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Abstract- In this we propose an algorithm to automatically find objects in 3D Flash Lidar images. Three-dimensional Flash 
Lidar camera is a new technology which allows a single camera to take multiple images in a fast succession. It produces a 
series of range delimited imagery using a single laser flash. The imagery can distinguish between objects at different 
distances, such as the sea-surface and underwater objects. We apply a transformation to reduce the computational 
complexity and apply stable unsupervised multiphase segmentation for object identification. Numerical results are presented 
to validate the approach both using scalar and Victor models.  
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1.Introduction 
Three-dimensional Flash Lidar imaging represents one 
of the latest advances in imaging technology [18] which 
uses a single laser pulse to generate a three-
dimensional data. 3D Flash Lidar camera uses smart 
pixels for signal integrators: each pixel can accurately 
and independently count time to the target. The light 
reflected from a certain distance is captured in a plane of 
the image volume in a fast succession.  
This imagery is different from the typical LIDAR (Light 
Detecting and Ranging) images, where several laser 
pulses are used to record the distance to the surface or 
objects. LIDAR has many applications in environmental 
and civil engineering and it is widely used for forestry, 
building constructions, and ground surface modeling as 
in [4, 7, 11, 14]. There are many references for LIDAR 
images, while 3D Flash Lidar image is a new approach. 
3D Flash Lidar images capture the luminance of each 
distance, then produce a succession of 2D images at 
particular distances from the camera, that 3D Flash Lidar 
images have very different characteristics compared to 
LIDAR images. 
One of the challenges of 3D Flash Lidar images comes 
from the images taken from a moving vehicle. For 
example, when the images are taken from an airborne 
vehicle, one object can be captured in few different 2D 
images each from a different distance from the camera. 
Figure 1 shows an example of 3D Flash Lidar image, a 
partial sequence of images taken from an airborne 
vehicle. The plane (a) depicts objects closer to the 
camera, and image (b) through (h) successively farther. 
Notice, the glint from the water surface begins in plane 
(b). The submerged object comes into view beginning 
with plane (f), then it is clearly visible in (g). It is evident 

that the airplane is not parallel to the water, since the 
glint first appears on the right side of the planes but 
disappears on the left.  

         Fig. 1: An example of 3D Flash Lidar image taken 
from an airborne vehicle. Image (a)-(h) is a sequence of 
2D image planes taken from each different distances 
from the camera to the floor. Image (a) and (b) are mid-
air, image (b)-(e) show parts of the water surface, and 
image (e)-(g) captured underwater and floor. 
The objective of this paper is to propose a method to 
easily identify objects submerged underwater. This is not 
a trivial issue, due to the glint, the tilt from the moving 
aircraft, and the volume of the data size of 3D Flash 
Lidar image. One can consider adjusting the tilt of the 2D 
planes by determining the oblique image plane that 
represents water surface. Instead, we propose directly 
finding an object without adjusting for alignment.  
Here we propose a stable method by properly reducing 
the size and using unsupervised segmentation. In 
Section 2, we illustrate the procedure with the set up of 
the model, then a fast algorithm is explained in Section 
3. Various numerical experiments are presented in 
Section 4, followed by concluding remarks in Section 5. 
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2.Multiphase segmentation for 3D Flash Lidar image: 
Three-dimensional Flash Lidar images capture multiple 
2D images of the same scene, where each image is from 
different distances to the camera. Let an image domain 
be Ω , and the captured image I be I : Ω × D 
→  where D = {1, 2, . . . ,m} is the (finite) discrete 
values representing different distance from the camera. I 
(Ω, 1) : Ω  → R is the image closest to the camera, I(Ω, 
2) the next closest to the camera, and I(Ω,m) represents 
the farthest from the camera. We use the notation (x, y, 
z) to represent each pixel in the image, (x, y)  Ω  and z 

 D. Note that the z-coordinate is different from xy-
coordinates of Ω . 3D Flash Lidar images capture what 
can be seen from the camera, that the depth information 
is not complete. It cannot find an object hidden behind a 
solid object, and the planar dimension should not be 
treated equally to the depth z direction. This is also 
noticed in [3]. 
 
To properly utilize the distance information, we consider 
the profile of the image in the z-direction, 
 =I(x,y,z)                  (1) 
 

 
Fig. 2: Example of the profile function pxy(z) in (1) for the   
airborne example in Figure 1. The graphs in the same 
column are taken from locations next to each other, 
which shows the similarities. When the profiles are 
compared against different columns, the differences are 
more noticeable. 
 
Figure:2 illustrates some of profiles (z) for different 
locations of (x, y) Ω  for the airborne 
example in Figure 1. The graphs in the same column are 
taken from locations next to each other, which shows the 
similarity between them. When the profile graphs are 
compared against different columns, the differences are 
more noticeable. We capture the differences in these 
profiles, then cluster the profiles according to the 
difference by a segmentation method. Since the main 
idea is to capture the difference in the depth profile, we 
can consider reducing the size of the data for easy 
computation. 
 
