0.643	0.359	1.188	2.324
p1-0.5	PB2	0.045	0.895	0.055	0.914	0.782	0.842	0.878	0.553	0.891	1.522
$0^{2}=0.9$	BCaB1	0.105	0.938	0.077	0.953	0.768	0.835	0.617	0.358	1.244	2.332
pz 0.0	BCaB2	0.045	0.893	0.052	0.918	0.785	0.851	0.862	0.560	0.911	1.519
	CAN1	0.041	0.902	0.029	0.928	0.832	0.882	0.730	0.451	1.140	1.957
	CAN2	0.022	0.876	0.019	0.893	0.786	0.839	0.846	0.527	0.929	1.592
	tCAN1	0.017	0.942	0.022	0.939	0.929	0.920	1.254	0.525	0.741	1.753
	tCAN2	0.011	0.895	0.014	0.904	0.817	0.854	1.101	0.581	0.742	1.470
	Boott1	0.016	0.885	0.018	0.912	0.825	0.889	0.727	0.437	1.134	2.037
no=0.4	Boott2	0.014	0.854	0.011	0.878	0.780	0.846	0.737	0.499	1.058	1.697
n1=0.6	VST1	0.087	0.922	0.056	0.940	0.775	0.877	0.648	0.420	1.195	2.089
01-0.62	VST2	0.070	0.933	0.055	0.941	0.823	0.871	0.872	0.520	0.944	1.677
p1-0.03	SB1	0.025	0.928	0.025	0.933	0.894	0.907	1.013	0.490	0.883	1.850
and	SB2	0.026	0.875	0.020	0.892	0.780	0.837	0.828	0.523	0.942	1.600
ρ2=0.75	BB1	0.042	0.907	0.031	0.925	0.834	0.875	0.755	0.442	1.104	1.978
	BB2	0.034	0.868	0.020	0.888	0.761	0.829	0.738	0.508	1.032	1.632
	PB1	0.127	0.953	0.075	0.958	0.755	0.877	0.837	0.454	0.902	1.932
	PB2	0.049	0.902	0.036	0.921	0.795	0.856	0.734	0.489	1.083	1.749
	BCaB1	0.119	0.951	0.074	0.954	0.754	0.879	0.799	0.439	0.943	2.000
	BCaB2	0.050	0.895	0.039	0.917	0.783	0.843	0.710	0.477	1.103	1.769
	CAN1	0.039	0.895	0.038	0.910	0.842	0.872	0.582	0.339	1.446	2.576
	CAN2	0.019	0.860	0.023	0.890	0.781	0.838	0.114	0.069	6.861	12.124
	tCAN1	0.018	0.944	0.028	0.932	0.937	0.916	1.005	0.406	0.932	2.258
	tCAN2	0.010	0.885	0.019	0.899	0.824	0.856	0.149	0.075	5.536	11.439
	Boott1	0.011	0.857	0.023	0.900	0.796	0.864	0.552	0.336	1.442	2.573
	Boott2	0.016	0.836	0.015	0.879	0.758	0.837	0.095	0.066	7.998	12.743
po=0.9	VST1	0.084	0.918	0.065	0.932	0.788	0.851	0.523	0.325	1.506	2.621
p1-0.1	VST2	0.067	0.931	0.059	0.936	0.821	0.856	0.119	0.069	6.924	12.459
and	SB1	0.024	0.921	0.033	0.925	0.903	0.899	0.807	0.377	1.120	2.386
$0^{2}=0.1$	SB2	0.020	0.860	0.026	0.889	0.778	0.834	0.114	0.068	6.853	12.272
P= 0	BB1	0.045	0.890	0.039	0.914	0.835	0.877	0.582	0.340	1.434	2.581
	BB2	0.022	0.853	0.026	0.888	0.755	0.827	0.104	0.066	7.269	12.475
	PB1	0.116	0.965	0.084	0.947	0.787	0.846	0.739	0.345	1.065	2.455
	PB2	0.042	0.893	0.047	0.909	0.797	0.835	0.098	0.062	8.104	13.438
	BCaB1	0.104	0.955	0.080	0.945	0.796	0.845	0.663	0.339	1.200	2.489
	BCaB2	0.043	0.892	0.045	0.906	0.790	0.825	0.096	0.061	8.192	13.437

Table 5- Queueing network model: $E_4/H_4^{Pe}/1$ to $H_4^{Pe}/E_4/1$.

