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Introduction 

The performance of high-throughput analytical instruments has 
been enhanced so much in recent years that it is becoming feasible 
to measure comprehensive time course data of metabolite concen-
trations, in some cases even in living cells [1-5]. The resulting data 
are very valuable, as they portray the collective functionality of cel-
lular metabolism in unprecedented detail. At the same time, the 
data in themselves only provide limited insight and mandate the 
development of corresponding theoretical advances and computer-
aided techniques that extract as much information from the meta-
bolic time series as possible. The reward for such developments is 
substantial: if valid mathematical models can be constructed from 
experimental time series data, it may become possible to explore 
with computer simulations of metabolic pathway systems what is 
actually happening in cells, for instance, in response to some envi-

ronmental demand or stress [6-12]. 

The true format of optimal mathematical representations of metabo-
lism is unknown. This fact poses a great challenge, because about 
any parameter estimation or simulation technique assumes some 
functional form within which the parameters are optimally adjusted 

or the dynamics of a system is computed. Dynamic Flux Estimation 
(DFE) [13] is an attempt to characterize processes within biological 
systems with minimal prior knowledge. While intriguing in principle, 
DFE requires a complete set of time series data and, more limiting, 
systems that contain as many independent fluxes as system varia-
bles. This situation is seldom given, thus requiring the augmentation 
of DFE with additional a priori knowledge or assumptions regarding 
a subset of fluxes. 

Power-law equations within the modeling framework of Biochemical 
Systems Theory (BST) [14-20] have proven to be useful defaults for 
the construction of models for metabolic reaction networks. Three 
reasons for their utility are that BST models are based on rigorous 
approximation theory, that they can easily be constructed directly 
from the topology of a metabolic map, and that each parameter in 
these models has a uniquely defined meaning and interpretation, 
which facilitates the moving back and forth between biochemistry 
and mathematics. Whereas it is easy to set up a BST model for a 
pathway system in a symbolic format, the identification of optimal 
parameter values continues to be a significant challenge. As a con-
sequence, numerous direct and indirect optimization methods for 
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BST models have been proposed in recent years; examples include 
[21-27]. None of them, however, is effective in all practical cases. 

One partial strategy for system identification that has turned out to 

be quite effective is the estimation of slopes from time series data. 

The advantage of this step is that it converts the estimation of differ-

ential equations into an estimation task exclusively involving sys-

tems of algebraic equations. As an added benefit, this strategy per-

mits the decoupling of differential equation models into several 

smaller estimation tasks that may be executed in parallel or se-

quentially [28-30]. 

In spite of numerous advances in recent years, the estimation of 

kinetic parameters, even for moderately sized pathway systems, is 

still difficult because the task is nonlinear, measured time course 

data always contain noise, and the most appropriate functions to 

represent the data are simply not known. To alleviate this problem, 

we propose here a coarse yet efficient estimation of parameter 

values that is based on linear regression and may be considered a 

simplification of an earlier method [21,31]. The method permits 

either the full construction of an initial model, under the assumption 

that power-law functions are reasonable approximations, or the 

characterization of a few fluxes that can subsequently be used to 

execute DFE. The latter case minimizes the assumption that the 

power-law form is adequate. In the following we first introduce the 

concepts and details of the coarse estimation technique and then 

evaluate this technique against data created with an artificial small 

system and by analyzing a metabolic pathway described in the 

literature. In both cases, the method, with its different variations, 

yields satisfactory fits. 

Methods 

S-system Differential Equations 

BST models come in two main varieties. S-system models consist 

of differential equations that express the dynamics of dependent 
valuables (metabolite concentrations) in the following format: 

(1) 
 

Here, the dependent variables Xi (i = 1, ..., n) represent metabolite 

pools or concentrations, and m additional variables may be included 
as factors or modulators that remain unaffected by the action of the 

system; t is time. All influxes into each metabolite pool are collec-
tively formulated as a single power-law term, and the analogous is 

done for all effluxes. The parameters αi and βi (i = 1, ..., n) are ag-
gregate rate constants of the influx and efflux terms, respectively, 

while gij and hij (i = 1, ..., n; j = 1, …, n+m) are kinetic orders that 
reflect the strength and directionality of the effect a variable has on 

a given influx or efflux. 

In the related Generalized Mass Action (GMA) system, each influx 

and each efflux is represented with its own power-law term, so that 
each equation may contain several positive and several negative 

terms. The format with analogous parameter names is therefore 

 

(2) 

 

where Ti is the number of terms in the ith equation. GMA and S-
systems have been discussed extensively in the literature. A recent 
comprehensive review is [20]. 

Slope-estimation and Decoupling  

It is useful to plot each set of the measured metabolite concentra-
tions Xi(tk) at the time points tk (k = 1, 2, ..., K) and to estimate the 
slopes of the trend lines at these time points. Each slope Si(tk) (k = 
1, 2, ..., K) corresponds directly to the derivative dXi/dt at time tk, so 
that the two may be substituted for parameter estimation purposes. 
As a result, each differential equation may be represented by a set 
of K algebraic equations. For instance, in the case of an S-system 
model, the ith equation can be substituted point-wise with the follow-

ing algebraic equations:  

 

 

 

 

 

 (3) 

 
 
 
 

 

[28-30]. Since experimental data usually contain noise, it is benefi-
cial to smooth the time series data. Numerous methods are availa-
ble for this purpose [32-37]. Once the data are smoothed, values of 
Xi(tk) and Si(tk) (k = 1, 2, ..., K) may be obtained from the time series 
not only at the time points corresponding to actual measurements, 
but at essentially arbitrary time points, so that more instances are 
available to construct the set of algebraic equations. Subsequently, 
these equations are used to estimate the kinetic parameters αi, gij, 
βi and hij. It is noted that this technique automatically decouples the 
differential equations, and that the parameter estimation maybe 
performed for one differential equation at a time or in parallel. In the 
following, we will merge independent variables, which are typically 
constant, with the corresponding rate constants and therefore let 
the products in the equations run to n rather than n+m. This deci-

sion does not affect the generality of our methods and results. 