Step 1: Reducing the size of information. 
Notice from the profile graphs in Figure 2, that the 
graphs are all oscillatory. Therefore, to capture the 
difference in these profiles, Fourier transformation with 
trigonometric function is a good choice for the base 

function. We apply a Fast Fourier Transformation (FFT) 
to the z direction, 

 
Here z  D and m are as defined above. We pick the first 
few frequencies, which correspond to larger differences, 
and define a vectorial image on Ω as 
 
u = (a1, a2, a3, . . . an) : Ω → . 
Where n is the no.of frequencies used and in this paper, 
we used n = 3. The process savings are realized when n 
is much smaller than m, and the elimination of the higher 
frequencies is a common noise suppression technique 
which validates our choice of using only few beginning 
coefficients. In our experiments, it was often sufficient to 
use an Image such as  =   , 
and apply scalar multiphase image segmentation. This  
is different from simply adding some planes of the image 
I directly. Since this  emphasizes the differences 
captured by the transformation, there is no need to hand 
pick important planes directly. 
 
Step 2: Segmentation and Classification. 
Image segmentation is a widely studied image 
processing task, where it simplifies (partitions) the 
image, making it easier to identify certain objects or 
features in the image. There are various different 
approaches: Geman and Geman’s mixture random field 
models [5], Mumford and Shah’s piecewise smooth 
variational image models [12], the graph-cutting and 
spectral method of Shi and Malik [16], and the data-
driven Monte-Carlo Markov chain model (DDMCMC) of 
Tu and Zhu [20] are some of 
the classical well-known examples. In variational 
settings, Mumford-Shah model [12] and Chan-Vese (CV) 
model [1] are well-known and CV model has been 
extended to multiphase segmentation as in [2, 8, 9, 13]. 
We apply an unsupervised multiphase image 
segmentation method [15]. Different from the case of 
two-phase identification, multiphase segmentation has 
sensitivity issues: choosing an initial condition, and pre-
assigning the number of phases. An unsupervised 
segmentation model [15] automatically gives a 
reasonable number of phases while it segments the 
image. Remote sensing and its application to 3D Flash 
Lidar image is an excellent application of unsupervised 
multiphase model, since most objects and backgrounds 
are not predetermined 
and the number of phases are unknown. An 
unsupervised method can automatically give a 
reasonable segmentation result, and it is based on 
minimizing the following functional: 
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Here the super index j indicates the length of the 
vectorial image u. When a scalar image is used, set n = 
1. The notations P(A) and |A| represent the one-
dimensional Hausdorff measure and the Lebesque 
measure of a phase A respectively. The term  is an 
inverse scale term that under minimization tends to favor 
larger objects. Note that each phase, 
{ }, intensity average {ci}, and the number of phases k 
are all unknowns, only the observed image ¯u is given. 
The proposed method is these two steps: apply FFT in z-
direction to reduce the size of data, then apply a fast and 
stable multiphase segmentation algorithm to few low 
frequency coefficients. By utilizing the profile, we can 
directly apply the algorithm to the 3D Flash Lidar image. 
This is more efficient compared to adjusting the 2D plan 
or dealing with complication 
of 3D reconstruction.  
 
3. Details of the segmentation algorithm     
When image segmentation is applied, we represent each 
segment as a characteristic function  for i = 1, . . . ,K. 
The minimum of the energy is computed by considering 
the change directly as in [6, 15, 17]. When a pixel (x, y) 
in phase l moves to another phase j, the energy change 
is computed by 
 

 (5)   
 
3D Flash Lidar Image segmentation Algorithm: 
• Input a 3D Flash Lidar image I. 
• Use a transformation such as FFT in z-direction, pick 
few frequency values a1, a2, . . . ,an, and define u = (a1, 
a2, . . . , an). 
• Apply multiphase segmentation to the reduced image u 
by: 
Set an initial phase: |x1| = |Ω| with k0 = 1. 
Iterate 
1. At each pixel (x, y)  Ω(with x1(x, y) = 1 and xi(x, y) = 
0 for  l), Compute value = minj{∆Elj |j≠l, j = 1, . . . , k 
+ 1}, with ∆Elj in (5) and let h = arg minj{∆Elj |j ≠l, j = 1, . . 
. , k + 1}. Here k + 1 refers to a new phase. 
Then,  
.  

 
2. Update k = h, calculate ni =  and ci for each phase 
i = 1, . . . , k. 
Here the super index j indicates the length of the 
vectorial image u as before, and for scalar case, we set n 
= 1. ci is the average of each phase i, and ni is the 
number of pixels in phase i, i.e. area | | = . 
 