		n	=10	п	=29	Coverage F	Percentages	Average	Lengths	Relative	Coverage
Intensity Parameters	Estimation Approaches	$\hat{\hat{eta}}(lpha)$	$\hat{\beta}(1-\alpha)$	$\hat{\hat{oldsymbol{eta}}}(lpha)$	$\hat{\beta}(1-\alpha)$	<i>n</i> =10	<i>n</i> =29	<i>n</i> =10	n=29	<i>n</i> =10	<i>n</i> =29
	CAN1	0.027	0.900	0.041	0.920	0.838	0.873	0.391	0.227	2.146	3.848
	CAN2	0.044	0.920	0.034	0.927	0.846	0.898	0.150	0.094	5.641	9.551
	tCAN1	0.021	0.915	0.034	0.933	0.888	0.897	0.468	0.247	1.899	3.628
	tCAN2	0.022	0.938	0.030	0.933	0.920	0.916	0.197	0.101	4.666	9.083
	Boott1	0.023	0.871	0.028	0.905	0.815	0.862	0.339	0.221	2.407	3.898
	Boott2	0.029	0.893	0.029	0.916	0.809	0.876	0.139	0.090	5.841	9.719
po=0.2	VST1	0.070	0.925	0.075	0.944	0.826	0.853	0.354	0.215	2.335	3.971
p1=0.8	VST2	0.092	0.936	0.055	0.941	0.788	0.876	0.131	0.090	6.009	9.724
p1-0.5 and	SB1	0.032	0.898	0.040	0.921	0.832	0.870	0.378	0.227	2.200	3.829
02=0.2	SB2	0.043	0.919	0.035	0.929	0.849	0.901	0.152	0.094	5.580	9.542
P	BB1	0.040	0.882	0.045	0.913	0.794	0.851	0.334	0.215	2.377	3.954
	BB2	0.053	0.910	0.038	0.925	0.804	0.880	0.134	0.090	6.002	9.797
	PB1	0.068	0.920	0.066	0.942	0.822	0.857	0.340	0.220	2.418	3.894
	PB2	0.104	0.941	0.059	0.942	0.792	0.875	0.139	0.089	5.700	9.795
	BCaB1	0.065	0.920	0.068	0.946	0.814	0.857	0.341	0.222	2.390	3.860
	BCaB2	0.101	0.938	0.058	0.941	0.794	0.870	0.137	0.089	5.816	9.766
po=0.6	CAN1	0.027	0.900	0.041	0.920	0.838	0.873	0.651	0.378	1.287	2.309
p1=0.4	CAN2	0.044	0.920	0.034	0.927	0.846	0.898	0.125	0.078	6.770	11.461
ρ1=0.83	tCAN1	0.021	0.915	0.034	0.933	0.888	0.897	0.779	0.412	1.139	2.177
and ρ2=0.17	tCAN2	0.022	0.938	0.030	0.933	0.920	0.916	0.164	0.084	5.599	10.900

Journal of Statistics and Mathematics ISSN: 0976-8807 & E-ISSN: 0976-8815, Volume 4, Issue 1, 2013

Table 5- Continue...

