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Introduction 

Single nucleotide polymorphisms (SNPs) are single base difference 
between haplotypes which are extensively used as genetic markers 
in population and conservation genetics, and molecular ecology 
studies [1]. Interestingly, SNPs are the most abundant form of ge-
netic variation [2] present at regular intervals in the genome [3] and 
SNPs seem to be highly suitable for multiplexed genotyping assays 
on mass spectrometry, microarray or beadarray-based platforms 
[4]. Model plant species such as Arabidopsis thaliana (http://
walnut.usc.edu/2010), Oryza sativa (http://irfgc.irri.org), and Zea 
mays (http://www.panzea.org/), demonstrates the potential of SNPs 
for extensive genome analysis which are suitable for genome wide 
association studies and molecular breeding concepts like genomic 
selection [4]. Currently, there are several approaches available for 
calling SNPs from NGS data, including CLC Genomics workbench 
(CLC Bio, Aarhus, Denmark), SeqMan (DNASTAR Inc., Madison, 
WI), Pyrobayes [5,6], PolyBayes, SOAPsnp [7], Varscan [8], 
SNVMix [9,10], SeqEM [11], MAQ [12] and Atlas-SNP2 [10]. Py-
robayes and PolyBayes recalibrate base calling from raw data, and 
then implement a Bayesian approach that incorporates prior infor-
mation with population mutation rates to detect SNP. MAQ derives 
using Bayesian statistical model measures the confidence that a 
read actually comes from the position it aligns to, error probabilities 
from the raw sequence quality scores, sampling of the two haplo-
types, and an empirical model for correlated errors at a site. SOAP-

snp and SeqMan are also based on the Bayes’ theorem. 

It first recalibrates the sequencing quality score to calculate the 

likelihood of genotype for each position with existing conversion 

matrix, and then combines the prior probability for each genotype to 

infer the true genotype. Varscan uses parameters such as the over-

all coverage, the number of supporting reads, average base quality, 

and the number of strands observed for each allele to predict geno-

types [7,9]. SNVMix combines three Binomial-mixture models to 

model allelic counts, nucleotide and mapping qualities of the reads 

and infers SNPs and model parameters with the expectation maxi-

mization (EM) algorithm. In contrast, SeqEM uses the EM algorithm 

to numerically maximize the observed data likelihood with respect 

to genotype frequencies and the nucleotide-read error rate based 

on the NGS data of multiple unrelated individuals [9,11]. Atlas-SNP 

infers systematic errors of base substitutions on single reads by 

fitting training datasets using a logistic regression model which 

identified read sequence-related covariates to the base-quality 

score [10]. CLC calls SNPs using Neighborhood Quality Standard 

(NQS) [13] where sequence quality of the varying base is based on 

the quality of the neighborhood bases [14]. No study provides a 

comparison of CLC and SeqMan for SNPs detection, and so in the 

present study we aim to find SNP from buccal cancerous and 

healthy tissue transcriptome data obtained by Roche 454 pyrose-

quencing to represent the performance of CLC and SeqMan soft-

wares thereby presenting how different algorithms treat individual 

variations.  
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Methods 

NGS reads of buccal cancerous and healthy tissue transcriptome 
were obtained from Roche 454 pyrosequencing technology and 
processed in GS Run Processor v.2.5 for base calling on linux oper-
ating system (OS). The reads were transferred to windows system 

for quality filtering, mapping and SNPs identification. 

System Configuration 

The pipeline for SNP detection was carried out on Windows 7 edi-
tion consisting of 16.0 GB installed memory, Intel® Xeon® CPU X 
5650 @ 2.66 GHz (24 system processors), 2 TB hard disk and 64 

bit OS.  

Quality Filtering 

Quality filtering of the reads obtained from, both cancer and healthy 
tissues were performed using NGSQC Toolkit [15] with default pa-

rameters described in [Table-1]. 

Table 1- Quality trimming parameters 

Reference Mapping 

Reference genome of Homo sapiens assembly GRCh37.p5/hg19 
and dbSNP build 135 was downloaded from DNASTAR genome 
package (http://www.dnastar.com/t-dbsnp_files.aspx) for mapping 
and SNPs detection. To carry out mapping we used ‘map read to 
reference’ application of CLC and ‘templated assembly’ application 
of SeqMan for aligning buccal reads of cancerous and healthy tran-

scriptome to reference genome individually.  

