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Abstract- In this paper, an attempt is made to determine the temperature displacement function and stress functions due to partially distrib-

uted heat supply  at  in a hollow cylinder occupying the space  by applying transfor-
mation techniques.  
Keywords- Hollow cylinder, Fourier sine transform, Marchi-Zgrablich transform and Laplace transform. 
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Introduction 
During the second half of the Twentieth century, non isothermal 
problem of the theory of elasticity became increasingly important 
this is due to their wide application in diverse fields. The high relo-
cation of modern aircraft gives rise to aerodynamic heating, which 
produces intense thermal stresses that reduce the strength of the 
aircraft structure. Noda (1983) studied transient thermal stress 
problem in a finite circular transversely isotropic solid cylinder 
subjected to an asymmetrical temperature distribution on a cylin-
drical surface. 
Chu and Lee (1995) derived exact analytic solution for thermal 
stresses in a long coaxial cylinder of two materials. Two cases 
were studied: one was of plane strain and the other was of zero 
axial force. The boundary was coated with a thin layer of poor 
conductor. The temperature was derived by using Laplace trans-
formation. Graphs of temperature distributions and thermal stress 
fields were provided for several cases of practical interest. Dai 
and Wang (2006) presented an analytical method to solve magne-

to-elastic wave propagation and perturbation of the magnetic field 
vector in an orthotropic laminated hollow cylinder with arbitrary 
thickness. The magnetoelastodynamic equation for each separate 
orthotropic hollow cylinder was solved by making use of finite 
Hankel transforms and Laplace transforms. 
Shao and Ma (2008) studied thermo-mechanical analysis of func-
tionally graded hollow circular cylinders subjected to mechanical 
loads and linearly increasing boundary temperature was carried 
out. Thermo-mechanical properties of functionally graded material 
(FGM) were assumed to be temperature independent and vary 
continuously in the radial direction of cylinder. Employing Laplace 
transform techniques and series solving method for ordinary dif-
ferential equation, solutions for the time-dependent temperature 
and thermo-mechanical stresses were obtained. Jinwu Kang 
(2008) applied the method to analyze stress in a stress frame 
specimen casting and a cylinder block. The results were more 
accurate than without consideration of the contact effects on the 
heat transfer. Eslami et al. (2009) discussed exact solution of 
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steady-state two-dimensional ax symmetric mechanical and ther-
mal stresses for a short hollow cylinder made of functionally grad-
ed material was developed. Temperature, as functions of radial 
and longitudinal directions, was solved analytically, using the gen-
eralized Bessel function. Nabavi and Ghajar (2010) derived a 
general weight function to evaluate the thermal stress intensity 
factors of a circumferential crack in cylinders. The weight function 
derived was valid for a wide range of thin- to thick-walled cylinders 
and relative crack depth. Closed-form stress intensity factor based 
on the weight function method was derived as a function of the 
Biot number and relative depth and various inner-to-outer radius 
ratios of cylinders. Tokovyy and Ma (2011) presented an analyti-
cal method for solving the ax symmetric stress problem for a long 
hollow cylinder subjected to locally-distributed residual 
(incompatible) strains. This method was based on direct integra-
tion of the equilibrium and compatibility equations, which thereby 
have been reduced to the set of two governing equations for two 
key functions with corresponding boundary and integral condi-
tions. The governing equations were solved by making use of the 
Fourier integral transformation.  
Ozturk and Gulgec (2011) investigated Elastic-plastic deformation 
of a solid cylinder with fixed ends, made of functionally graded 
material (FGM) with uniform internal heat generation based on 
Tresca’s yield criterion and its associated flow rule, considering 
four of the material properties to vary radially according to a para-
bolic form. Expressions for the distributions of stress, strain and 
radial displacement were found analytically in terms of unknown 
interface radii. 
Here we have solved the problem of thermoelasticity for a hollow 
cylinder by providing partially distributed heat supply with the stat-
ed boundary conditions. Numerical results are also included. The 
result presented here may be useful in engineering problem, par-
ticularly in determination of the state of strain in hollow cylinder 
constructing foundation of containers for hot gases or liquid in the 
foundation for furnaces etc. 
 