Internette.	F _4:	n=	=10	n	=29	Coverage F	Percentages	Average	Lengths	Relative	Coverage
Parameters	Approaches	$\hat{\hat{eta}}(lpha)$	$\hat{\beta}(1-\alpha)$	$\hat{\hat{oldsymbol{eta}}}(lpha)$	$\hat{\beta}(1-\alpha)$	<i>n</i> =10	n=29	<i>n</i> =10	<i>n</i> =29	<i>n</i> =10	n=29
	Boott1	0.023	0.871	0.028	0.905	0.815	0.862	0.564	0.369	1.444	2.339
	Boott2	0.029	0.893	0.029	0.916	0.809	0.876	0.115	0.075	7.009	11.662
	VST1	0.070	0.925	0.075	0.944	0.826	0.853	0.590	0.358	1.401	2.383
no-0.6	VST2	0.092	0.936	0.055	0.941	0.788	0.876	0.109	0.075	7.211	11.668
p0-0.6 n1=0.4	SB1	0.032	0.898	0.040	0.921	0.832	0.870	0.630	0.379	1.320	2.297
p1=0.4 p1=0.83	SB2	0.043	0.919	0.035	0.929	0.849	0.901	0.127	0.079	6.695	11.450
and	BB1	0.040	0.882	0.045	0.913	0.794	0.851	0.557	0.359	1.426	2.372
ρ2=0.17	BB2	0.053	0.910	0.038	0.925	0.804	0.880	0.112	0.075	7.202	11.757
	PB1	0.068	0.920	0.060	0.942	0.822	0.857	0.567	0.367	1.451	2.337
	PBZ	0.104	0.941	0.059	0.942	0.792	0.875	0.110	0.074	0.840	11.753
	BCaBI	0.000	0.920	0.000	0.940	0.014	0.857	0.000	0.370	1.434 6.070	2.310
	BGaB2	0.101	0.930	0.022	0.941	0.794	0.070	0.114	0.074	0.9/9	2 755
	CANI	0.023	0.908	0.033	0.922	0.015	0.883	0.400	0.235	2.038	3./55
		0.042	0.900	0.039	0.919	0.043	0.073	0.070	0.400	1.240	2.140
	tCAN1 tCAN2	0.013	0.925	0.027	0.929	0.009	0.094	0.494	0.204	1.730	2.020
	Boott1	0.034	0.929	0.000	0.929	0.031	0.034	0.020	0.439	2 306	2.033
	Boott2	0.021	0.003	0.020	0.300	0.000	0.000	0.617	0.227	1 307	2 233
po=0.1	VST1	0.004	0.007	0.052	0.303	0.810	0.857	0.364	0.331	2 225	3 713
p1=0.9	VST2	0.074	0.930	0.066	0.936	0.812	0.865	0.630	0.386	1 290	2 238
ρ1=0.5	SB1	0.029	0.000	0.031	0.922	0.802	0.883	0.384	0.000	2 091	3 728
and	SB2	0.041	0.911	0.040	0.919	0.851	0.872	0.694	0.408	1.227	2 140
ρ2=0.9	BB1	0.035	0.896	0.038	0.916	0.773	0.861	0.345	0.222	2.242	3 877
	BB2	0.046	0.902	0.043	0.919	0.822	0.862	0.619	0.391	1.328	2.202
	PB1	0.056	0.929	0.051	0.933	0.803	0.856	0.353	0.222	2.275	3.862
	PB2	0.077	0.931	0.068	0.941	0.815	0.861	0.639	0.393	1.275	2.192
	BCaB1	0.053	0.931	0.051	0.933	0.804	0.860	0.356	0.221	2.256	3.883
	BCaB2	0.075	0.931	0.071	0.939	0.811	0.865	0.638	0.386	1.271	2.238
	CAN1	0.034	0.911	0.036	0.907	0.835	0.861	0.480	0.283	1.740	3.047
	CAN2	0.041	0.916	0.042	0.925	0.836	0.869	0.574	0.342	1.456	2.542
	tCAN1	0.017	0.929	0.032	0.914	0.892	0.880	0.618	0.301	1.442	2.925
	tCAN2	0.025	0.944	0.034	0.927	0.912	0.883	0.752	0.367	1.213	2.405
	Boott1	0.022	0.882	0.031	0.891	0.815	0.833	0.433	0.267	1.884	3.125
	Boott2	0.029	0.886	0.031	0.908	0.796	0.854	0.520	0.330	1.531	2.588
po=0.4	VST1	0.069	0.932	0.060	0.925	0.817	0.842	0.446	0.272	1.831	3.092
p1=0.6 o1=0.63	VST2	0.086	0.936	0.057	0.935	0.792	0.850	0.509	0.332	1.557	2.560
and	SB1	0.036	0.910	0.036	0.907	0.832	0.859	0.473	0.282	1.759	3.046
ρ2=0.75	SB2	0.042	0.918	0.042	0.923	0.836	0.869	0.583	0.341	1.434	2.547
	BB1	0.048	0.896	0.039	0.903	0.780	0.842	0.414	0.270	1.886	3.115
	BB2	0.055	0.902	0.044	0.918	0.794	0.850	0.500	0.326	1.587	2.607
	PB1	0.062	0.930	0.057	0.922	0.824	0.849	0.441	0.265	1.867	3.199
	PB2	0.096	0.945	0.065	0.940	0.791	0.854	0.547	0.329	1.447	2.594
	BCaB1	0.061	0.926	0.057	0.920	0.819	0.838	0.435	0.264	1.883	3.180
	BCaB2	0.098	0.941	0.064	0.941	0.780	0.857	0.531	0.330	1.468	2.597
	CAN1	0.022	0.899	0.035	0.906	0.836	0.868	0.401	0.226	2.083	3.848
	CAN2	0.038	0.911	0.037	0.931	0.831	0.871	0.076	0.047	10.927	18.612
	tCAN1	0.010	0.917	0.032	0.912	0.877	0.884	0.526	0.239	1.666	3.705
	tCAN2	0.029	0.930	0.030	0.940	0.889	0.898	0.094	0.051	9.468	17.548
	Boott1	0.014	0.876	0.028	0.896	0.820	0.853	0.357	0.217	2.297	3.936
	Boott2	0.031	0.887	0.027	0.918	0.796	0.858	0.069	0.046	11.600	18.843
po=0.9	VST1	0.067	0.929	0.062	0.928	0.817	0.863	0.360	0.216	2.272	3.988
p1=0.1	VST2	0.081	0.930	0.061	0.948	0.798	0.857	0.068	0.045	11.768	19.151
p1=0.5 and	SB1	0.023	0.896	0.040	0.904	0.835	0.859	0.396	0.220	2.110	3.908
o2=0.1	SB2	0.039	0.913	0.036	0.930	0.834	0.865	0.077	0.047	10.782	18.394
	BB1	0.031	0.885	0 042	0.904	0 804	0 854	0.349	0 213	2 302	4 002
	RR2	0.048	0 905	0.044	0.004	0 796	0.848	0.068	0.044	11 685	19 330
	DD2 DR1	0.040	0.000 A Q1Q	0.044	0.020	0.224	0.86/	0.353	0.010	2 227	A 119
	וטו רפח	0.043	0.010	0.001	0.020	0.024	0.004	0.000	0.210	11 205	18 506
		0.007	0.900	0.001	0.900	0.000	0.009	0.070	0.040	9 947	10.090
		0.001	0.915	0.000	0.924	0.012	0.002	0.040	0.211	2.341	4.094
	BCaB2	0.085	0.932	0.060	0.951	0.792	0.858	0.069	0.046	11.403	10.130