SNP Detection 

To run SNP detection program with CLC, default parameters were 
assigned. CLC works with NQS algorithm. Thus window size as-
signed was 11, number of gaps and mismatches within window 
length of the read was 2, average quality score of the nucleotides in 
a read within the specified window length was 15 for the base to be 
included in the SNP, and quality score for the central base was 20. 
To avoid SNPs calling in areas of low coverage, where one would 
get a higher amount of false positives, minimum number of valid 
reads at particular position was taken as 4 whereas 35% consid-
ered as minimum variant frequency to validate reads at this position 
with different base. To compare of the performance of CLC Ge-
nomic Workbench we performed mapping and SNP detection with 
'templated assembly' application using SeqMan v.4.0.0. It uses 
Bayesian statistical model to call SNPs. Parameters were adjusted 
according to the CLC parameters where mapping similarity, maxi-
mum number of gaps, minimum coverage, minimum variant fre-
quency and minimum SNP threshold referred as quality of central 
base in SeqMan was kept similar to CLC parameters except mini-
mum base quality score which was kept 10. Mapping and SNPs 
parameters are described in [Table-2]. True positives (TP) and false 

positive (FP) rates of SNP was calculated with following formula: 

TP = (TP/total SNPs*100) and FP = (FP/total SNPs*100) 

Where: 

TP: number of SNPs matched to dbSNP 

FP: number of SNPs did not matched to dbSNP 

Total SNPs: number of SNPs identified by CLC or SeqMan 

Table 2- Mapping and SNPs parameter used for analysis 

Results 

Buccal Tissue Transcriptome Data 

We used a Roche 454 FLX instrument to generate ‘Titanium chem-
istry’ reads from cDNA libraries from two different human buccal 
tissue types, cancerous and healthy tissue transcriptome, yielded 
31.5 and 37.9 million base pairs (Mb) having 106113 and 130148 
sequence reads with an average read length of 297 and 291 nucle-

otides, respectively [16]. 

System Requirements 

To identify variants with different software like CLC and SeqMan we 
performed analysis on windows OS. We found that to perform anal-
ysis on CLC and SeqM minimum 256 megabyte (MB) and 16 giga-
byte (GB) Random Access Memory (RAM) is required respectively. 
CLC require Intel or AMD CPU whereas SeqMan require Quad-
Core 2 GHz. Both the software requires 64 bit processor and win-
dows operating system. Our pipeline for SNPs identification was 
carried out on windows operating system having Windows 7 edition, 
16 GB RAM and 2 terabyte (TB) hard disk. [Table-3] describes the 

features of the software used in the present study. 

Quality Filtering 

We performed quality filtering and homopolymer trimming on NQC 
Toolkit and found 93589 cancerous and 114509 healthy reads with 
22734524 bp and 26605464 bp having 30 as an average base qual-
ity score. Thus total of 49.33 MB of data from cancerous and 
healthy tissue transcriptome was taken for mapping and SNP analy-
sis. Approximately 88.45% reads of cancerous and 87.98% reads of 
healthy tissue were found with high quality having 367 and 360 N50 

read size, respectively presented in [Table-4] and [Table-5]. 

Comparison of SNPs Discovery with CLC and SeqMan 

Reference Mapping 

For SNP analysis, CLC parameters were kept default and SeqMan 
parameters were set accordingly. Firstly, we carried out mapping of 
high quality transcriptome reads of buccal cancerous and healthy 
tissue with reference genome package of Homo sapiens 
GRCh37.p5/hg19 using CLC and SeqMan. Mapping with reference, 
cancer tissue reads showed 4.02% (124446232 bp) and 9.74% 
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Primer/Adaptor library Rapid Library (Standard) 

