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Introduction 

Tuberculosis (TB) is the leading cause of death worldwide due to an 
infectious disease, killing around 2 million people annually, primarily 

in developing countries. Over one third of the world’s population is 
infected with TB with approximately 8 million new cases of infection 

every year [1]. TB incidence is also on the rise because of the cor-
respondingly high HIV infection rates. These two diseases progress 

at faster rates in co-infected individuals. The emergence of multi-

drug-resistant strains of Mycobacterium tuberculosis (Mtb) has in-
tensified efforts to discover novel drugs for tuberculosis (TB) treat-
ment. Targeting the persistent state of Mtb, a condition in which Mtb 

is resistant to conventional drug therapies, is of particular interest. 
Persistent bacteria rely on metabolic pathways that are distinct from 

active infection Mtb as the environmental conditions of the persis-

tent state are different (e.g., low nutrient). The emergence of exten-
sively resistant tuberculosis has increased the failure rate and cost 

of treatment [2,3]. This has prompted further interest in the develop-
ment of more effective TB treatment strategies. 

Two-component systems (TCS) are majorly involved in sensing and 
responding to changing environments in bacteria [4]. TCS are found 
in bacteria, fungi, and plants [5,6] and are already being exploited 

as new antibiotic targets [7,8]. These systems consist of a sensor 
kinase which autophosphorylates histidine, then transphosphory-
lates a conserved aspartate of its cognate transcriptional regulator. 
There is significant experimental evidence that the transcriptional 
regulator DevR (also called dosR) is a key factor in the metabolic 
shift-down to non-replicative persistence. Previous studies have 
identified DevR as a strong candidate for therapeutic intervention [9
-15]. Also it has been reported that DevR is a stationary-phase reg-
ulator required for adaptation to oxygen starvation and resistance to 
heat stress in M. smegmatis. [16]. Thus DevR is proposed to be an 
attractive target for the development of inhibitors against persistent 

Mycobacterial infection. 

Advances in computational techniques have enabled virtual screen-

ing to have a positive impact on the discovery process. Virtual 

screening utilizes docking and scoring of each compound from a 

dataset and the technique used is based on predicting the binding 

modes and binding affinities of each compound in the dataset by 

means of docking to an X-ray crystallographic structure [17].  

Virtual screening studies reported in literature stated the importance 
of dataset, algorithms and scoring functions. This provided us the 
rationale to screen plant based compounds. In this paper we report 
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interaction profile of various compounds from plant sources using 

DevR as the target protein. 

Materials and Methods 

Homology Model Development 

Homology modeling is a theoretical method that is used to predict 

the structure of a sequence with an accuracy that is comparable to 

the best results achieved experimentally. The modeled protein qual-
ity is extremely dependent on the identity between the target and 

template proteins. The DevR protein sequence was collected from 
the Uni-Prot Protein Database (UniprotID: A0R2V2).Similarity 

search for DevR in the Protein Data Bank (http://www.rcsb.org) was 
performed using the BLAST server [18]. The protein similarity 

search identified a very similar protein structure 3C3W which has 
85% sequence identity with A0R2V2. So this structure(3C3W) was 

used as a DevR template to generate the model. The model was 
generated using Prime (Schrodinger, LLC, New York, USA) [19], 

and then the energy was minimized using the OPLS (optimized 
potentials for liquid simulations) 2005force-field [20]. 

Model Validation 

The validation of the structure model obtained from Prime was per-
formed by inspecting the psi/phi Ramachandran Plot obtained from 

PROCHECK analysis [21]. In order to assess the reliability of the 
modeled structure of DevR, we calculated the root mean square 

deviation (RMSD) by superimposing it on the template structure 
using Pymol. 

