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Introduction 

Characterization theory is a very interesting branch of science that 
locates on the borderline between mathematics and statistics. It 
utilizes many facts and tools of mathematical analysis such as 
measure Theory, differential equations, complex variable, and inte-
gral equations. It deals with the characteristic properties of probabil-
ity distributions so that it helpes researchers to determine distribu-
tions uniquely. Some excellent references are, e.g., Azlarov and 
Volodin [5], Kagan, Linnik and Rao [15], Mchlachlan and Peel [18], 
among others. A large number of ideas and concepts have been 
used to identify the probability distributions. Gupta [13], Ouyang 
[22], Talwalker [25] and Elbatal, et al. [8] have used the concept of 
right truncated moments to characterize different distributions like 
Weibull, gamma, beta, exponential, Burr, Pareto and Power distri-
butions. Really, characterizations via right truncated moments are 
very important in practice since, in some situations, some measur-
ing devices may be unable to record values greater than time t. On 
the other hand there are some measuring devices that can not be 
able to record values smaller than time t. This has encouraged sev-
eral authors and researchers to deal with the problem of identifying 
distributions by means of left truncated moments, see, e.g., 
Glänzel,, et al. [11], Gupta [13], Ahmed [2], Navaro et.al. [20] and 
Fakhry [9]. Furthermore, several authers have used the concept of 
order Statistics to characterize different probability distributions, 
see, e.g., Obretenov [21], Khan and Beg [16], Fakhry [9], Go-

vindarajulu [12] and A-Rahman [4].  

Main Results. 

Let X be an absolutely continuous random variable with distribution 

function F(·) defined on (α, β) Denote by the order 

statistics associated with a random sample of size n from F(·) 

Let g(·) and H(·) be two differentiable functions defined on (α, β)  

Elbatal, et al. [8] have characterized some types of probability distri-

butions through the equation On the other 

hand, Dimaki and Xekalaki [7] have identified  some  probability 

distributions using the equation Furthermore, 

Su and Huang [24] have discussed the necessary and sufficient 

conditions under which characterizes some prob-

ability distributions.  

In this paper, we generalize the above results using the concept of 

order statistics. Furthermore, we study the necessary and sufficient 

conditions to identify the probability distributions through the equa-

tion The following Theorem generalizes the re-

sult of Elbatal, et al. [8].  

Theorem (A)  

Let X be an absolutely continuous random variable with density 

function f(·) and cdf F(·) such that  and F(·) has continuous 

non-vanishing first order derivative on (α,β) so that in particular 0≤F

(x)≤1 for all Let denote the order statistics 

of a random sample of size n from F(·). Assume that h(·) and Hk(·) 

are two non-vanishing real valued functions defined on (α,β) that 

have non-vanishing first order derivatives such that: 

(a)  (b) 

(c) Then  
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(1) 

 

where 
 
I f f     (2)                                             

Proof Necessity 

The conditional density function of the kth order statistic [6] 
is given by: 

 

(3) 

Therefore, by definition we have: 

   
(4) 

 

Integrating by parts and making use of the assumption that  

one gets: 
                    

 
 

Sufficiency 
[Eq-2] can be written as an equation of the unknown F(·) as follows: 
             

 

 

Differentiating both sides with respect to t, cancelling out the term 

from both sides, adding to both sides 

and dividing the result by one gets: 

 

Integrating both sides with respect to t from x to β and using the fact 

that  then, after some elementary computation one get: 

 

 

Remarks (A) 

1. If we set k=1 in Theorem (A), we obtain a characterization in 

terms of the minimum. Furthermore, using [Eq-3] and [Eq-4] we 

have :      

Therefore, we can say that Theorem (A) generalizes Theorem (C) 

obtained by Elbatal, et al [8]. 

2. If we put k=n in Theorem (A), we obtain a characterization in 

terms of the maximum. 

3. If we put n= 2r + 1 and k= r + 1in Theorem (A), we obtain a 

characterization in terms of the median. 

