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| Abstract- Starch hydrolyzing a-amylase was purified from germinating soybean seeds. Amino acid sequence of soybean a-amylase
(Accession No. Gm0237X0071) was taken from protein databases (http://soybeangenome.siu.edu/; http://soybase.org/; hitp://
soybeangenome.org/) and used for identification of full length gene with available clone data at NCBI (http://www.ncbi.nim.nih.gov/). Glycine
max strain Williams 82 clone GM_WBb0115J10 (AC235387.1) was used for similarity search and annotation of full-length gene. The present
in-silico investigation deals with full length gene (TPA BK007878) identification; and cis-acting elements study; identified the important promot-
er's i.e. TATA, CAAT, GATABOX, DOFCOREZM, -300ELEMENT, WBOX, MYBST1, and EBOX for multifarious uses. A template structure
(3AMK chain a) from Oryza sativa branching enzyme was selected for comparative modeling using an automated approach. Homology model
was constructed using software DS Modeler and the quality of refined model was investigated using PDBSum, ERRAT and other bioinformat-
ics softwares. The modeled structure showed acceptable Ramachandran statistics and remarkable active site residues. Structural analysis of
the predicted model of a-amylase from soybean also gives an idea about potential sites inferring the region of catalytic active site responsible
for inhibitory action; and opens the new opportunities for further investigations.
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Introduction

a-Amylase (a-1,4 glucan-4-glucanohydrolase, EC 3.2.1.1) catego-
rized as family 13t of glycosyl hydrolase, functions the endohydrol-
ysis of a,1—4 glycosidic linkages present in various polysaccha-
rides [1-3]. The end product of its action constitutes glucose, malt-
ose and oligosaccharides with varying length with an a-
configuration [4]. They are ubiquitous in nature occupy presence in
all sections of life viz. plants, animals and microbes [5].

0-Amylases are composed of three structural domains. The largest
is Domain A which forms a central eight-stranded (B/a)s-barrel, to
one end of which are located the active site residues [4, 6-7]. Do-
main B serves to form a calcium binding site against the wall of the
(Bla)s-barrel of Domain A. Domain B is probably responsible for the
differences in substrate specificity and stability among the o-
amylases [8]. Domain C is made up of antiparallel -structure and is
only loosely associated with Domains A and B [9-10]. Residues
equivalent to Asp-206, Asp-297, Glu-230 (catalytic site residues)
and His-122, His-296 (part of substrate binding site) are conserved
in all a-amylases [7,11-13]. Calcium ion, which is located at the
interface between the A and B domains, is conserved in all o-
amylases with known three dimensional structures [14-17].

Knowledge of the three-dimensional structure of protein complexes

provides a valuable understanding of the function of molecular sys-
tems [18]. Protein structure determination is growing rapidly as can
be seen from the large structural data available in Protein Data
Bank (PDB) [19]. However, determination of the structure of protein
complexes still remains a difficult task because of the experimental
hurdles. Thus, computer algorithms and web server are used to
predict the structure of the proteins that have not all been solved
structurally. Homology modeling can be used to predict model
structure of unknown protein (target) from its amino acid sequences
based on the structure of related protein of known structure
(template) [20-23]. Four steps are used to create a model (i) tem-
plate selection (i) alignment of template sequence with the target
(iii) model construction (iv) evaluation of generated model [24].

Recently, Starch hydrolyzing a-amylase from germinated soybeans
seeds (Glycine max) has been purified 400-fold to electrophoretic
homogeneity with a final specific activity of 384 units/mg [25]. Pep-
tide map obtained by MALDI along with its molecular mass infor-
mation was used for the confirmation of the soybean a-amylase. In
the present study, homology modeling of a-amylase from soybean
was done using DSMODELER [26]. This software constructs three-
dimensional structure of the protein to show the functional and
binding site with their specific domains. Predicted model was evalu-
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ated with the lowest value of PROCHECK statistics (http:/
nihserver.mbi.ucla.edu/SAVES_3/saves.php) and quantitative
measures of the predicted model building was carried out using
Qmean (http://swissmodel.expasy.org/qmean/cgi/index.cgi) and
Vadar (http://redpoll.pharmacy.ualberta.ca/vadar/) servers.