Statement of the Problem 

Consider a hollow cylinder of length  occupying the space 

. The initial temperature of the cylin-
der is the same as the temperature of the surrounding medium, 

which is kept constant. From time  to , the cylinder 
is subjected to a partially distributed and axi-symmetric heat sup-

ply  for the interior point . After that the 
heat supply is removed and cylinder is cooled by the surrounding 
medium. 

The displacement function  satisfies the differential 
equation 

    (1) 

with   at  and    (2) 

 and  are Poisson ratio and linear coefficient of thermal 
expansion of the material of the cylinder respectively and 

 is the heating temperature of the cylinder at time 

 satisfying the differential equation 

    (3) 
Subject to the initial condition 

     (4) 
The boundary condition 

   (5) 

    (6) 

    (7) 

     (8) 

where   and  are the thermal diffusivity and conductivity 

of the material of the cylinder respectively,  and  are 
radiation constants on the curved surfaces of the cylinder respec-
tively. 

The radial and axial displacement  and  satisfy the un-
coupled thermoelastic equation are 

   (9) 

   (10) 

       (11) 

       (12) 
The stress functions are given by 

  (13) 

  (14) 

where   and  are the surface pressures assumed to be 
uniform over the boundaries of the cylinder. The stress functions 
are expressed in terms of the displacement components by the 
following relations: 

    (15) 
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    (16) 

    (17) 

      (18) 

Where   is the Lame’s constant, G is the shear modu-
lus and U and W are the displacement components. Equations (1) 
to (18) constitute the mathematical formulation of the problem 
under consideration. 

Fig. 1- 
 
Solution of the Problem 
Determination of Heating Temperature 
Applying Marchi-Zgrablich transforms to equations (3), (4), (7), (8) 
and using equations (5) and (6), one obtains 

  (19) 

     (20) 

    (21) 

     (22) 
Now, applying Fourier sine transform to equation (19), one obtains 

      (23) 
Where 

     (24) 
And 

  (25) 
Equation (23) is the first order differential equation, whose solution 
is 

    (26) 
Applying inversion of Fourier sine transform and inversion of 
Marchi-Zgrablich transform on equation (26), one obtains 

  (27)  
 
Cooling Process 

The temperature change  for the cooling process sat-
isfies the equation 

    (28) 

  (29) 

   (30) 

   (31) 

     (32) 

     (33) 

where   is the heating temperature of the cylinder at 

time  satisfying the differential equation (1). 
 
Determination of Temperature for Cooling Process 
Applying finite Marchi-Zgrablich transform to the equations (28), 
(29), (32), (33) and using equations (30), (31) one obtains 

    (34) 

    (35) 

     (36) 
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     (37) 
Now, on applying Laplace transform to equation (34) one obtains 

      (38)

Where  

and  
Equation (38) is the second order differential equation, whose 
solution given by 

     (39) 

where  
A and B are arbitrary constants, which are found to be 

    (40) 

    (41) 
Substituting the values of A and B in equation (39) one obtains 

    (42) 
On taking inversion of Laplace transform and then inversion of 
Marchi-Zgrablich transform to equation (42), one obtains 

  

 

   (43) 
Where 

 and  
 
Determination of Displacement Function 

Substituting the value of  in equation (1), one obtains 

the thermoelastic displacement function  as 

 (44) 
Using equation (44) in the equation (11) and (12) one obtains 

  (45) 

    (46) 
 
Determination of Stress Functions 
Substituting the values of equations (45) and (46) in equation (15) 
to (18) one obtains the stress functions as 

 (47) 

 (48) 

 (49) 

  (50)  
 
Special Case and Numerical Results 
To study the mathematical thermoelastic behavior of a hollow 
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cylinder, we consider the following functions and parameters: 

   
Applying finite Marchi-Zgrablich transform to the equation (6.1) 
one obtains 

,   

a = 1 mm, b= 2 mm, h =10 mm, t =1 sec, k = 0.86 and n are the 
roots of the transcendental equation  

  
to get 

  

  
 
Material Properties 
The numerical calculation has been carried out for hollow cylinder 
with the material properties as, 
 

Table 1-Material Properties 

 
Dimensions 
The constants associated with the numerical calculation are taken 
as 
Inner radius of hollow cylinder a =1 mm  
Outer radius of hollow cylinder b =2 mm  
height of the hollow cylinder h = 10 mm 
time t = 1 sec. 
 