This energy difference (5) can be easily evaluated by 
computing each terms. The term  is the change in the 

total length and the scale term, which can be simply 
expressed as  = Tl(Sj −Sl)+Sj . Here Sj 
= when (x, y) in phase j. Tl is the total length 
when (x, y) in phase l, which is computed by adding all 
the difference of the characteristic  function   such as 

The difference of total length, T, can be also easily 
computed by considering the addition of change in the 
length in phase j and phase l, T = P( ) + P( ). The 
change in length of each phase is a function of the 
dimension of the space. If a pixel joins or leaves a 
phase, the change in length can be computed using its 
neighbors, and can be simply computed by 

 (See [15]) 
for related details.) By combining all these terms, the 
change in energy (5) can be computed. Now, the 
minimum can be found by computing the difference in 
energy. If lj > 0, the pixel will not change to phase j 
since that will increase the energy. If this value lj is 
negative, it is better to move (x, y) to phase j. 
 The scalar versions of the functional (4) and the 
algorithm (5) demonstrate stability for general images 
when no prior information is given, and related properties 
and stability of these  approach can be found in [15] or 
[10].  
 
4. Numerical Experiments 
One of the best applications of this approach is in 
identifying objects underwater. Figure 1 shows an 
example of 3D Flash Lidar image of a underwater target. 
It is showing 8 planes  

 
Fig. 3: Images (a) and (b) are a2 and a3: the frequency 
response of FFT applied to z-direction of 3D Flash Lidar 
image in Figure 1. They capture both the object and 
glints of the water. (c) The scalar image . (d) The result 
using a scalar multiphase segmentation on ¯u, with = 
0.0001. Image (d) clearly identifies the object separately 
from the glares of the water. 
 Here the object can be identified as one phase. We 
apply the proposed method. The top row of Figure 3 (a)-
(b) shows the frequency responses: a2 and a3. The 
primary characteristics of larger targets are evident in 
these lower frequency images, and the frequency 
images (a)-(b) include the object as well as all the glints 
from the water surface. Image (c) is the scalar image   
of these lower frequency images. To clearly identify the 
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object, we apply multiphase image segmentation to 
image (c) and Figure 3 (d) shows the result. This result 
(d) is one phase out of the 8 phases automatically 
segmented using   = 0.0001 in (4). This method clearly 
separates the object from the glint of the water effectively 
without any prior knowledge of the sense. 
As a comparison, Figure 4 shows results using a two 
phase segmentation [1] for the airborne example in 
Figure 1. This example shows that regardless of using 
scalar or vectorial model of CV model, two phase 
segmentation is not suitable for automatically finding 
multiple different objects and classifying the different 
objects. The glints as well as the object are in one phase 
of the segmentation due to the limitation of finding only 
two phases. 

 
Fig. 4: (a) The result using two phase segmentation [1] 
on a scalar image . (b) The result using two phase 
vectorial segmentation on a vectorial image u. These 
experiments show that two phase segmentation is not 
suitable for automatically finding multiple objects. The 
glint and the object are in the same phase, due to the 
limitation of finding only two phases. (c) The result using 
the proposed approach. 
The top row of Figure 5 is another example of a 3D Flash 
Lidar image, showing an object on the ground. Figure 5 
second row shows segmentation results, using scalar 
and vectorial models. Both results show reasonable 
results; well-identifying the location of the object. Image 
(i) is one phase out of nine and image (j) is one out of 
seven automatically segmented phases. Using the 
vectorial model gives a cleaner result compared to the 
scalar case, since the vectorial model can be more 
stable against noise introduced from one of the images 
a2, a3 or a4. 

 
Fig. 5: The top row are few images of a 3D Flash Lidar 
image showing a single object on the ground. Image (f)-

(h) are a2, a3 and a4, respectively. Image (i) is a result 
using a scalar case of ¯u, using λ= 0.0001 and Image (j) 
is a result using a vectorial case of u = (a2, a3, a4), 
using vectorial model with λ = 0.0005. Using the vectorial 
model gives a cleaner result compared to the scalar 
case, since the vectorial model can be more stable 
against noise introduced from one of the images a2, a3 
and a4. 
 
5. Concluding Remark 
Three-dimensional Flash Lidar cameras are one of the 
latest advances in imaging technology [18]. It produces a 
series of range delimited imagery using a single laser 
flash. We propose an algorithm to find objects in the 3D 
Flash Lidar image using a variational model of 
unsupervised multiphase image segmentation. The 
imagery can distinguish between objects at different 
distances, such as the sea-surface and underwater 
objects. The proposed method particularly works well 
when objects are underwater with presence of high 
frequency noise, as in Figure 3. A step of FFT helps to 
reduce the size of the image, and makes the 
segmentation process stable by reducing the noise. This 
is a first work on underwater object identification of 3D 
Flash Lidar images, and there are many interesting 
problem: identifying tall objects where parts of such 
image are spread across many different planes is a 
challenging problem, especially since only discrete 
height information is available. Three-dimensional Flash 
Lidar images have a rich information set and various 
interesting properties can be explored 
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