Methodology

Mass Spectrometry, Database Searching and Sequence Align-
ment

Soybean a-amylase was purified according to Kumari et al. [25] and
analyzed by matrix assisted laser desorption ionization time of flight
mass spectrometry (MALDI-TOF MS; Ultraflex Ill, Briiker-Daltonik,
Bremen, Germany). Single band on SDS-PAGE was excised and
was digested overnight with MALDI grade trypsin (Sigma). The
digested mixture was analyzed by mass spectrometry to produce a
peptide mass spectrum from which molecular masses of all of the
proteolytic fragments can be read. The MASCOT software [27] was
used to compare the peptide mass patterns obtained with those of
all proteins from the theoretical soybean a-amylase proteome. The
molecular weight search (MOWSE) scoring scheme [28] was used
for unequivocal identification of proteins. Since a-amylase from
soybean is already available in protein database (http://Glycine max
genome.siu.edu/; http://soybase.org/); so the peptide masses as
obtained with mass spectrometry was used for the confirmation of
the protein.

Sequence of soybean a-amylase was aligned with the known se-
quence in database using the ClustalW [29]. These known se-
quences were taken from http://www.expasy.org/enzyme/3.2.1.1. It
gives clear information about the best match for the given sequence
and aligned them accordingly. There is no similar protein sequence
available in NCBI public database but tblastn study gives an idea
about the availability of a-amylase gene at genomic level so we did
comparative study based on existing a-amylase sequence obtained
from  (http://www.matrixscience.com) with accession no.
Gm0237X0071. It showed similarity with Glycine max strain Wil-
liams 82 clone GM_WBb0115J10 (AC235387.1). Full length gene
prediction was done for obtained strain using Fgenesh (http://
sun1.softberry.com/berry.phtml) and -1000 upstream region was
retrieved for promoter study using PLACE [30].

Sequence Analysis, Template Search and Model Generation

Sequence of a-amylase from soybean was aligned with diverse
species using ClustalW and phylogenetic tree was constructed
using UPGMA method [31,32]. The conserved motifs present in
these sequences were analyzed using MEME (Multiple EM for Elici-
tation) [33]. Parameters have been set with number of different
motifs: 30, minimum motif width: 100 and maximum motif width:
300, manually. The result obtained from PDB advance search
showing their structural similarity with branching enzyme from Ory-
za sativa (PDB ID: 3AMK, chain a) at a resolution of 2.30 A [34].The
three dimensional structure of a-amylase from soybean has been
predicted using DSMODELER [26].

Refinements and Evaluation

Energy minimization of the generated model was done using the
Conjugate Gradient technique to remove the bad contacts between
protein atoms. Model was evaluated according to the lowest energy
value of the objective function and the backbone conformation of
the model using DSMODELER [26].

Phi/Psi Ramachandran plot obtained with stereo chemical proper-
ties were assessed using PROCHECK server (http://
nihserver.mbi.ucla.edu/SAVES_3/saves.php) [35-36].  Structural
comparison between template and target structure were calculated
using PROSA server (https://prosa.services.came.sbg.ac.at/
prosa.php) and (i) UCSF Chimera 1.5.1. UCSF Chimera 1.5.1.
(http://www.cgl.ucsf.edu/chimeral) is a structural comparison match-
maker tool based on Needle-Wunsch Alignment algorithm BLOSUM
-62 matrix [37]. QMEAN server (http://swissmodel.expasy.org/
gmean/cgifindex.cgi) model quality estimation was used to analyzed
QMEAN score / QVEANClust score, Residue error, Energy profiles
and plot and Volume area dihedral angle for fractional accessible
surface area, residue volume, 3D profile and stereo/packing quality
index were done with VADAR (http://vadar.wishartiab.com/).
QMEAN and VADAR were specially designed for quantitatively and
qualitatively assessing protein structures determined by X-ray crys-
tallography, NMR spectroscopy, 3D-threading or Homology model-

ing.
Active Site Prediction

Possible binding sites of the final obtained model were searched
using Q-site Finder [38]. Q-site Finder determines the potential sites
for ligand binding in docking calculations. Obtained binding sites
were compared to the active site of the template for the determina-
tion of residues forming the binding pocket and to find their role in
biological functions.