Gedam V.K. and Pathare S.B.

Table 6- Queueing network model: E4/H ₄ Po/1 to H	$H_4^{Po}/E_4/1$.
--	--------------------

Intensity	Estimation	n=	=10	n	=29	Coverage F	Percentages	Average	Lengths	Relative	Coverage
Parameters	Approaches	$\hat{\hat{\beta}}(\alpha)$	$\hat{\beta}(1-\alpha)$	$\hat{\beta}(\alpha)$	$\hat{\beta}(1-\alpha)$	<i>n</i> =10	<i>n</i> =29	<i>n</i> =10	<i>n</i> =29	<i>n</i> =10	<i>n</i> =29
	CAN1	0.027	0.891	0.035	0.919	0.833	0.843	0.387	0.228	2.150	3.691
	CAN2	0.037	0.888	0.033	0.927	0.820	0.878	0.146	0.095	5.601	9.240
	tCAN1	0.015	0.904	0.027	0.921	0.870	0.862	0.488	0.246	1.782	3.505
	tCAN2	0.025	0.909	0.032	0.934	0.884	0.902	0.183	0.101	4.821	8.942
	Boott1	0.020	0.859	0.026	0.902	0.784	0.848	0.338	0.219	2.321	3.873
no=0.2	Boott2	0.025	0.874	0.029	0.907	0.778	0.860	0.136	0.089	5.729	9.694
p1=0.8	VSII	0.052	0.906	0.001	0.930	0.812	0.837	0.373	0.215	2.179	3.886
ρ1=0.5	VO12 001	0.078	0.910	0.052	0.940	0.777	0.077	0.132	0.095	0.007 0.197	9.409
and	SB2	0.029	0.004	0.030	0.917	0.027	0.030	0.379	0.220	5 576	9.261
ρ2=0.2	BB1	0.000	0.032	0.000	0.324	0.027	0.071	0.342	0.034	2 316	3.842
	BB2	0.047	0.884	0.041	0.920	0.772	0.854	0.132	0.088	5.858	9.656
	PB1	0.047	0.911	0.058	0.929	0.824	0.840	0.349	0.213	2.362	3.953
	PB2	0.086	0.917	0.056	0.946	0.774	0.870	0.132	0.092	5.858	9.478
	BCaB1	0.043	0.904	0.055	0.926	0.819	0.837	0.344	0.212	2.380	3.953
	BCaB2	0.078	0.912	0.062	0.946	0.781	0.863	0.132	0.090	5.934	9.545
	CAN1	0.026	0.913	0.033	0.922	0.857	0.861	0.674	0.385	1.272	2.237
	CAN2	0.038	0.905	0.033	0.921	0.840	0.868	0.126	0.077	6.657	11.226
	tCAN1	0.018	0.926	0.029	0.930	0.891	0.887	0.821	0.413	1.086	2.150
	tCAN2	0.031	0.923	0.028	0.926	0.889	0.889	0.153	0.083	5.812	10.694
	Boott1	0.021	0.886	0.023	0.896	0.825	0.843	0.590	0.363	1.398	2.321
no-0 6	Boott2	0.033	0.867	0.026	0.901	0.776	0.860	0.109	0.073	7.116	11.781
po=0.6 n1=0.4	VST1	0.063	0.937	0.047	0.946	0.826	0.874	0.620	0.389	1.333	2.249
01=0.4	VST2	0.082	0.922	0.053	0.934	0.791	0.864	0.112	0.074	7.079	11.653
and	SB1	0.029	0.913	0.032	0.919	0.851	0.859	0.660	0.384	1.289	2.239
ρ2=0.17	SB2	0.041	0.909	0.032	0.921	0.849	0.865	0.128	0.078	0.05/	11.099
	BBI	0.038	0.897	0.030	0.912	0.809	0.835	0.579	0.303	7.398	2.301
	DD2 DD1	0.040	0.000	0.037	0.910	0.003	0.039	0.111	0.072	1 308	11.3/0