4. If we put in Theorem (A), where 

c is a  positive parameter, we obtain a characterization concern-

ing the power distribution with parameter c. For c=1 we have 

the uniform distribution. 

5. If we set  in Theorem (A), where 

b and c are positive parameters, we obtain a characterization 

concerning the inverse Weibull distribution. 

6. If we set  i n 

Theorem (A), we obtain a characterization concerning the expo-

nentiated Weibull distribution with positive parameters and 

b [19]. For θ=1, we have a characterization for the Weibull distri-

bution with parameters  and b. For θ=1 and b=1, we obtain 

the exponential distribution. 

7. If we set in Theorem (A), where  a, b and 

θ are positive parameters, we obtain a characterization con-

cerning the exponentiated Pareto distribution of the first type 

with parameters a, b and θ [17]. For θ= 1, we have the Pareto 

distribution of the first type. 

8. If we set in Theorem (A), 

where α and θ are positive parameters, we have a characteriza-

tion concerning the exponentaited Pareto of the second type [1]. 

For θ= 1, we have the Pareto distribution of the second type. 

9. If we set  and  in Theorem (A), 

where is a  parameter such that: c∉ {-1,0} and g(x) is a differ-

entiable function defined on (α, β) such that:  

(a)     (b)     (c)  We have 

a characterization for a random variable X with cdf defined by  

[22]. 

10. If we set  in Theorem (A), where θ, β 

and α are positive parameters such that  we have a 

characterization for a random variable X with cdf defined by 

[10]. 

11. If we set in Theorem (A), where θ, r 

and d are positive parameters such that  we have a char-

acterization for a random variable X with cdf  defined by  

[10]. 

12. If we set in Theorem (A), where d and θ are 

positive parameters such that  we have a characterization 

for a random variable X with cdf defined by [10].  

The following Theorem investigates the necessary and sufficient 

conditions that must be satisfied such that:  

identifies some probability distributions.  

Theorem (B) 

Let X be an absolutely continuous random variable with density 

function f(·) and cdf F(·) such that  and F(·) has con-

tinuous non-vanishing first order derivative on (α, β) so that 0≤F(x)

≤1 for all x. Let  denote the order statistics of a 

random sample of size n from F(·). Assume that (for every natural 

number k ≤ n),  and are two continuous non-vanishing real 
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valued functions defined on (α, β) such that: (a)  is a differenti-

able function. (b) (c)                                               Then 

(5)               

Iff 

1.  is a differentiable function. 

2.   

3.  

4.   

5. The function    is a non-positive increas-

ing function. 

6.  

Proof Necessity 

[Eq-5] is equivalent to the following equation: 

(6)   
                    

To prove (1), we note that the continuity of the functions 

implies the continuity of their product. Therefore, 

function is integrable. Hence the left hand side of [Eq-6] is also 

differentiable. This means that the right hand side of [Eq-6] is also 

differentiable. But the function F(x) is differentiable. Therefore, the 

function must be differentiable. 

To prove (2), differentiate [Eq-6] with respect to t and dividing both 

sides by  one gets:             

Adding to both sides the term  and dividing the result 

by  

we get:   

Integrating both sides with respect to t from x to β, noting that    

and performing some elementary computation, one gets: 

         
 

Proof of (3) 

The virtue that F(x) is a cdf implies that  Therefore, 

taking the limit of the last equation as  and making use of 

the continuity of the exponential function, we get:   

 

 

Hence, 

Since k is a positive finite number, one gets: 
                    
 

Proof of (4) 

It is easy to see that (using condition 2 and the assumptions im-

posed on the functions  and       

                                         
 
 

 
 

Therefore (since the exponential function is continuous), we get:           
                            
 
 

 
This implies that: 

Proof of (5) 

The virtue that F(x) is a cdf implies that (a)            (b) F(x)  is 

an increasing function. Therefore, using condition 2, we have:  

for all Moreover, differentiating the last 

equation with respect to x, we get:   for all 

Hence is a non-positive increasing function. 