Homopolymer trimming On 

Length of the homopolymer to be removed 8 

Length filter On 

Cut-off for minimum read length 40 

Cut-off read length for HQ 70% 

Cut-off quality score 20 

Only statistics Off 

Number of processes 1 

Mapping Parameter CLC SeqMan 

Min. mer size - 21 

Length fraction (min aligned length) 50% 50 

Similarity 80% 80% 

Mismatch cost 2 20 

Max no of gaps 2 20 

gap penalty - 20 

Insertion cost 3 - 

SNPs Parameter 

SNP Window length 11 - 

Min coverage 4 4 

Min variant frequency 35% 35% 

SNP confidence threshold/min quality 
score of central base 

20 20 

Min Base quality score 15 10 

Algorithm neighbourhood quality standard bayesian 
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(301507400 bp) human genome coverage whereas healthy tissue 
reads showed 3.01% (93179890 bp) and 7.64% (236586197 bp) 
human genome coverage using CLC and SeqMan, respectively. 
We observed that while mapping in CLC, cancerous and healthy 

reads showed highest similarity with chromosome 17 (0.32%) and 
chromosome 17 (0.23%) whereas while mapping in SeqMan, can-
cerous and healthy reads showed highest similarity with chromo-

some 4 (1.13%) and chromosome Y (0.92%), respectively. 
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Table 3- Features of SNP program compared in this study 

Tool Application Algorithm Author URL 

CLC Genomics Workbench 4.9.0 SNP Detection Neighbourhood quality standard CLC http://www.clcbio.com/ 

DNA STAR 4.0.0 SeqManNgen Bayesian SeqMan http://www.dnastar.com/ 

Table 4- Qualtity statistics of NGSQC Toolkit on buccal cancerous 

and healthy tissue transcriptome data 

Table 5- Results of quality trimming before and after filtering buccal 

transcriptome data 

*HQ: High quality 

SNP Analysis 

We found total 3153 and 491 SNPs in cancerous tissue reads 

whereas 2529 and 471 SNPs in healthy tissue read by CLC and 

SeqMan, respectively. Using PERL (Practical Extraction Report 

Language) scripts we calculated common SNPs detected between 

CLC and SeqMan for cancerous and healthy reads separately. Out 

of 3153 and 491 SNPs, 326 SNPs were common in cancerous tis-

sue reads whereas out of 2529 and 471 SNPs, 116 SNPs were 

common in healthy tissue reads. The 12.4% and 56% SNPs identi-

fied in cancerous tissue and 15.93% and 66.48% SNPs identified in 

healthy tissue by CLC and SeqMan, respectively were common 

with dbSNP. Thus these common SNPs were considered as true 

positives whereas all uncommon SNPs were considered as false 

positives. [Table-6] represents the detailed SNP results on buccal 

transcriptome data. 

Table 6- SNP detection results from CLC and SeqMan on buccal 

cancerous and healthy transcriptome data  

Time Calculation and Memory Usage 

Time taken for mapping and SNP analysis was calculated for both 
the softwares. CLC utilized approximately 27 minutes whereas Se-
qMan utilized approximately 2 hours 15 minutes. It was observed 
that the mapping required more time than SNP identification. CLC 
utilized approximately 26 minutes for mapping which aligned 4.02% 
and 3.01% reads in cancerous and healthy respectively. Compared 
to CLC, SeqMan utilized 43% more time to perform alignment but 
with 41.27% more reads aligned in 1 hours and 45 minutes. Total 
disk space consumed by CLC was 0.98 GB whereas SeqMan con-

sumed 138 GB for mapping and SNP analysis. 

Discussion 

SNPs have a wide variety of applications in biological research. To 
obtain best set of variants, there is need to use right combination of 
tools to discover them with less false positive calls obtained due to 
amplification bias and sequencing error. Efficient SNP discovery 
and genotyping in a highly heterozygous genome containing a high 
proportion of repetitive elements and paralogous sequences is diffi-
cult [17]. In order to make NGS technology ubiquitous and clinically 
useful, one needs to come up with simplified analysis tools that 
produce more true positive calls and reduces efforts and money 
required for downstream validation experiments [18]. This will allow 
biologists focus more on their work rather than on optimizing analyt-
ical tools for variant discovery. Here, we present a comparative 
study of two different commercially available applications for read 
alignment and variant discovery obtained by CLC and SeqMan 
which applies NQS and Diploid Bayesian algorithms, respectively 

for variant discovery.  