Parameter Estimation Through Approximation and Linear Re-
gression 

In an S-system model, the efflux from a metabolite pool at each 

time point tk is given by 

(4) 

where Xjk = Xj(tk). Once the slopes Sik = Si(tk) are estimated, the 

corresponding equation in (3) may equivalently be written as 

(5) 

Suppose that the efflux in [Eq-4] only depends on the metabolite Xi 
itself, which is a relatively frequent occurrence. Then, [Eq-4] simpli-

fies to [Eq-6]: 

(6) 

The value of the kinetic order hii typically falls within a small range 
between 0 and 1 [18,38,39], while βi is unconstrained, except that it 
must be non-negative. It is known that there is a certain degree of 
compensation between hii and βi, so that two power-law functions, 
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for instance, one with hii = 0.4 and one with hii = 0.5, can be made 
very similar by an adjustment of βi, as long as the range for Xi is 
relatively small. Thus, a relatively coarse grid of hii and βi covers 
most essential power-law behaviors, as long as very high accuracy 

is not required and the variable Xi does not vary too much.  

For any combination of assumed grid values for hii and βi and for 
observed concentration values Xik, the terms V-ik and Sik in [Eq-5] 
and [Eq-6] are real numbers. Thus, substituting these numbers in 
[Eq-5] and taking logarithms of both sides permits the application of 

linear regression with the residual function 

(7) 

 

The result of the regression consists of optimized parameter values 

αi and gij, for each set of grid values for hii and βi. 

If the degradation term contains variables other than Xi itself, [Eq-4] 
is used as opposed to [Eq-6], and the grid needs to be extended by 

one or more dimensions for the linear regression. If the procedure is 
used as a preliminary step for DFE, only a few fluxes have to be 

estimated and one may choose efflux terms with only one or two 
dependent variables. We will demonstrate this strategy later. 

Estimation Strategies for Pathway Systems 

The parameter determination may follow alternative procedures. It 

may be accomplished backwards, forwards, with or without con-

straints, or as a preliminary step for DFE. Each variant is presented 
separately. It is always assumed that the concentration trend lines 

had been smoothed and that slopes had been obtained. In the fol-
lowing, the methods are generally demonstrated for one equation at 

a time. 

Backward Estimation 

Considering that the degradation term, but not necessarily the pro-
duction term, for a metabolite pool almost always contains the vari-
able itself, it makes sense to estimate pathways in a backward di-
rection. Specifically, the following steps are used for each variable 

Xi. 

1. Determine a suitable grid for βi and hii, such as 0.1, 0.5, 1, 5, 
10, 50, 100, 500 and 1000 for βi and 0.2, 0.4, 0.6, 0.8 and 1 for 

hii. 

2. For each combination of grid points, perform linear regression 
according to [Eq-7]. The result consists of parameter sets for αi 

and gij. 

3. For each set of parameter values, compute the sum of squared 

errors 

(8) 

 

between the actual data and the corresponding estimates and se-

lect the smallest SSE for the set of best parameter estimates. 

If the degradation term contains variables other than Xi itself, the 
grid in Step 1 is extended by one or more dimensions. 

Forward Estimation 

Instead of using a grid for βi and hii, one may use a grid for αi and 

gij. The forward estimation strategy is preferable when information is 
available about influxes to the system. For instance, it may be pos-

sible to measure substrate uptake. The result of the forward estima-

tion consists of parameter sets for βi and hij for every combination of 

grid values for αi and gij. Typically, the set with the smallest SSE is 
selected. 

Constrained Estimation 

So far, the parameters of each equation were computed as if all 

equations were independent of each other. In reality, systems are 

much more constrained. For instance, the efflux out of X2 in [Fig-1] 

is identical to the influx into X3. Thus, one possible strategy of con-

strained estimation is to choose grid points β3 and h33, estimate the 

corresponding α and g parameters for the influx of X3, select the 

best set and use this set as estimates for the parameters in the 

efflux of X2. The influx is then estimated as before. The same strate-

gy is used for X4. The collective efflux of X1 is identical to the sum of 

the influxes to X2 and X4. Thus, the estimates should satisfy the 

equation 

(9) 

Due to the mathematical features of power-law functions, this equa-

tion can, in general, only be satisfied at some chosen operating 

point or for trivial situations, where g21 = g41 or where one of the 

fluxes on the right is zero. At a chosen operating point, the parame-

ters for the efflux of X1 are related to those of the two influxes by the 

equation 

(10) 

where all variables are evaluated at the operating point.  

Estimation of Subsets of Fluxes for DFE 

DFE consists of two phases. The first phase represents metabolic 

pathways as flux systems of the type 

(11) 

where the σ quantities are stoichiometric coefficients, which are 

typically known [40-42]. Given slope estimates at K time points, as 

before, the equations in [Eq-11] constitute one set of n linear equa-

tions in the fluxes vji and vij at each of the K time points. If the num-

ber of non-zero fluxes equals n, each set of equations can be in-

verted and the result is a numerical value of each flux at each time 

point. In a second phase of DFE, one attempts to find mathematical 

representations for these numerical flux estimates. 

In most realistic cases, the number of fluxes exceeds the number of 

dependent variables and the system in [Eq-11] cannot be inverted, 

unless independent information about some of the fluxes is ob-

tained. Some strategies for obtaining such information have been 

proposed [43,44], but they are not always sufficient. Here, the pro-

posed coarse estimation, in forward or backward direction, may be 

used to obtain such fluxes. Thus, if the system contains eight de-

pendent variables and 12 fluxes, four fluxes typically need to be 

estimated. The choice of these four is not entirely arbitrary, but this 

step usually permits several degrees of freedom [45]. As the meth-

od proposed here assumes validity of the power-law representation, 

it is a priori beneficial to select variables for estimation that vary 

only modestly within the given data set, as this limited range of 

variation increases the likelihood that the power-law representation 

is adequate. 
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Metabolic Reaction Networks for Illustration of the Method 

Generic Branched Pathway Model of Michaelis-Menten Type 

The first pathway for illustration is the metabolic reaction network 
shown in [Fig-1]. In previous work, this system was used to demon-
strate estimation techniques for BST systems [24,26,27,30]. Here, 
we model the same pathway with Michaelis-Menten-type rate laws. 
The advantage of this artificial system is that we have complete 
knowledge of all of its features. Thus, we can create “data” with this 
model, subsequently pretend not to know the model parameters or 
even the mathematical structure of the equations, and ultimately 

gauge how well our inference method works and where it fails. 