		0.009	0.920	0.047	0.935	0.030	0.000	0.394	0.309	6.845	2.002
	BCaB1	0.050	0.928	0.030	0.004	0.823	0.001	0.591	0.075	1 393	2 334
	BCaB2	0.089	0.931	0.054	0.931	0.787	0.856	0.115	0.072	6.823	11.827
	CAN1	0.017	0.902	0.025	0.920	0.847	0.867	0.418	0.241	2.027	3.603
	CAN2	0.040	0.911	0.047	0.928	0.857	0.857	0.681	0.405	1.259	2.118
	tCAN1	0.008	0.926	0.022	0.924	0.889	0.882	0.553	0.255	1.606	3.454
	tCAN2	0.029	0.929	0.044	0.935	0.907	0.878	0.843	0.430	1.075	2.040
	Boott1	0.008	0.873	0.021	0.908	0.815	0.876	0.372	0.227	2.191	3.853
	Boott2	0.033	0.894	0.041	0.914	0.821	0.837	0.624	0.388	1.315	2.160
po=0.1	VST1	0.064	0.930	0.056	0.940	0.809	0.871	0.367	0.225	2.207	3.879
o1=0.5	VST2	0.083	0.927	0.067	0.950	0.802	0.852	0.605	0.398	1.326	2.143
and	SB1	0.017	0.901	0.026	0.918	0.842	0.864	0.415	0.238	2.028	3.635
ρ2=0.9	SB2	0.040	0.914	0.046	0.931	0.858	0.861	0.695	0.410	1.234	2.101
	BB1	0.027	0.893	0.031	0.916	0.819	0.847	0.363	0.226	2.255	3.743
	BB2	0.055	0.905	0.050	0.926	0.001	0.838	0.003	0.389	1.340	2.154
		0.047	0.920	0.000	0.934	0.030	0.004	0.300	0.210	2.209	3.923 2.085
	RCaR1	0.075	0.941	0.003	0.934	0.000	0.050	0.363	0.412	2 274	2.005
	BCaB2	0.040	0.935	0.069	0.952	0.808	0.855	0.646	0.220	1 251	2 105
	CAN1	0.028	0.892	0.033	0.002	0.837	0.883	0.481	0.299	1 739	2 953
	CAN2	0.034	0.904	0.042	0.932	0.838	0.846	0.572	0.344	1.465	2.000
	tCAN1	0.017	0.912	0.030	0.934	0.876	0.889	0.603	0.315	1.452	2.820
	tCAN2	0.025	0.917	0.039	0.936	0.886	0.874	0.699	0.363	1.268	2.405
	Boott1	0.023	0.865	0.027	0.919	0.773	0.872	0.420	0.286	1.838	3.046
	Boott2	0.025	0.870	0.036	0.911	0.795	0.828	0.505	0.323	1.574	2.561
po=0.4	VST1	0.065	0.920	0.066	0.945	0.804	0.851	0.449	0.276	1.792	3.082
p1=0.6	VST2	0.075	0.917	0.064	0.950	0.796	0.837	0.507	0.332	1.571	2.521
p1-0.05 and	SB1	0.028	0.891	0.033	0.931	0.834	0.878	0.478	0.298	1.745	2.945
o2=0.75	SB2	0.037	0.902	0.044	0.930	0.835	0.843	0.571	0.340	1.463	2.478
	BB1	0.033	0.876	0.041	0.928	0.799	0.863	0.427	0.281	1.871	3.068
	BB2	0.049	0.891	0.049	0.924	0.794	0.819	0.496	0.322	1.602	2.546
	PB1	0.065	0.916	0.062	0.942	0.801	0.850	0.424	0.2/7	1.88/	3.067
	PB2	0.085	0.929	0.0/1	0.953	0.798	0.833	0.51/	0.338	1.544	2.466
	BCaB1	0.060	0.913	0.068	0.941	0.806	0.841	0.423	0.273	1.905	3.084
	BCaB2	0.076	0.922	0.071	0.945	0.793	0.831	0.510	0.326	1.553	2.545