Results

Mass Spectrometry and Database Searching and Sequence
Alignment

Peptide mass spectrum obtained from the digestion of purified soy-
bean a-amylase by trypsin provides fingerprint of great specificity.
This peptide masses significantly revealed 9 tryptic peptides mass-
es corresponding to a-amylase from soybean with accession no.
Gm0237x00071 with 17% sequence coverage [25]. The obtained
full length peptide sequence of soybean a-amylase was used for
sequential and structural alignment. After sequence alignment using
thlastn study it was observed that soybean a-amylase showed simi-
larity with soybean (Glycine max) strain Wiliams 82 clone
GM_WBb0115J10 (AC235387.1) and matches at position 104382
to 109759. Complete full length gene was fetched out and submit-
ted to NCBI and obtained TPA Accession: TPA BK007878. Com-
plete hypothetical mMRNA showed the combination of gene with 14
CDS, TSS site at 921 position and Poly A site at 8824 position [Fig-
1A]. cis-acting element study showed the gene containing regulato-
ry promoters, as listed in [Table-1]. Seed germination specific pro-
moter has been prominently identified in upstream region. Important
promoters investigated were TATA, CAAT, GATABOX,
DOFCOREZM, -300ELEMENT, WBOX, MYBST1 and EBOX. The
length of a-amylase for soybean is 741 amino acids with a molecu-
lar mass of 84 kDa for (Accession No. Gm0237X0071) whereas,
predicted a-amylase gene (i.e. TPA BK007878) containing 883
amino acids residues showed a molecular mass of 100 kDa. It was
observed that 157 amino acids were missing in purified soybean o-
amylase sequence having an accession no. Gm0237X0071. The
sequence was:

MAESLTIIVRSKQYLATQKPVNLALGYRNPHGYGFSFGSRRSI-
HERVSSHFKGIAVMTDDKSTMSSTEEDLENIGIFHIDPSLKPYKDH
FKYRLKRYVDQKKLIEEYEGGLEEFSQGYLKFGFNREEGGIVYCE
WAPAAQEAQIIGDFNGWDGSNHQ
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: o LG 3 : Phe-152; Asp-161; His-164; Gly-167; Val-170; Gly-207; Trp-212;
4.0 .18 e LAt 8B Leu-228; Asn-231; Trp-235; Asp-242; Ser-251; Met-252; Lys-253;
A R Try-254; Ala-279; Asn-287; Ala-301; Glu-302; Asp-303; Gly-318;
Bcosf Mcosi Wcpsi  Wicpso @ PolA TSS Gly-320: Phe-321; Glu-361; Trp-462; Gly-524; Gly-564 and Pro-593
rss 1571 -8.24 are conserved in soybean amylase (Gm0237X0071), whereas resi-
o S o el ey 2 2 due equivalent to Met-158; Val-185; lle-246; Tyr-247; Glu-248; Ala-
2799 210 249; His-250; Val-251; Gly-252; Arg-264; Ala-267; Glu-289; Ser-
4216 267 295; Tyr-298; Val-300; Thr-301; Arg-309; Ser-310; Gly-311; Thr-
312; Asp-32; His-324; Gly-327; Val-330; Gly-367; Trp-372; Leu-388;
e Asn-391; Trp-395; Asp-402; Ser-411; Met-412; Lys-413; Try-414;
7288 102 Ala-439; Asn-447; Ala-461; Glu-462; Asp-463; Gly-478; Gly-480;
7854 81 Phe-481; Glu-521; Trp-608; Gly-669; Gly-709 and Pro-738 are well-
9381 399 conserved in predicted soybean amylase gene (TPA BK007878).
Two major clusters were obtained from phylogenic tree based on a-
Fig. 1A- Full length gene prediction of a-amylase. amylase sequences from different species. Both the a-amylase (i.e.
Gm0237X0071 and TPA BK007878) are closer to cluster A species
i.e. Phaseolus vulgaris, Vigna radiata, 3AMK_chain A of Oryza
sativa, respectively [Fig-3]. 11 unique motifs have been identified
after MEME study [Fig-4A], [Fig-4B]. Motif diversity showed their
evolutionary significance, which are inferred by phylogenetic study.
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Fig. 2- Sequence alignment of soybean a-amylase with predicted
amylase and with 21 diverse amylases from different species. As-
terisk denotes the consensuses amino acid residue
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Fig. 4a- Schematic distribution of respective conserved motifs;
identified by means of MEME software