The specific model, with typical parameters, is 

(12) 

 

(13) 

 

(14) 

 

(15) 

The steady state of the system is approximately X1* = 1.050, X2* = 
0.420, X3* = 13.96 and X4* = 1.050. As initial values we choose, 

more or less arbitrarily, X10 = 1.4, X20 = 2.7, X30 = 1.2, X40 = 0.4.  

Fig. 1- Reaction diagram of a generic branched pathway. 

Biosynthesis of Aspartate-derived Amino Acids 

The metabolic reaction network for this example is shown in [Fig-2]. 
A model of the pathway was originally presented with traditional 
kinetic rate functions for seven dependent variables, namely X1 = 
[AspP], X2 = [ASA], X3 = [Lys], X4 = [Hser], X5 = [PHser], X6 = [Thr] 
and X7 = [Ile] [46]. Here, we additionally consider X8 = [Threonyl-

tRNA]. The flux equations are 

(16) 

(17) 

 

(18) 

 

(19) 

 

(20) 

 

(21) 

 

(22) 

 

(23) 

The kinetic formulations of these fluxes are taken directly from [46]; 
they are reproduced in the Additional Results. With these settings, 
the steady-state values for the first seven variables are approxi-
mately X1* = 0.3440, X2* = 0.9645, X3* = 69.38, X4* = 0.9368, X5* = 
45.27, X6* = 302.4, and X7* = 59.25. X8 continues to accumulate in 
this model and has no steady state. As initial values, we start the 
system either 20% above the steady state or with values that corre-

spond to 20% of the steady state.  

Fig. 2- Metabolic reaction network of the biosynthesis of aspartate-
derived amino acids. Abbreviations are: Asp: L-Aspartate, AspP: L-
Aspartate-4-phosphate, ASA: L-Aspartate-semialdehyde, Lys: L-
Lysine, Hser: Homoserine, PHser: O-Phospho-L-homoserine, 
AdoMet: S-Adenosylmethionine, Thr: L-Threonine, Ile: L-Isoleucine, 
Val: L-Valine. Lysyl: tRNA and Isoleucyl-tRNA are shown here as 

end products, although they are not explicitly included in the model. 

Computational Environment 

All calculations were performed with Microsoft Visual Studio 2008 
on Windows 7, with a computer with Intel® Core™ i7 CPU and 

mounted 4.00 GB memory. 

Results 

Performance Evaluations 

The performance of the proposed method is first evaluated with the 
generic branched pathway model consisting of Michaelis-Menten 

processes [Fig-1], [Eq-12] to [Eq-15]. 

Approximate S-system Parameters at an Operating Point 

In order to assess how well the power-law approximation might 
perform, we first approximate the original equations with an S-
system. As the operating point, we choose the values X1, op = 1.7, 
X2, op = 1.5, X3, op = 5.0 and X4, op = 1.3, which are more or less in the 
center of the range of variation for each variable. The parameter 
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values of the approximate S-system are shown in [Table-1]. Alt-
hough its functions are different, the S-system approximates the 

original Michaelis-Menten model overall quite well [Fig-S1]. 

Table 1- Parameter values of an S-system model approximating the 
Michaelis-Menten model of a generic branched pathway [Fig-1],  

[Eq-12] to [Eq-15] at the operating point (X1, op = 1.7, X2, op = 1.5, X3, 

op = 5.0, X4, op = 1.3). 

Unconstrained Backward Estimation 

Using backward estimation for various grid point combinations of β 
and h parameters, we computed linear regressions and SSE val-
ues, as well as calculation times. The results for the best β - h com-
binations are shown in [Table-2a] and [Fig-3]. Although a relatively 
coarse grid was used, the computed dynamics fits the artificial data 
rather well. Other β - h combinations lead to much inferior fits [Fig-

S2]. 

Fig. 3- Comparison between results of the inferred unconstrained S
-system model (lines) and those computed with the Michaelis-
Menten model of the generic branched pathway in [Fig-1] 

(symbols). Time and concentrations are given in unspecified units. 
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  αi gi1 gi2 gi3 gi4 βi hii 

X1 1.12E+00 - - -2.50E-01 - 5.15E-01 6.14E-01 

X2 1.71E-01 7.46E-01 - - - 3.40E-01 5.71E-01 

X3 3.40E-01 - 5.71E-01 - - 4.06E-02 6.67E-01 

X4 3.45E-01 5.41E-01 - - - 3.36E-01 6.06E-01 

Table 2- Parameter values, residual errors (SSE values) and computing times (CT) associated with different inference strategies using artificial 

data characterizing the branched pathway model [Fig-1], [Eq-12] to [Eq-15] 

NS: no solution was obtained 

  αi gi1 gi2 gi3 gi4 βi hii SSE CT (s) 