Quality Trimming 

The quality of data is very important for various downstream anal-
yses such as sequence assembly, mapping, single nucleotide poly-
morphisms identification and gene expression studies. Thus availa-
bility of accurate base quality data could improve the accuracy of 
SNP detection. Moreover homopolymers are the major problem 
observed in Roche 454 sequencing. The signal intensity distribution 

Quality statistics Cancerous Healthy 

Total number of reads 106113 130148 

Total number of trimmed reads containing homopolymer 11188 16235 

Total number of trashed reads (length <40 bp after trimming) 1037 1513 

Total number of low quality reads (excluding <40 reads) 11217 14126 

Total number of HQ reads 93888 114509 

Percentage of HQ reads 88.48% 87.98% 

Total number of bases 31668249 38086452 

Total number of bases in HQ reads 27427490 32413385 

Total number of HQ bases in HQ reads 22736614 26605953 

Percentage of HQ bases in HQ reads 82.90% 82.08% 

Number of Primer/Adaptor trimmed reads 77 15 

Total number of HQ filtered reads 93859 114509 

Percentage of HQ filtered reads 88.45% 87.98% 

File name Cancer Raw 
Cancer 
filtered 

Normal Raw 
Normal 
filtered 

Total number of reads 106113 93859 130148 114509 

Minimum read length 40 40 40 40 

Maximum read length 717 605 725 634 

Average read length 298.44 292.19 292.64 283.06 

Median read length 307 297 294 278 

N25 length 447 440 444 436 

N50 length 374 367 369 360 

N75 length 283 272 268 253 

N90 length 197 189 184 177 

N95 length 144 142 144 138 

Total number of bases 31668249 27425000 38086452 32412803 

Total number of HQ* bases 25404734 22734524 30134755 26605464 

Percentage of HQ* bases 80.22% 82.90% 79.12% 82.08% 

Average quality score 29.02 30 28.71 29.72 

Tissue type Cancerous tissue Healthy tissue 

Software type CLC SeqMan CLC SeqMan 

Total bases mapped 124446232 301507400 93179890 236589197 

Total bases mapped (%) 4.02% 9.74% 3.01% 7.64% 

Total SNPs 3153 491 2529 471 

Common with dbSNPs 12.40% 56% 15.93 66.48 

True Positives 391 275 403 299 

Percent True Positives 12.4 56.01 15.93 66.48 

False Positives 2762 216 2126 172 

Percent False Positives 87.59 43.99 84.06 36.51 

Common SNPs 326 116 
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broadens with the length of the homopolymer which leads to an 
ambiguous base call which may further lead to frame-shift affecting 
the downstream processing [15]. Thus we carried out quality check 
and homopolymer removal on the sequence data for which we used 
NGSQC Toolkit to provide high quality data which makes reads 
suitable for SNP detection giving less false positives SNP count 
with more accuracy. We observed approximately similar percent of 
reads 88.45% of cancerous and 87.98% of healthy tissue transcrip-
tome, passing the quality check and homopolymer trimming for 
downstream analysis. It is reported that that the average quality 
score of a read is inversely proportional to the number of errors in 
that read [19]. Our read showed average 30 quality score having 

fewer error rates. 

Alignment to Reference Sequences 

We took high quality reads for mapping with latest reference of 
Homo sapiens. For both the software stringent parameters were 
used for mapping and SNPs detection analysis to reduce the false 
positive rates. Firstly we observed that CLC do not provide refer-
ence package whereas SeqMan has systematic reference package 
for mapping and for SNP identification. Moreover in our results, we 
observed percentage of reference covered during mapping was 
approximately 39-41% higher with CLC than that of SeqMan for 
cancerous and healthy reads. CLC genomics keep percent of mini-
mum aligned length to 50% whereas SeqMan specifies the align-
ment length to 50 bases. In this case the possibility of alignment is 
reduced with increase in read length whereas in SeqMan increase 
in read length do not reduce the alignment as no matter what is the 
size of the read but it will align minimum 50 bases which thereby 
increase the chances of alignment. 