Motif Sequences
WNTHNTVQLMAVME SYVASFGY VINFFAVSSRSCT EDLKVLIDKA' SLCLQVLMDVV: 5 ASNNVTDCLNCFDVGQSTQESVF TCDRGY KLWDSRLF
KNKNDEEWSMKEISWSLTHRR TEKCIAYAES' DQAIVCDKTIAFLLMDKEM/SCMSCLQDAS TIERCIALQKMI' FITMALGCECYLNFMCNEF: EW
EVA AAQEAQIICDFNGWNCSN QMEKNQFCVUSIKI DCDCN AI - NSRVKFRFK CDCVUVDRI AWIKVATVD TKFAA "DCVIWD  SERVQFK
NLLDERFSFLASTKQIVSSTHEEDKVIVFER-DLVFVENF  ENTYEGVRVCDL CKYRVALDSDAVERGG! CRYG DVD! FTS EGT Y ETHFIR
CCFCC RRSICQRKVKSFKIVAVMTDDKSTHTTTEEDMENICILSID KLE FED FRYRMKR!LDQKKLIEKVECCLEEFAKCYLKFCFNREECCIV:
QGFT LELL INE' FDGSWGYQ TGUVA TRRFGTRODFRVFIDAA QACICVILDWY G'F KDDWALCEFDCTNLVE $D KEGEQQDWCTYIFDFGR
WNSLVCVEETSAAADVAKT DESASTESEDIKLDCVKETLAAADVAKI DESA LESEDSNLDVVKE LAAANAEVTKISCELVSVETECINLDKLEETI
WNCIQRLVRDINDIVRC KAMVELDFD ECFEWIDVDDKERNVLIFMRROKECNEIICVFNFT V RRDVRFCINQ CKWREILNTDAMIY CSCICN
VTCVRFAVUA NAKRVSLICQFNCWDCRE  MRLRK SCIVELFW GF COQLVKFEMICADCNLRDKAD FAFETQMR QTASRICCL EKWCQDEWRK
0  NQDGQWDICI DT GNNIE 'DEKLKDRFR GDGNWDERM EVEKVQTDD TEFA VDIEEWD KLKERYQFKI R Q KV RIEERDKEMKDF RI
1 EM'K VA RI'E CIMGG'E CD TYREFFDN A EIKANNCKDRQLMQIME CYFAVF: < VDNFDYRLQRTCGE CE KTLIDKVRFL TRGEMDL

=
g
&
e WD D N O O R W R

Fig. 4b-Multilevel consensus sequences for the MEME defined
motifs; among different species

Homology Modeling of a-Amylase from Soybean

To the best of our knowledge three dimensional structure for a-
amylase from soybean is not known till date. The 3D structure of
soybean a-amylase can be used to predict its molecular functions,
active sites, and its interactions with suitable inhibitors. Three mod-
els were built by DSMODELER based on CHARMm force field us-
ing Conjugate Gradient (CONJ) [26] method that exhibits better
convergence than the steepest descent method. Three distinct do-
mains organization is fairly-well conserved in the generated model
[Fig-5]. The predicted model of a-amylase from soybean consists of
14 a-helices and 17 -sheets [Fig-6].