Backward estimation 

a) Unconstrained inference 

X1 9.03E-01 - - -2.16E-01 - 5.00E-01 4.00E-01 4.00E-03 1.88E+01 

X2 3.41E-01 3.96E-01 - - - 5.00E-01 4.00E-01 2.57E-03 4.60E+01 

X3 3.76E-01 - 5.96E-01 - - 1.00E-01 4.00E-01 7.06E-02 1.82E+01 

X4 1.01E+00 2.02E-01 - - - 1.00E+00 2.00E-01 1.70E-02 1.90E+01 

b) Constrained inference 

X1 1.72E+00 - - -9.98E-02 - 1.31E+00 1.84E-01 4.79E-03 4.68E-01 

X2 3.00E-01 1.20E-01 - - - 3.76E-01 5.96E-01 5.24E-02 4.05E-01 

X3 3.76E-01 - 5.96E-01 - - 1.00E-01 4.00E-01 7.06E-02 1.82E+01 

X4 1.01E+00 2.02E-01 - - - 1.00E+00 2.00E-01 1.70E-02 1.90E+01 

Forward estimation 

c) Unconstrained inference 

X1 5.00E-01 - - -6.00E-01 - 1.06E-01 9.87E-01 8.99E-03 3.56E+01 

X2 1.00E-01 4.00E-01 - - - 1.86E-01 9.31E-01 9.11E-04 2.99E+01 

X3 1.00E+00 - 4.00E-01 - - 9.45E-01 -9.76E-02 9.45E-03 2.10E+01 

X4 5.00E-01 4.00E-01 - - - 4.90E-01 4.43E-01 6.39E-04 3.21E+01 

d) Constrained inference (α2 and g21 selected first) 

X1 5.00E-01 - - -6.00E-01 - 1.06E-01 9.87E-01 8.99E-03 3.56E+01 

X2 1.00E-01 -2.00E-01 - - - 1.50E-01 1.09E+00 6.70E-03 4.05E-01 

X3 1.50E-01 - 1.09E+00 - - 9.29E-06 4.01E+00 2.41E+00 4.21E-01 

X4 7.08E-03 1.08E+01 - - - 9.69E-01 3.13E+00 4.96E+00 2.23E+00 

e) Constrained inference (α4 and g41 selected first) 

X1 5.00E-01 - - -6.00E-01 - 1.06E-01 9.87E-01 8.99E-03 3.56E+01 

X2 5.78E-03 7.54E-01 - - - 4.17E-02 2.29E+00 8.22E-02 3.80E+00 

X3 4.17E-02 - 2.29E+00 - - NS NS NS NS 

X4 1.00E-01 1.00E+00 - - - 2.91E-02 3.52E+00 3.56E-02 4.40E-01 
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We also created data from the same system and superimposed 
them with 10% uniformly distributed random noise. While the con-
centration values thus deviate from smooth trend lines, we assume 
that appropriate smoothing of these noisy data would lead to correct 
slopes Sik. [Fig-4] shows results from 300 estimations of αi, gij and βi 
in pseudo-three-dimension plots and the most illustrative projec-
tions. Red circles mark the values shown in [Table-2a]. The results 
are not connected and do not form clouds, as one encounters them 
frequently, due to the discrete choices of grid points. As has been 
observed in other contexts [47], the correlations between α and β 
parameters for the different results are more or less linear, while 
correlations between rate constants and kinetic orders are nonlinear 
and more or less logarithmic. 

Fig. 4- Distributions of kinetic parameter values, inferred for the 
Michaelis-Menten type branched pathway model with the uncon-
strained backward estimation strategy with 300 datasets with ±10% 
noise. Red circles mark the kinetic parameter values shown in 
[Table-2a]. Left panel: Pseudo-three-dimensional representations of 

αi-gij-βi; center panel: αi-gij projections; right panel: αi-βi projections. 

Constrained Backward Estimation 

While simulations with the parameters estimated so far fit the given 
data quite well, an adequate model should satisfy the constraints 
that derive from the topology of the metabolic reaction network. For 
instance, the production of X3 in [Fig-1] constitutes the same pro-

cess as the degradation of X2, which mandates 

(24) 

The branched pathway imposes an additional constraint which, 
outside trivial special cases, can only be satisfied at an operating 

point: 

(25) 

(cf. [Eq-9] and [Eq-10]). To satisfy these constraints during the 
backward estimation, kinetic parameters for X3 and X4 are deter-
mined first, and then the estimation moves upstream the metabolic 
reaction network. [Table-2b] indicates that the resulting minimum 
SSE values are slightly higher than before. Nonetheless, simula-

tions with the best parameter values yield good results [Fig-5]. 

Fig. 5- Comparison between results of the inferred S-system model 
(lines) and results computed with the Michaelis-Menten model of 
the generic branched pathway in [Fig-1] (symbols), using fully con-
strained backward inference. Time and concentrations are given in 

unspecified units. 

Forward Estimation 

As described in the Methods section, the estimation may also pro-
ceed in forward direction. Without constraints, optimal kinetic pa-
rameters, SSEs and calculation times are shown in [Table-2c]. All 
SSE values indicate satisfactory data fits, which are confirmed in 
[Fig-6]. As before, we also estimated the parameters from noisy 

data. The results are shown in [Fig-S3]. 

Because the pathway is branched, the forward computation of con-
strained parameter values allows some flexibility, because either α2 
and g21 or α4 and g41 may be estimated first from the branch point 
constraint in [Eq-25]. If α2 and g21 are estimated first, then α4 and 

g41 are calculated using [Eq-26] and [Eq-27], respectively: 

 

(26) 

 

 

(27) 

In turn, if α4 and g41 are estimated first, then α2 and g21 are deter-
mined from the corresponding constraints. Once influx parameters 
are determined, forward estimation for X2, X3 and X4 is performed 
and efflux parameters with the lowest SSE values are retained 
[Table-2d] and [Table-2e]. While the branch point offers some flexi-
bility, not all choices are feasible, because in some cases the con-
straints (26) and (27) can no longer be satisfied for all values of the 
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dependent variables. As an example, some choices of a4 and g41 
lead to infeasibility for the efflux of X3. In other cases, the best-fitting 
kinetic order might be negative, which is inconsistent with the struc-

ture of the pathway.  

Fig. 6- Comparison between the inferred S-system model (lines) 
and results computed with the Michaelis-Menten model of the ge-
neric branched pathway in [Fig-1] (symbols), using unconstrained 
forward inference. Time and concentrations are given in unspecified 

units. 