Proof of (6) 

[Eq-6] implies that Therefore (using condition 2), 

we get: 

Sufficiency 

At first, we note that the conditions 1, 3, 4 and 5 implies that the 
function F(x) defined by condition 2 is a cdf of some random varia-
ble X. Thus differentiating F(x) with respect to x one gets: 

 
 

Multiplying the last equation by  and performing 

some elementary computation, one gets: 

Integrating both sides of the last equation with respect to x from  α 

to t, recalling that  and dividing both sides by 

one gets: 

Example (A): Let X be an absolutely continuous random variable 

with cdf F(·). Let            be the order statistics associated 

with a random sample of size n from F(·). Then, we can show that  

X has the uniform distribution with parameters  α and β iff for any 

natural number k where 1≤k≤n, the following equation is satisfied:  

, 
  

It is easy to see that both of functions     and   satis-

fies the six conditions stated in Theorem (B). 

Now, we study the dual case of Theorem (A) and generalize the 

result of Diemaki and Xekalaki [7].   

Theorem (C) 

Let X be an absolutely continuous random variable with density 

Journal of Statistics and Mathematics 
ISSN: 0976-8807 & E-ISSN: 0976-8815, Volume 4, Issue 1, 2013 

Ali A. A‐Rahman 



|| Bioinfo Publications ||  144 

 

function f(·) cdf F(·) and survival function G(·) such that 

and F(·) has continuous non-vanishing first order derivative on (α, 

β) so that 0≤F(x)≤1 for all x. Let denote the order 

statistics of a random sample of size n from F(·) Assume that h(·) 

and Hk(·) are two non-vanishing differentiable functions on (α, β) 

such that: 

(a)              (b) (c) 

Then 

(7)  
 

for any  

Where 

Iff 

(8) 

Proof. Necessity 

The density function of the kth order statistic  [6] is given by:  

(9)              

Therefore, by definition we have: 

 

    (10) 

Integrating by parts and making use of the assumption that 

one gets:                        

 
 
 

Sufficiency 

[Eq-8] can be written in integral form as follows: 

      
 

Integrating by parts, recalling that  and cancelling 

out the term   from both sides, one gets: 

   (11)                          
 

Or equivalently 
 

Now, differentiate [Eq-11] with respect to t, adding to both sides  

and dividing the result by one 

 gets: 

Integrating both sides with respect to t from α to x, recalling that  

and performing some elementary computation, one gets: 

 

 

 

This completes the proof. 

Remarks (C) 

1. If we set k= n in Theorem (C), we obtain a characterization in 

terms of the maximum. Moreover, using [Eq-9] and [Eq-10], we 

have: 

Therefore, we can say that Theorem (C) generalizes Theorem 

(A) obtained by Dimaki and Xekalaki [7]. 

2. If we set k =1 in Theorem (C), we obtain a characterization in 

terms of the minimum. 

3. If we set n =2r+1 and k = r+1 in Theorem (C), we obtain a char-

acterization in terms of the median. 

4. If we put  and in Theorem (C), 

where c and b are positive constant, α =0 and β =∞, we obtain 
a characterization concerning the Weibull distribution with pa-
rameters c and b. For k =n, the result reduces to that of 
Hemdan[14]. For k =n and b =1, the result reduces to that of 

Shanbhag [23]. 

5. If we set α= 0 and β= 1 in 

Theorem (C) we obtain a characterization concerning the Power 

distribution with positive parameter a. For a =1, we have a char-

acterization for the uniform distribution. For k =n and a =1, the 

result reduces to that of Hemdan [14] characterizing the uniform 

distribution. 

6. If we set  in Theorem (C), 

where c and a are positive parameters, α= 0 and β= ∞, we 

obtain a characterization concerning Burr distribution. For a =1, 

we have a characterization concerning the Pareto distribution of 

the 2nd type with parameter c. 