Domain A

‘ s ) i -

Domain B

Fig. 3- Phylogenic tree based on a-amylase sequences from differ-
ent species.

Fig. 5- The final 3D structure of a-amylase from soybean with three
distinct domains A, B,and C as obtained after energy minimization.
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score observed 93847.6 Angs. with expected 92249.8 Angs., Ste-
reo/Packing, 3D quality index results shows that less than 1% of
error residues in predicted model. [Fig-7B], [Fig-7C]. Over all quality
score was 82.866 for predicted models. PROSA score for Template
and Target were -10.48 and -10.89, respectively [Fig-8A]; whereas
root mean square deviation of 0.160A between 651 atom pairs was
observed UCSF Chimera 1.5.1. [Fig-8B]. Structural comparison
between template and target structures show less deviation at
atomic level. Validated and refined a-amylase model from soybean
was successfully submitted to Protein Model Database (http://
mi.caspur.itPMDB/) with PMDBID PM0078685.
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Fig. 6- Secondary structure prediction for generated model

Validation of the Predicted Structure

The stereo chemical quality of the predicted structure was assessed
after energy minimization. Energy was-12828.653 after energy mini-
mization. The total numbers of residues in selected model were
observed as: 94.4% residues in most favored region, 4.7% in addi-
tional allowed region, 0.9% in generously allowed region and no
residues in disallowed region in Ramachandran plot statistics [Fig-
7A] [Table-2]; which indicates that generated model quality is good.
QMEAN score / QMEANClust score of the whole model reflecting
the predicted model reliability ranging from 0 to 1. In this predicted
model QMEAN score 0.716 with global scores estimated absolute
quality Z-score: -0.52 result show that model is reliable. Fractional
accessible surface area volumes of all residues close to 1.0£0.1,
Statistics of hydrogen bonds of predicted model show equal to ex-
pected mean hbond distance score 2.2 sd=0.4, mean hbond energy
observed -1.7 sd=1.0 (74% residues) closest to expected -2.0
sd=0.8 (expected 75% residues). Dihedral Angles were observed
closest to expected, Total Accessible Surface Area score 27365.1
Angs. with expected score 22651.6 Angs., Total volume (packing)

Fig. 7A- Ramachandran plot, based on most favoured, allowed
generous and disallowed residues. Quantitative measures of the
model protein

Table 2- Ramachandran Plot statistics after energy minimization

S. No. Description % Value
1 Residues in most favoured regions 94.40
2 Residues in additional allowed regions 4.70
3 Residues in generously allowed regions 0.90
4 Residues in disallowed regions 0.00

Comparison with non-redundant set of PDB structures

1.0 1.5

05

-0.5

Z-score QMEAN: -0.52
Z-score Cbeta: -1.08

normalised QMEANG score
0.0
|

S | Z-score all_atom: -1.06 W |Z-score|<1
’ Z-score solvation: -1.19 O 1<|Z-score|<2
Z-score forsion: -1.24 O |Z-score|>2
o Z-score SSE agree: -1.45 = query model
— —| Z-score ACC agree: 0.25
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0 100 200 300 400 500 600

protein size

Fig. 7B- QMEAN score and Global scores estimated absolute quali-
ty Z-score
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Fig. 7C- Volume area dihedral angle reporter results from VADAR.

Results for 3AMK.pdb, chain A (675 aa) Results for PM0078685.pdb, chain blank (657 aa)
Overall model quality Overall model quality

1048 1089

Fig. 8A- Superimposition of modeled structures of a-amylases from

soybean with the template 1M7X using the combinatorial extension

(CE) method (Template structure in red colour and modeled struc-
ture in green colour).

Fig. 8B-Superimposition of modeled structures of a-amylases from
Glycine max with the templet 1M7X using UCSF Chimera 1.5.1.