Biosynthesis of Aspartate-derived Amino Acids  

To evaluate the scalability of the proposed method, we applied the 
method to a larger metabolic reaction network model from the litera-
ture. Curien et al. [46] constructed a dynamic model for the biosyn-
thesis of aspartate-derived amino acids from kinetic measurements 
in vitro. We pretend here that simulation results with their model are 
measured experimental time series data, and it is our goal to infer 
an adequate mathematical model from these “data.” In particular, 
the analysis allows us to compare the inferred fluxes with those 
used by the authors to construct their model from the bottom up. In 
contrast to the original article, we merge isozyme catalyzed reac-

tions into single processes. 

Analysis I: Initial Values are Set as 120% of the Steady State 
Values 

The first set of “data” corresponds to a simulation with the published 
model, which starts with initial values that are set as 120% of the 
steady-state values. Such a deviation is relatively small, which has 
advantages and disadvantages. On the positive side, the power-law 
approximation is possibly good enough to capture the dynamics of 
the system. On the negative side, the data are not very informative. 
As with the earlier example, we first estimate parameters for uncon-
strained equations, using the backward strategy. [Table-3a] shows 
the resulting kinetic parameters and corresponding SSE values. 
[Fig-S4] compares trend lines calculated by integration of the eight 
S-system equations with those from the original equations. Some of 
the results are fairly good, but X6 is mis-estimated, which through 
feedbacks affects all other variables after a while. [Fig-S5] shows 
corresponding estimations for data with noise. The corresponding 

forward estimation without constraints also yields good results 

[Table-3c] and [Fig-S6]. 

More relevant is an estimation that accounts for constraints in the 
pathway system. The results of a constrained backward inference 
are shown in [Table-3b] and [Fig-7]; a corresponding figure with a 
magnified initial range is presented as [Fig-S7]. Even though the 
power-law terms are quite different from the functions used to con-
struct the original model, the results are surprisingly good, especial-

ly in the initial time range. 

Analysis II: Initial Values are Set as 20% of Steady State Values  

In contrast to the previous analysis, the deviation from the steady 
state is now considerable. The estimation method itself is not affect-
ed by this strong deviation, but it is more likely that the power-law 
approximation might exceed the range of valid representation. 
Nonetheless, the results of an unconstrained forward estimation are 
actually surprisingly good, except for variable X8, which is not sub-
ject to degradation and only accumulates material and with it all 
inference errors [Table-4] and [Fig-8]. In an unconstrained back-

ward estimation, X8 is modeled very well, but the other variables 
show inferior fits, thus indicating that the power-law formulation 
leaves its range of valid representation [Table-S1], [Fig-S8] and [Fig
-S9]. 

Analysis III: Estimation of a Minimum Set of Fluxes to Comple-
ment DFE 

The pathway contains eight dependent variables and ten fluxes. 
Thus, we need to estimate two independent fluxes. Furthermore, 
characterizability analysis of the pathway system reveals that even 
perfect, complete time series data do not allow a full characteriza-
tion of flux profiles, because the same time series data could be 
associated with different flux profiles. In particular, it is possible that 

pairs of fluxes, such as Vi(tk) and V-i(tk), permit a shift by an un-
known constant c, which disappears in the differential equation, 
because Vi(tk) + c – (V-i(tk) + c) = Vi(tk) – V-i(tk). One should note that 
this possible shift is not a result of the slope-estimation-decoupling 
strategy or our coarse inference method. It constitutes a genuine 
estimation challenge for underdetermined flux systems, because 
the “true” differential equations generate results that are exactly 
equivalent to those from other differential equations with shifted 
fluxes. 

As a first example, consider “data” obtained with initial values at 
120% of the steady state. We use two fluxes, estimated from the 
earlier constrained backward estimation and use DFE to infer the 
remaining fluxes. For Case 1, we use the fluxes vASADH and vHSDH 

and for Case 2, we use vDHDPS and vHSK [Fig-9]. 

The main results are shown in [Fig-10]. The green and blue lines 
are inferred with DFE for Cases 1 and 2, while the red lines corre-
spond to the fluxes obtained from the coarse, constrained backward 
estimation and the black lines correspond to the fluxes in Curien’s 
original model. Three generic features emerge. First, the inferred 
DFE fluxes by and large have the correct shape; i.e., they are very 
similar to the fluxes of Curien’s model, with occasional exceptions 
at the very beginning or end of the plots. Second, most of the fluxes 
exhibit some shift, indicating a degree of freedom and non-unique-
ness that is predicted by characterizability analysis [45]. These 
shifts are not entirely arbitrary though: for instance, the shift in vAK is 
the same as the shift in vASADH, as both fluxes are associated with 
X1. Third, the original fluxes and the backward-inferred fluxes have 
slightly different shapes, even though the metabolite trends [Fig-7] 
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Table 3- Parameter values and residual errors (SSE values) associated with different inference strategies for the model of aspartate-derived 

amino acid biosynthesis [Fig-2]. In Analysis I, the initial values were set at 120% of the steady state. 