Journal of Statistics and Mathematics ISSN: 0976-8807 & E-ISSN: 0976-8815, Volume 4, Issue 1, 2013

Table 6- Continue...

Internetty.	Fotimation	n	=10	n	=29	Coverage P	ercentages	Average	Lengths	Relative	Coverage
Parameters	Approaches	$\hat{\hat{oldsymbol{eta}}}(lpha)$	$\hat{\beta}(1-\alpha)$	$\hat{\hat{eta}}(lpha)$	$\hat{\beta}(1-\alpha)$	<i>n</i> =10	<i>n</i> =29	<i>n</i> =10	<i>n</i> =29	<i>n</i> =10	<i>n</i> =29
	CAN1	0.027	0.892	0.044	0.926	0.830	0.875	0.382	0.227	2.174	3.861
	CAN2	0.038	0.913	0.039	0.942	0.855	0.891	0.076	0.048	11.284	18.599
	tCAN1	0.013	0.906	0.036	0.929	0.862	0.893	0.491	0.243	1.756	3.682
	tCAN2	0.023	0.935	0.031	0.948	0.908	0.915	0.098	0.052	9.264	17.493
	Boott1	0.015	0.860	0.035	0.904	0.796	0.855	0.341	0.215	2.331	3.981
	Boott2	0.030	0.891	0.029	0.929	0.821	0.887	0.069	0.047	11.898	18.962
po=0.9	VST1	0.060	0.916	0.068	0.940	0.810	0.855	0.359	0.217	2.257	3.940
p1=0.1	VST2	0.089	0.933	0.062	0.959	0.808	0.882	0.066	0.046	12.225	19.116
ρ1-0.5	SB1	0.029	0.889	0.042	0.922	0.818	0.873	0.374	0.226	2.184	3.867
$a_{0}^{2}=0.1$	SB2	0.043	0.913	0.036	0.940	0.854	0.891	0.076	0.048	11.271	18.408
pz-0.1	BB1	0.037	0.877	0.045	0.919	0.774	0.856	0.332	0.217	2.334	3.947
	BB2	0.053	0.901	0.046	0.937	0.808	0.874	0.066	0.045	12.213	19.385
	PB1	0.054	0.910	0.061	0.936	0.797	0.857	0.336	0.218	2.369	3.936
	PB2	0.096	0.938	0.065	0.956	0.807	0.878	0.070	0.047	11.538	18.799
	BCaB1	0.057	0.909	0.061	0.934	0.788	0.855	0.332	0.216	2.373	3.954
	BCaB2	0.090	0.937	0.064	0.952	0.803	0.877	0.070	0.046	11.514	19.094

Note [for Table-3 to Table-6]

1. Boldface denotes the greatest relative coverage among estimation approaches.

2. Calibrated confidence intervals of p1 under different estimation approaches are denoted by CAN1, Exact-t1, Boot-t1, VST1, SB1, BB1, PB1, BCaB1 and that of ρ_2 are denoted by CAN2 Exact-t2, Boot-t2, VST2, SB2, BB2, PB2 and BCaB2.