Active Site Identification

Active site was calculated by using active site finder tool of Q-
sitefinder. A total of 10 active sites have been predicted [Fig-9] and
after sequence comparison it has been determined that showed
that the best possible binding sites Gm0237X0071 were-His- 91,Val
-92, Gly-93, Met-94, Ser-95, Ser-96, Phe-97, Glu-98, Asn-102, Ser-
103, Tyr-104, Phe-107, Tyr-134, Ser-148, Arg-150, Ser-151, Gly-
152, Lys-468, where as in case of TPA BK007878 structure; the
best possible sites showing the possible binding regions were Phe-

114, Tyr-118, Glu-134, Trp-135, Ala-136, Phe-189, Arg-199, Thr-
208, Met-288, Val-300, Thr-301, Asn-302, Phe-303, Phe-304, Ala-
305,Val-334, lle-335, His-336, His-338, Ser-340, Asp-345, Gly-346,
Asn-348,GLY349, Phe-350, Asp-351, His-369, Lys-370, Phe-377,
Val-384, Phe-387, Leu-388, Leu-389, Asn-391, Leu-392 and Tyr-
442. With comparison with template protein structure (3AMK.pdb)
Lys-101, Lys-234, Arg-237, Lys-322, Ser-325, His-369, Leu-371,
Trp-372, Ser-411, His-417, Phe-423, Tyr-430, Val-464, Ser-465,
Lys-498, Asn-499, Lys-500, Asp-502, Pro-561, Lys-628, Asn-631,
Ala-632, Pro-679 and Arg-748 residues were found to be best ac-
tive binding sites.

Fig. 9- Active site identification in predicted structure

Discussion

Predicted gene of a-amylase contains 13 introns and 14 exons. Cis-
acting element study was carried out by retrieving promoter region
and number of regulatory elements were observed closely related
with 3 main physiological phenomenon i.e. endosperm specificity,
stress response and hormone response. Earlier studies revealed
that despite considerable structural diversity, all a-amylase from
different sources shared a similar topology and fold. a-Amylases
from soybean have similar domain topology and conserved regions
as predicted by sequence alignment and homology modeling. Ho-
mology modeling can be used to generate 3D model of unknown
protein from its homologous protein. Predicted 3D structure of the
protein gives important information which is based on the quality of
the model generated. This can be useful for drug discovery pro-
cesses i.e. for the selection of target protein for which drug has to
develop, for designing mutants and to identify active and binding
site residues [39-40]. a-Amylase from soybean showed higher simi-
larity with branching enzyme from Oryza sativa (PDB ID: 3AMK,
chain a). The template and the target have 76% identity with 89%
positive identity with 0 E-value and score was 1169.07bits (3023).
The template structure consists of three major domains, an NH.-
terminal seven-stranded B-sandwich domain, a COOH-terminal
domain, and a central (B/a)barrel domain containing the enzyme
active site. The central domain is similar to that of all the other am-
ylase family enzymes [34].

The structurally conserved regions were determined by multiple
sequence alignment, based on the Needleman and Wunsch Algo-
rithm [37]. Homology modeling provides high quality structure align-
ment for structure prediction. Phi and Psi torsion angles of predicted
models were checked by PROCHECK. The RMSD of the equivalent
Cq atoms of the modeled structure was 0.161 A. In Ramachandran
plot analysis, no residues were found in disallowed region. The
Ramachandran plot for the model showed 100% of the residues in
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the allowed regions and contains non-glycine and non-proline resi-
dues. Structural alignment was done using Swiss-PDB viewer
(http://spdbv.vital-it.ch/) to calculate the structure deviation between
template (3AMK) and selected model of a-amylase from soybean.
Active site prediction showed that residues Lys-101, Lys-234, Arg-
237, Lys-322, Ser-325, His-369, Leu-371, Trp-372, Ser-411, His-
417, Phe-423, Tyr-430, Val-464, Ser-465, Lys-498, Asn-499, Lys-
500, Asp-502, Pro-561, Lys-628, Asn-631, Ala-632, Pro-679 and
Arg-748 were well-conserved and containing active binding site for
TPABKO007878. This model can be helpful for generating hypothe-
ses and to explore and design new potent inhibitors of soybean a-
amylase.
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