Table 4- Parameter values and residual errors (SSE values) associated with different inference strategies for the model of aspartate-derived 

amino acid biosynthesis [Fig-2]. In Analysis II, the initial values set at 20% of the steady state.  

are overall well modeled. These differences reflect the fact that 
relatively complex kinetic rate functions were approximated with 

rather simple power-law functions. The situation is similar for “data” 

that are initialized at 20% of the steady-state values [Fig-S10]. 
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 αi gi1 gi2 gi3 gi4 gi5 gi6 gi7 gi8 βi hii SSE 

Backward Estimation  

a) Unconstrained inference 

X1 1.26E+01 - - -1.21E-01 - - -1.63E-01 - - 5.00E+00 5.00E-01 7.89E-04 

X2 1.52E+01 3.98E-01 - - - - - - - 1.00E+01 4.00E-01 6.33E-03 

X3 1.24E+02 - 8.47E-01 -1.37E+00 - - - - - 1.00E-01 3.00E-01 2.55E-03 

X4 5.76E+00 - 9.82E-02 - - - -2.51E-02 - - 5.00E+00 1.00E-01 5.75E-04 

X5 7.37E+00 - - - 9.20E-02 - - - - 5.00E+00 1.00E-01 1.12E-01 

X6 1.85E-02 - - - - 1.02E+00 - - - 5.00E-01 1.00E-01 1.36E+01 

X7 1.17E+01 - - - - - 9.49E-01 -2.19E+00 - 1.00E-01 3.00E-01 2.73E-05 

X8 9.19E-02 - - - - - 2.20E-01 - - - - 9.18E-05 

b) Constrained inference 

X1 7.51E+01 - - -4.11E-01 - - -4.72E-01 - - 4.60E+00 1.58E+00 7.58E-04 

X2 4.60E+00 1.58E+00 - - - - - - - 8.62E-01 1.38E+00 2.79E-02 

X3 1.24E+02 - 8.47E-01 -1.37E+00 - - - - - 1.00E-01 3.00E-01 2.55E-03 

X4 2.02E+00 - 1.79E+00 - - - -2.46E-01 - - 5.17E-01 1.62E+00 1.15E-04 

X5 5.17E-01 - - - 1.62E+00 - - - - 2.25E-04 1.99E+00 4.41E+00 

X6 2.25E-04 - - - - 1.99E+00 - - - 1.33E-02 5.94E-01 3.68E+01 

X7 1.17E+01 - - - - - 9.49E-01 -2.19E+00 - 1.00E-01 3.00E-01 2.73E-05 

X8 9.19E-02 - - - - - 2.20E-01 - - - - 9.18E-05 

Forward estimation 

c) Unconstrained inference 

X1 1.00E+03 - - -1.00E+00 - - -1.00E+00 - - 1.05E+03 9.10E+00 4.23E-04 

X2 1.00E+01 1.00E+00 - - - - - - - 3.48E+00 9.33E-01 6.57E-03 

X3 1.00E+02 - 2.00E-01 -1.00E+00 - - - - - 1.57E+01 -5.66E-01 2.74E-04 

X4 5.00E+00 - 4.00E-01 - - - -2.00E-01 - - 1.58E+00 3.97E-01 3.65E-04 

X5 1.00E+00 - - - 6.00E-01 - - - - 7.27E-02 6.79E-01 1.41E-01 

X6 5.00E-01 - - - - 4.00E-01 - - - 3.16E+00 -5.48E-02 2.16E+01 

X7 5.00E+00 - - - - - 2.00E-01 -6.00E-01 - 1.40E+00 -9.57E-03 9.64E-03 

X8 5.00E+01 - - - - - -8.00E-01 - - - - 1.79E+04 

 αi gi1 gi2 gi3 gi4 gi5 gi6 gi7 gi8 βi hii SSE 

Forward estimation 

Unconstrained inference 

X1 
1.00E+01 - - 4.00E-01 - - -6.00E-01 - - 1.13E+02 4.49E+00 7.14E-03 

X2 
1.00E+01 2.00E-01 - - - - - - - 8.40E+00 1.78E-01 7.15E-01 

X3 
1.00E+01 - 6.00E-01 -6.00E-01 - - - - - 1.32E-01 4.13E-01 6.19E+00 

X4 
1.00E+00 - 8.00E-01 - - - -2.00E-01 - - 3.07E-01 1.19E+00 5.50E-02 

X5 
1.00E+00 - - - 8.00E-01 - - - - 7.68E-02 6.74E-01 9.26E+00 

X6 
1.00E+00 - - - - 2.00E-01 - - - 1.37E+00 7.77E-02 1.55E+01 

X7 
1.00E-01 - - - - - 2.00E-01 6.00E-01 - 1.10E-01 8.45E-01 2.32E+01 

X8 
5.00E+00 - - - - - -4.00E-01 - - - - 1.73E+05 
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Fig. 7- Comparisons between “data” (symbols and connecting black 
lines) obtained from the model of aspartate-derived amino acid 
biosynthesis [46] and results the S-system model with kinetic pa-
rameters inferred through constrained backward estimation (red 
lines). Analysis I: Initial values set at 120% of the steady state. See 

[Fig-S7] for a magnified representation of the initial time range.  

Discussion and Conclusions 

The estimation of parameter values for nonlinear models of biologi-
cal systems is a challenging task. Even harder is the identification 
of functional forms for the processes governing biological systems. 
We have shown here that both tasks can be aided by a relatively 
coarse, but very simple, estimation strategy that exclusively uses 
linear regression and is therefore easily scalable. The strategy may 
be used in different ways. First, one may obtain a complete power-
law model of a pathway by assuming a relatively coarse grid of 
parameter values characterizing some fluxes in the system. The 
result is a fully parameterized model that may be used for further 
analyses. The model parameters thus inferred may also be used as 
start values for launching a more refined parameter estimation 
based directly on the nonlinear differential equations. Assuming that 

the coarsely inferred parameter values are acceptable, this nonline-
ar estimation would start in-or close to-a basin of attraction of the 
true solution, thereby circumventing many issues with nonlinear 
optimization methods. The coarsely parameterized model may also 
be used to augment DFE. In this case, only a few fluxes are re-
tained from the coarse estimation and all other fluxes are computed 
with methods of DFE. If the retained fluxes correspond to variables 
that do not vary very much within the given datasets, one might 
assume that the power-law representation is relatively accurate. As 
a consequence, this strategy makes the fewest assumptions and 
yields results in an almost unbiased fashion. A remaining issue is 
that the topology of the pathway system may allow one or more 
degrees of freedom within the flux profile, which cannot be resolved 
with DFE method, unless additional, independent information is 

available.  