7. If we set    and in The-

orem (C), we obtain a characterization concerning the Pareto 

distribution of the first type with parameter θ, c. 

8. If we set  in The-

orem (C), where  c is a parameter such that and  

is a differentiable function defined on (α, β) such that 

(a)                         (b) (c) 

we have a characterization for a random variable X with survival 

function G(·) defined by [22]. 

9. If we put  and in Theorem (C) 

where c is a positive parameter and  is a differentiable 

function defined on (α, β), we obtain a characterization concern-

ing the exponential family with parameter c [4]. 

10. If we set  in Theorem (C), we obtain the result of Ah-

sanullah [3].  

Now, we discuss the necessary and sufficient conditions to identify 

distributions by the equation  
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Theorem (D) 

Let X be an absolutely continuous random variable with density 

function f(·), cdf F(·) and survival function G(·) defined on (α, β) with  

for all x so that in particular 0≤F(x)≤1. Denote by 

the order statistics associated with a random sample of size n from 

F(·). Let g(·) and θk(·) be two continuous non-vanishing real valued 

functions defined on (α, β) such that:  

(a) is a differentiable function.  (b)                           

(c)  Then 

(12) 

Iff  

1. θk(·) is a differentiable function 

2.  

3. The function  is a non-negative increasing 

function. 

4.  

5.  

6.  

Proof Necessity   
The density function of  [6] is given by : 

 
(13)                

 
Therefore [Eq-12] is equivalent to the following equation: 

 
(14)                    

 

To prove (1), we note that the continuity of the functions 

and G(·) implies the continuity of their product. Therefore, the func-

tion is integrable. Hence the left hand side of [Eq-

14] is differentiable. This means that the right hand side of [Eq-14] 

is also differentiable. But the function G(·) is differentia-

ble .Therefore the function θk(·) must be differentiable.  

To Prove (2), differentiate [Eq-14] with respect to t, recalling that 

and dividing both sides by one gets: 

                 

Adding to both sides the term and dividing the result 

by  we get: 

Integrating both sides with respect to t from α to x, noting that  

and performing some elementary computation, one gets: 

Proof of (3) 

The virtue that G(x) is a survival function implies that:   

(a)  (b)  is a decreasing function. 

It is easy to see (using condition 2) that:  

                                                 

Also, differentiating the last equation with respect to x, one gets: 
                                    
 

Hence, Q(x) is a non-negative increasing function.  

Proof of (4) 

The virtue that G(x) is a survival function implies that  

Therefore, on taking the limit of G(x) defined in condition 2 as 

x→β‾ and making use of the continuity of the exponential function, 

we conclude that: 

Hence 
 
Since n-k+1 is a positive integer, 
 
we conclude that  
 
Proof of (5) 

It is easy to see that (using condition 2 and the assumptions im-

posed on the functions θk(·) and  

 
 

S ince is a non-zero finite number, it follows that 

(making use of the continuity of the exponential function):      

 
 
 

This implies that 
 

Proof of (6) 

[Eq-14] implies that  
 
Therefore 
                       
Sufficiency 

At first, we note that the conditions 1, 3, 4, and 5 implies that the 
function G(x) defined by condition 2 is a survival function of some 
random variable X. thus differentiating G(t) with respect to t, one 
gets :  

Multiplying the last equation by  and per-

forming some elementary computation, one gets: 

Integrating both sides with respect to t from x to β, recalling that  

and dividing both sides by one gets: 
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Remarks (D) 

It is clear (from [Eq-13]) that 

Therefore, we can say that Theorem (D) generalizes Theorem 3 of 
Su and Huang [24]. 

Example (B): Let X be an absolutely continuous random variable 

with cdf F(·). Denote by  the order statistics associat-

ed with a random sample of size n from F(·). We can show that X 

follows the uniform distribution with parameters α, β iff for any natu-

ral number k where 1 ≤ k ≤ n, the following condition is satisfied: 

, 
 

It is easy to see that both of the functions and 

satisfies all conditions stated in Theorem (D).    
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