Table 7-	Performances	of the	estimation	approaches	of inten.	sities
rubic i	1 ononnuneco	01 1110	countation	upprouonos	or mitorn	511100

Queueing Network Type	Queuing Network simulated	Queueing Network with greater relative coverage	Intensity Parameters	Estimation approach with greatest relative coverage	
				n=10	n=29
	$M/E_4/1$ to E_4/M /1 and $M/H_4{}^{\rm Pe}/1$ to $H_4{}^{\rm Pe}/$ M/1	M/E4/1 to E4/M/1	ρ ₁ =0.50, ρ ₂ =0.20	VST	Boot-t
				BCaB	BCaB
			ρ1=0.83, ρ2=0.17	VST	VST
				BCaB	BCaB
M/C/1 to C/M/1			ρ_1 =0.50, ρ_2 =0.90	VST	Boot-t
				BCaB	PB
			ρ ₁ =0.63, ρ ₂ =0.75	VST	VST
				BCaB	BCaB
			ρ ₁ =0.50, ρ ₂ =0.10	VST	VST
				BCaB	BCaB
	$E_4/H_4^{Pe}/1$ to $H_4^{Pe}/E_4/1$ and $E_4/H_4^{Po}/1$ to $H_4^{Po}/E_4/1$	E4/H4 ^{Pe} /1toH4 ^{Pe} /E4/1	ρ ₁ =0.50, ρ ₂ =0.20	PB	VST
				VST	BB
			ρ ₁ =0.83, ρ ₂ =0.17	PB	VST
				VST	BB
			ρ_1 =0.50, ρ_2 =0.90	Boot-t	BCaB
6/6/1 10 6/6/1				BB	BCaB
			ρ ₁ =0.63, ρ ₂ =0.75	BB	PB
				BB	BB
			ρ ₁ =0.50, ρ ₂ =0.10	BCaB	PB
				VST	BB

D-f

References	[9] Efron B. (1987) J. Am. Stat. Assoc., 82, 171- 200.			
[1] Beran R. (1987) Biometrika, 74, 457-468.	[10]Guntur B. (1991) Quality Progress, 97-103.			
[2] Burke P.J. (1956) Operations Research, 4, 699-704.	[11]Hall P. (1986) Ann. Statist., 14, 1431-1452.			
[3] Disney R.L. (1975) Trans. A.I.E.E., 7, 268-288.	[12]Hall P. and Martin M.A. (1988) <i>Biometrika,</i> 75, 661-671.			
[4] Efron B. and Gong G. (1983) Am. Stat., 37, 36-48.	[13]Hogg R.V. and Craig A.T. (1995) Introduction to Mathematical			
[5] Efron B. and Tibshirani R.J. (1986) Stat. Sci., 1, 54-77.	Statistics, Prentice- Hall, Inc.			
[6] Efron B. and Tibshirani R. (1993) An Introduction to the Bootstrap,	[14]Jackson J.R. (1957) Operations Research, 5, 518- 521.			
Chapman and Hall, New York.	[15]Ke J.C. and Chu Y.K. (2009) Computational Statistics, 24(4), 567-			
[7] Efron B. (1979) Annals of Statistics, 7, 1-26.	582.			
[8] Efron B. (1982) SIAM Monograph, 38.	[16]Loh W.Y. (1987) J. Amer. Statist. Assoc., 82,155-162.			

Journal of Statistics and Mathematics

ISSN: 0976-8807 & E-ISSN: 0976-8815, Volume 4, Issue 1, 2013

- [17]Loh W.Y. (1991) Statistica sinica, 1, 477-491.
- [18]Miller R.G. (1974) Biometrika, 61, 1-15.
- [19]Mooney C.Z. and Duval R.D. (1993) Bootstrapping: a nonparameric approach to Statistical inference, SAGE Newbury Park.
- [20]Rousses G.G. (1997) A Course in Mathematical Statistics, 2nd ed., Academic Press, New York.
- [21] Rubin D.B. (1981) The Annals of Statistics, 9, 130-134.
- [22]Thiruvaiyaru D. and Basava I.V. (1996) Stochastic Processes and Statistical Inference, New Age International Publications, New Delhi, 132-149.
- [23]Thiruvaiyaru D., Basava I.V. and Bhat U.N. (1991) *Queueing Systems*, 9, 301-312.
- [24] Young G.A. (1994) Stat Sci., 9, 382-415.