Fig. 8- Comparisons between “data” (symbols and connecting black 
lines) obtained from the model of aspartate-derived amino acid 
biosynthesis [46] and results the S-system model with kinetic pa-
rameters inferred through unconstrained forward estimation (red 

lines). Analysis II: Initial values set at 20% of the steady state. 
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Fig. 9- Two pairs of fluxes were selected to complement DFE for 
Case Studies 1 and 2. Their values were taken from the con-
strained backward inference with the model of aspartate-derived 
amino acid biosynthesis [Fig-2]; [46] and used to perform DFE. 
Abbreviations are: vAK–Aspartate kinase, vASADH–Aspartate semi-
aldehyde dehydrogenase, vDHDPS–Dihydrodipicolinate synthase, 
vLKR–Lysine ketoglutarate reductase, vHSDH–Homoserine dehydro-
genase, vHSK–Homoserine kinase, vTS1–Threonine synthase, vTD–
Threonine deaminase, v(Thr)tRNAsth–Threonyl-tRNA synthetase, v(Ile)

tRNAsth–Isoleucyl-tRNA synthetase. 

Fig. 10- Results of DFE, augmented with pairs of fluxes as shown 
in [Fig-9]. The fluxes obtained with DFE (green and blue; some-
times overlapping) by and large have the shapes of the fluxes used 
by Curien et al. [46] to construct the model of aspartate-derived 
amino acid biosynthesis, but they are shifted, thus indicating a re-
maining degree of freedom. The red flux graphs show the corre-
sponding backward-inferred, constrained power-law representations 

(cf. [Fig-7]).  

Additional Results 

Branched Pathway 

To evaluate the performance of the proposed method, a generic, 
branched pathway model consisting of Michaelis-Menten processes 
[Fig-1]; [Eq-12] to [Eq-15] was analyzed. The original equations 
were approximated with an S-system model at an operating point 
chosen within the range of the variables, as described in the Text. 
[Table-1] shows the parameter values of the approximate S-system. 

The model approximates the original reasonably well [Fig-S1]. 

Fig. S1- Comparison between results of the approximate S-system 
model (red lines) and those computed with the Michaelis-Menten 
model of the generic branched pathway in [Fig-1] (black lines). Time 

and concentrations are given in unspecified units. 

Fig. S2- Comparison between results of the various unconstrained 
S-system models (lines) and those computed with the Michaelis-
Menten model of the generic branched pathway in [Fig-1] 

(symbols). Time and concentrations are given in unspecified units. 
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For the unconstrained backward estimation strategy, we chose 
various grid point combinations of β and h parameters. The dynam-
ic results for the best β - h combination are shown in [Table-2a] and 
[Fig-3]; results for other combinations are shown in [Fig-S2]. The 

dynamic representations in these cases are much inferior. 

Parameter values were also estimated for the unconstrained for-
ward estimation strategy using data with 10% uniformly distributed 
random noise. [Fig-S3] shows the distributions of inferred kinetic 

parameter values. 

Fig. S3- Distributions of kinetic parameter values, inferred for the 
Michaelis-Menten-type branched pathway model with the uncon-
strained forward estimation strategy, using 300 datasets with 10% 
uniformly distributed noise. Red circles indicate the kinetic parame-
ter values shown in [Table-2c]. Left panel: Pseudo-three-
dimensional representations of βi-hii-αi; center panel: βi-hii projec-

tions; right panel: βi-αi projections. 

Biosynthesis of Aspartate-Derived Amino Acids 

To evaluate the scalability of the proposed method, the method was 
applied to a larger metabolic reaction network model from the litera-
ture [Fig-2]; [Eq-16] to [Eq-23]; [46], as described in the Text. The 
kinetic representations, as proposed by Curien et al. are shown 
below; note that our analysis combines isozyme-catalyzed reac-

tions. 

 

 

 

 
 

 

 

 
 

 

It should be noted that the following flux equations are used in [Eq-

21] and [Eq-22]. The values are also used in [Fig-10]. 

 

 

 

Analysis I: Initial Values are Set as 120% of the Steady State 
Values 

The “data” for this inference study were generated with initial values 
set as 120% of the steady-state values. The inferred kinetic param-
eter values and corresponding SSEs for the unconstrained back-
ward estimation strategy are shown in [Table-3a]. [Fig-S4] com-
pares trend lines calculated by integration of the eight S-system 
equations with those from the original equations. [Fig-S5] and [Fig-
S6] show corresponding estimations for data with noise and the 
results of an unconstrained forward estimation, respectively. [Fig-
S7] exhibits a magnified initial range for the plots shown in [Fig-7] of 

the Text. 

International Journal of Systems Biology 
ISSN: 0975-2900 & E-ISSN: 0975-9204, Volume 4, Issue 1, 2013 

Iwata M., Shiraishi F. and Voit E.O. 



|| Bioinfo Publications ||  68 

 

Fig. S4- Comparisons between “data” (symbols connected by black 
lines) obtained from the model of aspartate-derived amino acid 
biosynthesis [46] and results from the S-system model (red lines) 
with kinetic parameters inferred through unconstrained backward 

estimation. Analysis I: Initial values set at 120% of the steady state. 

Fig. S5- Distributions of kinetic parameter values, inferred for the 

aspartate-derived amino acid biosynthesis model with the uncon-
strained backward estimation strategy, using 300 datasets with 10% 
uniformly distributed noise. Red circles indicate the kinetic parame-
ter values shown in [Table-3a]. Analysis I: Initial values set at 120% 
of the steady state. Left panel: Pseudo-three-dimensional represen-

tations of αi-gij-βi; center panel: αi-gij projections; right panel: αi-βi 
projections. 

Analysis II: Initial Values are Set as 20% of the Steady State 
Values 

The “data” for this simulation were generated with initial values set 

as 20% of the steady-state values. The inferred kinetic parameter 
values and corresponding SSEs of the unconstrained backward 
estimation strategy are shown in [Table-S1]. [Fig-S8] compares 
trend lines calculated by integration of the eight S-system equations 
with those from the original equations. [Fig-S9] shows correspond-
ing estimations for data with noise. 
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Table S1: Parameter values and residual errors (SSE values) associated with different inference strategies for the model of aspartate-derived 

amino acid biosynthesis [Fig-2]. In Analysis II, the initial values set at 20% of the steady state. 