Graphical Analysis 
The numerical calculations has been carried out with the help of 
mathematical software MATCAD and graphs are plotted with the 
help of excel. 

Fig. 2- Distribution of the temperature versus radius for z = 0.02 
and different values of time in heating processes 

Fig. 3- Distribution of the temperature versus radius for z=0.02 
and different values of time in cooling processes  

Fig. 4-Distribution of the displacement function versus radius 
For z=0.02 and different values of time 

Fig. 5- Distribution of the radial stress versus radius  
for z=0.02 and different values of time  

Fig. 6- Distribution of the axial stress versus radius  
for z=0.02 and different values of time 

 22 )()(),( hzzrzrF  

)75.0()75.0(),( ,2,10 nkkSznF  )75.0,25.0,25.0()5.1( 0 nS  

0),,(),,( 1210210  akkSbkkS mm 

tdzm
tzrT

t

e

mn
n

tpn
 











011

2

)22)(86.0(

)][sin(
),,(








)]75.0,25.0,25.0(0)75.0,25.0,25.0([
0

rS nS
n





r



Journal of Statistics and Mathematics 
ISSN: 0976-8807 & E-ISSN: 0976-8815, Volume 3, Issue 3, 2012 

Lamba N.K., Walde R.T., Manthena V.R. and Khobragade N.W. 

Materials 
K  
Btu/hr ft0 F 

C p  
Btu/ lb 0 F  

P  
lb/ ft3  

  
ft2/ hr 

  
1/F  

E  
GPa 

V 

Aluminum (Al) 117 0.208 169 3.33  12.84x10-6 70 0.35 

Copper (Cu) 224 0.091 558 4.42  9.3x10-6 117 0.36 

Iron(Fe) 36 0.104 491 0.7  6.7x10-6 193 0.21 

Silver(Ag) 242 0.056 655 6.6  10.7x10-6 83 0.37 
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Fig. 7- Distribution of the radial stress versus thickness z for t 
= 0.02 and different values of radius r 

Fig. 8- Distribution of the temperature versus radius For z=0.02 

and different values of time t in heating processes with n=0.02 

Fig. 9- Distribution of temperature versus radius for z=0.02 and 

different values of time in cooling processes with n=0.02 

Fig. 10- Distribution of the radial stress versus radius for z=0.02 

and different values of time with n=0.02 

Fig. 11- Distribution of the axial stress versus radius for z=0.02 

and different values of time with n=0.02 

Fig. 12- Distribution of radial stress versus thickness z(=0.60) 
for t=0.02 and different values of radius 

 
The foregoing analysis will be illustrated by the numerical results 
shown in Fig. 2 to 12. Fig. 2 and 3 depicts the distributions of the 

temperature increment  and  verses radius at 
different values of time with z=0.02. It shows that heat gain on both 
boundary is zero and then initially temperature increment decreases 
slowly with increase of radius and the physical meaning emphasis 
for this phenomenon is that there is reduction in the rate of heat 
propagation then follows the sinusoidal nature crossing the inner 
core approaching towards outer edge leading to compressive radial 
stress at inner part and expand more on outer due to partially dis-
tributed heat supply. The difference in both the results lies with the 
increasing slope in Fig. 3 compared to Fig. 2 may be due to the 
cooling process once the partial heating is removed. Fig. 4 depicts 
the displacement function and it is noteworthy that it is in agreement 
with the boundary condition and attains minimum at the centre. Fig. 
5 and 6 shows the distributions of the radial and axial thermal 

stresses at different value of time. The stress  is smaller than 

stress  from Fig. 5, 6. Fig. 7 depicts the distributions of the 
radial stresses versus thickness showing the sinusoidal nature with 
increasing trend of peak with the fixed value of dimensionless time 
t=0.02. Further in order to investigate the outer radius-to-inner radi-

us ratio  and effects of thickness on the dimensionless 
temperature distributions and stresses are shown in Fig. 8 to 11. 