Active Site Prediction 

The active site of the modeled protein was investigated using the 

SiteMap program [22]. This software generates information on the 
binding sites characteristics using novel search and analytical facili-

ties: a SiteMap calculation begins with an initial search step that 

identifies or characterizes-through the use of grid points-one or 
more regions on the protein surface that may be suitable for binding 

ligands to the receptor. Contour maps are then generated, produc-
ing hydrophobic and hydrophilic maps [23]. The hydrophilic maps 

are further divided into donor, acceptor, and metal-binding regions. 
The evaluation stage, which concludes the calculation, involves 

assessing each site by calculating various properties: the number of 
site points, a measure of the size of the site; exposure/enclosure, 

two properties providing different measures of how available the 
site is to the solvent; contact, which measures how strongly the 

average site point-interacts with the surrounding receptor via van 
der Waals nonbonding interactions; donor/acceptor character, a 

property related to the sizes and intensities of H-donor and H-
acceptor regions; and SiteScore, an overall property based on the 

previous properties, constructed and calibrated so that the average 

SiteScore for a promising binding site is 1.0 [23]. 

Protein Preparation 

The protein preparation wizard of Schrodinger suite was used to 
prepare protein. The protein was preprocessed by deleting the sub-

strate cofactor as well as crystallographically observed water mole-
cules (water without H bonds). The Hbonds were added to the pro-

tein, atomic charges were assigned, protanation states were gener-
ated and then minimized using the OPLS 2005 force field until the 

average root mean square deviation for non-hydrogen atoms reach-
es 0.30°A and the resulting optimized structure was used for further 

studies. 

Ligand Preparation 

The 143 antitubercular inhibitors were retrieved from the PUBMED 
literature search [24,25]. The chemical structures of these mole-
cules were downloaded f rom PubChem (ht tp: / /
pubchem.ncbi.nlm.nih.gov/), few of these structures are not availa-
ble in PubChem, hence we used ChemSketch version 11.01 (http://
www.acdlabs.com) to draw those structures. These ligands were 
prepared using LigPrep 2.3 module of Schrodinger 9.0suite which 
utilizes Optimized Potentials for Liquid Simulations-2005 (OPLS-
2005) forcefield for ligand geometry optimization. Tautomers were 
generated for the ligand datasets and then, neutralized. It generat-
ed the corresponding low energy 3D conformers among 32 stereoi-

somers per ligand [26]. 

Structure-Based Virtual Screening 

All the ligands which were prepared using LigPrep were then sub-
jected for docking against the molecular target DevR using Glide, 
version 5.5 [27] mode. Glide used a series of hierarchical filters to 
search for possible locations for the ligands in the active site region 
of the receptor. For the grid-based ligand docking, the receptor grid 
generation file was used. The processes of virtual screening were 
carried in three phases, docking simulations of varying precisions 
(high-throughput virtual screening (HTVS), Standard precision (SP) 
and extra precision (XP)) and computational intensities. Exhaustive 
searches were made for all the core conformations of the ligand 
followed by the removal of orientations having steric clashes. In the 
greedy based scoring phase, all the possible interactions of the 
ligand with the receptor were reported. Glide Extra Precision (XP) 
was selected in order to get a good correlation between good poses 
and good scores. After removing the duplicates, top 4 ligands from 

XP docking were considered for visual inspection. 

Result and Discussion 

Tuberculosis treatment with new improved drugs is a high priority to 
addressing the global problem of resistance to existing antitubecu-
lar drugs. DevR is a key regulator of the hypoxia-induced dormancy 
response in M.tb and have been tipped to be promising target for 
the development of new antitubercular drugs. The homology model 
of DevR(A0R2V2) was generated using two component transcrip-
tional regulatory protein (PDB 3C3W) as template. The sequence 
alignment of the templates to the target sequence [Fig-1] showed 
that the overall homology of the target sequence was greater for 
3C3W by about 85%. There were appreciable numbers of structur-

ally conserved regions. 

Fig. 1- Sequence alignment of A0R2V2 and 3C3W 
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The homology model [Fig-2] resulted in a structure with RMSD of 
<1.0 for the heavy atoms and backbone. This may suggest a rea-

sonable 3D model. 

Fig. 2- Three Dimensional Structure of modelled DevR Protein 

The Ramachandran plot of the DevR model from PROCHECK 
showed a normal distribution of points with Phi (Φ) angles mostly 
restricted to negative values and Psi (Ψ) values clustered in a few 
distinct regions. It also showed that the residues in most favored 

region was 97.9 % and residues in allowed region was 2.1% [Fig-3].  