SNP Analysis 

CLC and SeqMan carry out SNP detection with two different well 

known approaches NQS and Bayesian model, respectively. In NQS 
[20], SNP detection looks at each position in the mapping to deter-

mine if there is a SNP at a particular position. In order to make a 
qualified assessment, it also considers the general quality of the 

neighboring bases by keeping 11 window size to determine that 5 
bases from left and right should have minimum quality score 15 and 

the central base should have minimum quality score 20 to deter-
mine it as candidate SNPs. It was hypothesized that bases sur-

rounded by perfectly aligned, consistently high-quality sequence 
(termed 'good neighborhoods’) might be more accurate than pre-

dicted by PHRED [21]. Thus NQS was used to identify such bases 
[22]. SeqMan applies Bayesian algorithm to call SNPs between 

homozygous reference, homozygous variant and heterozygous. 
This algorithm first run simple SNP caller on each column of the 

read. If the column passes a minimum percentage screen, it then 

check against a minimum variant depth where the most frequent 
variant base must meet or exceed this threshold. Thereafter puta-

tive SNP containing columns are evaluated with a statistical model 
that considers the two most frequent bases in the column as possi-

ble alleles. The model then calculates the P value of each set of 
bases which will be based on the base frequency, combined fre-

quency of the two bases, the quality scores and the directions of the 
reads. Moreover the heterozygous call's probability is based on 

simple permutations and a constant modifier, with the strands con-
sidered separately. Since they are the only possible genotypes, 

probabilities are normalized against one another, and the highest 
probability is called [23]. 

In present study, we observed the percentage of SNPs in SeqMan 

reduced to 84.42% and 81.37% compared to CLC in cancerous and 

healthy tissue transcriptome, respectively. We also observed that 

the number of SNPs that matched to dbSNPs were higher in Se-

qMan than CLC. Incorrectly detected SNPs are primarily due to 

paralogous gene sequences interfering with the assembly of short 

NGS reads [17]. It is reported that dbSNP genotypes for prior prob-

ability calculation helps in distinguishing real heterozygotes from 

errors in regions of low-depth sequencing. The use of additional 

information for prior probability under the general Bayesian proba-

bility framework could likely aid in further improving accuracy of 

posterior probability calculation [7]. The performance of NQS de-

pends on the read quality in NQS windows with low coverage data. 

NQS for SNP detection is appropriate for any sequencing system 

that has suitable quality scores whereas Bayesian models depends 

on P value which is based on the base frequency, combined fre-

quency of the two bases, the quality scores and the directions of the 

reads. Bayesian algorithm combines a priori knowledge about the 

sequence context with the specific, observed data represented by 

the sequences under examination. Such prior knowledge includes 

an approximate average polymorphism rate in the region, and the 

expected ratio between transitions and transversions thereby de-

creasing rate of false positive polymorphisms [1].Thus it seems that 

the stringency for SNP detection is higher in Bayesian model than 

NQS which ultimately decreases the number of SNPs in SeqMan. 

We observed 326 and 116 SNPs common in CLC and SeqMan in 

cancerous and healthy tissue respectively. The use of these strict 

parameters should allow reducing the false positive rate and assur-

ing relatively high quality results. In terms of utility we found that 

SeqMan can provide best results which includes prediction of SNPs 

in coding and noncoding region, synonymous and non-synonymous 

SNPs, SNPs that match dbSNP, SNPs that affect frame shift muta-

tions as well as it provide post analysis application with ArrayStar 

whereas CLC only predicts amino acid change. SeqMan SNP anal-

ysis can be performed on Windows OS but on CLC, it can be car-

ried out on Linux, Mac, and Windows OS. Both the tools are 

equipped with user friendly options and provide proper guideline for 

running. Though SeqMan require large disk space and it was ob-

served to be more time consuming than CLC but it gives accurate 

results with match to db SNP. Lastly proportion of SNP discovery in 

such a high-throughput screen may not represent true polymor-

phisms [1]. Further analyses are needed to validate these SNPs 

before their use in population structure analyses. Methods for vali-

dation of the SNPs will vary with the specific aims of researchers 

and may make use of array based technologies (Affymetrics, Illumi-

na), or platforms that use allele specific primer extension/ligation 

based methods as well as resequencing by the Sanger method for 

smaller scale approaches [24]. 

Conclusion 

In brief, the overall performance of SeqMan seems better than that 
of CLC in terms of utility and accuracy. Though SeqMan required 
more time, memory as well as disk space than that of CLC but runs 
on widely used Bayesian model considering dbSNP for SNP analy-
sis to avoid false positives and is suitable for high coverage data, 
whereas, CLC runs on NQS for SNP detection which is appropriate 
for any sequencing system that has high quality scores. Both the 
tools are equipped with user friendly options and provide proper 

guideline for running. 
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