  αi gi1 gi2 gi3 gi4 gi5 gi6 gi7 gi8 βi hii SSE 

Backward estimation 

Unconstrained inference 

X1 1.00E+01 --- --- 2.32E-02 --- --- -5.73E-02 --- --- 1.00E+01 2.00E-01 6.55E-04 

X2 1.19E+01 2.05E-01 --- --- --- --- --- --- --- 1.00E+01 2.00E-01 6.26E-01 

X3 2.12E+01 --- 8.96E-01 -8.63E-01 --- --- --- --- --- 1.00E-01 4.00E-01 3.32E+00 

X4 1.47E+00 --- 6.41E-01 --- --- --- -6.87E-02 --- --- 1.00E+00 6.00E-01 5.26E-04 

X5 1.03E+00 --- --- --- 6.33E-01 --- --- --- --- 1.00E-01 6.00E-01 1.01E+01 

X6 3.79E-02 --- --- --- --- 7.95E-01 --- --- --- 1.00E-01 4.00E-01 9.10E+02 

X7 1.00E+03 --- --- --- --- --- 1.02E-05 1.00E+00 --- 1.00E+03 1.00E+00 1.41E+01 

X8 2.32E-02 --- --- --- --- --- 4.73E-01 --- --- --- --- 2.07E+01 
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Fig. S6- Comparisons between “data” (symbols connected by black lines) obtained from the model of aspartate-derived amino acid biosynthe-
sis [46] and results from the S-system model (red lines) with kinetic parameters inferred through unconstrained forward estimation. Analysis I: 

Initial values set at 120% of the steady state. 

Fig. S7- Comparisons between “data” (symbols and connecting black lines) obtained from the model of aspartate-derived amino acid biosyn-
thesis [46] and results the S-system model with kinetic parameters inferred through constrained backward estimation (red lines). In comparison 

with [Fig-7] of the Text, only the initial time range of 20 seconds is shown. Analysis I: Initial values set at 120% of the steady state. 

Fig. S8- Comparisons between “data” (symbols connected by black lines) obtained from the model of aspartate-derived amino acid biosynthe-
sis [46] and results from the S-system model (red lines) with kinetic parameters inferred through unconstrained backward estimation. Analysis 

II: Initial values set at 20% of the steady state. 
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Analysis III: Estimation of a Minimum Set of Fluxes to Comple-
ment DFE 

The pathway contains eight dependent variables and ten fluxes. 
Thus, we need to estimate two independent fluxes, which we select 

as described in the Text [Fig-9].  

Fig. S9- Distributions of kinetic parameter values, inferred for as-
partate-derived amino acid biosynthesis model with the uncon-
strained backward estimation strategy with 300 datasets with ± 
10% noise. Red circle indicates the kinetic parameter values shown 
in [Table-S1]. Analysis II: Initial values set at 20% of the steady 
state. Left panel: Pseudo-three-dimensional representations of αi-gij

-βi; center panel: αi-gij projections; right panel: αi-βi projections. 

The case where “data” were obtained with initial values at 120% of 
the steady state is shown in the Text. [Fig-S10] shows the corre-
sponding results for “data” that are initialized at 20% of the steady 
state values in comparison to results from the S-system model with 
kinetic parameters inferred through constrained backward estima-
tion. One notes that vASADH, which was used for DFE in Analysis I, 
cannot be calculated using this result. [Fig-S10], therefore, does not 
show the corresponding green plot lines. Similarly, red plot lines 

cannot be computed for vAK and vASADH. By contrast, vDHDPS and 

vHSK, which are now available, are shown as blue lines.  

Fig. S10- Results of DFE, augmented with pairs of fluxes as shown 
in [Fig-9] of the Text. The fluxes obtained with DFE (blue) by and 
large have the shapes of the fluxes used by Curien et al. [46] to 
construct the model of aspartate-derived amino acid biosynthesis 
(black). However, they are shifted, thus indicating a remaining de-
gree of freedom. The red flux graphs show the corresponding back-
ward-inferred, constrained power-law representations (cf. [Fig-S7]). 
The small arrows indicate that the corresponding values are shown 

on the right y-axis. 

[Table-S2] presents numerical results. The parameter values do not 
necessarily satisfy all constraints, because some parameter values 
cannot be obtained, as the corresponding fluxes are obtained with 

DFE. 

 

Table S2- Parameter values and residual errors (SSE values) associated with different inference strategies for the model of aspartate-derived 

amino acid biosynthesis [Fig-2]. In Analysis II, the initial values set at 20% of the steady state. 

  αi gi1 gi2 gi3 gi4 gi5 gi6 gi7 gi8 βi hii SSE 

Backward estimation 

Unconstrained inference 

X1 NS --- --- NS --- --- NS --- --- NS NS NS 

X2 NS NS --- --- --- --- --- --- --- NS NS NS 

X3 2.12E+01 --- 8.96E-01 -8.63E-01 --- --- --- --- --- 1.00E-01 4.00E-01 3.32E+00 

X4 1.50E+00 --- 5.37E-01 --- --- --- -6.19E-02 --- --- 1.06E+00 5.02E-02 2.44E-03 

X5 1.06E+00 --- --- --- 5.02E-01 --- --- --- --- 1.87E-01 4.20E-01 2.83E+02 

X6 1.87E-01 --- --- --- --- 4.20E-01 --- --- --- 7.67E-01 1.29E-05 2.30E+03 

X7 1.00E+03 --- --- --- --- --- 1.02E-05 1.00E+00 --- 1.00E+03 1.00E+00 1.41E+01 

X8 2.32E-02 --- --- --- --- --- 4.73E-01 --- --- --- --- 2.07E+01 
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