Selecting higher outer radius-to-inner radius ratio  temper-
ature increment and stresses versus dimensionless radius with fixed 
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value of dimensionless thickness  attains maximum peak 
comparative to Fig. 2,3,5 and 6. Similarly with increase in thickness 

 as shown in Fig. 12 temperature radial stress versus 
dimensionless radius with fixed value of dimensionless thickness 

 attains maximum peak comparative to Fig. 7. 
 
Conclusion  
In this problem, we modified the conceptual ideal proposed by 
Noda, et al (1983) for circular plate. The temperature distribution, 
thermal stresses and displacement functions are investigated of a 

thin hollow cylinder of length  occupying the space 

. The initial temperature of the cylinder 
is the same as the temperature of the surrounding medium, which is 

kept constant. From time  to , the cylinder is subject-
ed to a partially distributed and axi-symmetric heat supply 

. After that the heat supply is removed and cylin-
der is cooled by the surrounding medium. The governing heat con-
duction equation has been solved by the applying Marchi-Zgrablich 
and Fourier sine transform techniques. The results are obtained in a 
series form in terms of Bessel’s functions. Mathematical model has 
been constructed for the Aluminum material with the help of numeri-
cal illustration and the results obtained are illustrated graphically. 
 
References 
[1] Chu J.L. and Lee Sanboh (1995) Mechanics of Materials, 20

(2), 105-123. 
[2] Dai H.L. and Wang X (2006) International Journal of Engineer-

ing Science, 44(5-6), 365-378. 
[3] Jabbari M., Bahtui A. and Eslami M.R. (2009) International 

Journal of Pressure Vessels and Piping, 86(5), 296-306. 
[4] Nabavi S.M. and Ghajar R. (2010) International Journal of 

Engineering Science, 48(12), 1811-1823. 
[5] Noda N. (1983) Journal of Thermal Stresses, 6(1), 57-71. 
[6] Ozturk Ali and Gulgec Mufit (2011) International Journal of 

Engineering Science, 49(10), 1047-1061. 
[7] Shao Z.S. and Ma G.W (2008) Composite Structures, 83(3), 

259-265. 
[8] Xu Yan, Kang Jinwu, Huang Tianyou and Hu Yongyi (2008) 

Tsinghua Science & Technology, 13(2), 132-136. 
[9] Yuriy V. Tokovyy and Chien-Ching Ma (2011) International 

Journal of Pressure Vessels and Piping, 88(5-7), 248-255. 

02.0z

06.0z

02.0z

h

hzbraD  0,:

0t 0tt 

/),(0 trfQ

Journal of Statistics and Mathematics 
ISSN: 0976-8807 & E-ISSN: 0976-8815, Volume 3, Issue 3, 2012 

Lamba N.K., Walde R.T., Manthena V.R. and Khobragade N.W. 

http://www.sciencedirect.com/science/journal/01676636
http://www.sciencedirect.com/science/journal/01676636/20/2
http://www.sciencedirect.com/science/journal/01676636/20/2
http://www.sciencedirect.com/science/journal/00207225
http://www.sciencedirect.com/science/journal/00207225
http://www.sciencedirect.com/science/journal/00207225/44/5
http://www.sciencedirect.com/science/journal/03080161
http://www.sciencedirect.com/science/journal/03080161
http://www.sciencedirect.com/science/journal/03080161/86/5
http://www.sciencedirect.com/science/journal/00207225
http://www.sciencedirect.com/science/journal/00207225
http://www.sciencedirect.com/science/journal/00207225/48/12
http://www.sciencedirect.com/science/journal/00207225
http://www.sciencedirect.com/science/journal/00207225
http://www.sciencedirect.com/science/journal/00207225/49/10
http://www.sciencedirect.com/science/journal/02638223
http://www.sciencedirect.com/science/journal/02638223/83/3
http://www.sciencedirect.com/science/journal/10070214
http://www.sciencedirect.com/science/journal/10070214/13/2
http://www.sciencedirect.com/science/journal/03080161
http://www.sciencedirect.com/science/journal/03080161
http://www.sciencedirect.com/science/journal/03080161/88/5