Fig. 3- Ramachandran Plot for the modelled DevR. The plot is orga-
nized as follows: Glycine, proline and all other residues are plotted 
as triangles, squares, and circles respectively. The red, yellow and 
white regions represent the favoured, allowed and the disallowed 

regions respectively. 

The calculated root mean square deviation between the target and 

the template structure was found to be 0.174 Å [Fig-4].  

Fig. 4- Superimposition of modelled DevR (target) on 3c3w 
(template). Green represents the target and yellow represents the 

template. 

The binding site of the DevR model is made up of a narrow channel 
that leads to a deep cavity lined by the amino acid residues that are 
of great importance to the enzymes catalytic machinery. In sili-
co predicted active sites for target protein were represented in [Fig-
5] (Arg56, Leu57, Pro58, Asp59, Gly60, Asn61, Leu161, Gly164, 
Leu165, Thr166, Asn167, Lys168, Ile170, Glu178, Lys182 and 

Val.185). 

Fig. 5- Predicted binding site of target protein DevR 

To gain insights into the structural basis for its activity, natural inhib-
itors were docked into the active site of the target protein. A correla-
tion was calculated by Glide score and other docking parameters. 
For theoretical prediction of analogues, mainly three parameters 
were taken for consideration, these included G-score, Glide energy 
and hydrogen bonds. On the basis of these parameters the binding 
affinity of ligands toward the receptor are discussed here. From a 
total of 143 compounds, best four compounds were selected based 
on docking results. Higher negative value of G-score indicated en-
hanced binding affinity of the ligand with the receptor. The preferred 
ligands dissectol A, Goniotriol, Mangiferin and Sclareol had a G-
score value of -8.02456, -7.426, -6.713 and -6.559, respectively. 
The docking results are revealed in [Table-1]. On analysing the 
docking results, all the four compounds had more than three H-
bond interactions with the receptor indicating that if the H-bond 
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interaction was more, the binding affinity of the ligand was higher. 
The ligand (dissectol A) had seven hydrogen bond interactions with 
target protein via residues Gly 60, Asn 61, Lys 182, Glu 178and 
Asn167. The compounds which showed very high scores and its 
interaction through hydrogen bonds with DevR are shown in [Fig-6]. 
This allows us to conclude that the compounds which have high 
binding score, high binding energy and have more hydrogen bonds 

are best inhibitors of DevR. 

Table 1- Docking results of best four compounds 

Fig. 6- H-bond interaction between target DevR and the com-
pounds (a) dissectol A, (b) Goniotriol, (c) Mangiferin and (d) 

Sclareol. 

Conclusion  

Screening methods are routinely and extensively used to reduce 
cost and time of drug discovery. It has been clearly demonstrated 
that the approach utilized in this study is successful in finding novel 
anti-tuberculosis inhibitors from plants. Compound dissectol A, in 
particular, from Incarvillea dissectifoliola showed high binding affini-

ty against DevR.  
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Source Compound Receptor atom Ligand atom Distance G score 

Incarvillea 
dissectifoliola 

dissectol A Gly 60(O) H 2.83 

-8.02456 

Asn 61(NH) O 2.18 

Lys 182(NH) O 2.84 

Glu 178(O) H 2.82 

Asn167(O) H 2.75 

Asn 167(NH) O 3.17 

Asn 167(NH) O 2.28 

Goniothalamus 
laoticus 

Goniotriol Gly 60(O) H 2.86 

-7.426 

Asn 61(NH) O 2.31 

Arg 56 (NH) O 2.8 

Leu 57 (O)  O 1.93 

Asn 167(NH) O 2.01 

Canscora 
decussata 
Schult. 

Mangiferin Gly 164(O) H 2.46 

-6.713 
Asn 167(NH) O 3.17 

Lys 182(NH) O 3.01 

Lys 168(NH) O 3.47 

Juniperus 
excelsa 

Sclareol Gly 60(O) H 1.9 

-6.559 
Gly 60 (O) H 2.14 

Leu 57(O) H 2.18 

Asn 61 (NH) O 2.87 

a b 

c d 
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