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Abstract- In this article, we discuss the analytical and numerical bifurcation of (2+1) Dimensional Konopelchenko-Dubrovsky equation pre-
sented by a fractional differential equation. The bifurcation parameters and the corresponding phase portraits are illustrated. These results 
show that the qualitative behaviors of phase portraits are very sensitive to the fractional order derivative. 
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Introduction 
Konopelchenko and Dubrovsky (KD) introduced their (2+1)-
dimensional model equation in 1984 [6]. Extensive efforts have 
been devoted to solving and analyzing the qualitative behavior of 
the solutions and to discussing the bifurcation behavior of this 
equation for varying parameters. While no unified method to at-
tack this nonlinear problem has appeared, many appealing meth-
ods have been utilized to determine exact solutions of the KD 
equation. The Exp-function method [1], the inverse scattering 
transform method [6], the homogenous balance method [12] and 
the improved tanh function method [4,9,10] are among these. The 
existence of varying parameters in this non-linear partial differen-
tial equation makes it very rich as a dynamical system. Recently, 
He [5] extensively analyzed the bifurcation behavior of the KD 
equation, determining bifurcation parameter sets and their corre-
sponding phase portraits. By using the bifurcation method of pla-
nar dynamical systems [2-4, 7], this has led to exact explicit para-
metric representations of solitary wave solutions, kink (anti-kink) 
wave solutions and periodic wave solutions of the (2+1) KD equa-
tion. 
Recall that a local operator, such as an integer order differential 
equation, has the property only its present state determines its 
next state, so this operator is indifferent to its history. Conversely, 

a non-local property is one in which next state of one system de-
pends not only upon its current state but also upon all of its histor-
ical states starting from the initial time. The latter more closely 
reflects reality and is a primary reason why Fractional Differential 
Equations (FDEs) are increasingly applied to dynamical systems. 
Thus, we were motivated to conduct a bifurcation analysis of the 
(2+1) KD equation presented by an FDE and investigate the sen-
sitivity of its various bifurcation phenomena to the fractional order 
derivative of the equation. 
In this article, we first convert the KD equation presented by an 
FDE to a system of ODEs with fractional order. Then we deter-
mine the set of bifurcation parameters by using the theory of dy-
namical systems whereby phase portraits can be detected and 
illustrated. Among these phase portraits, saddle node, limit cycle, 
cusp and homoclinic orbits are illustrated for various values of 
fractional order derivative. In discretizing the transferred ODE with 
fractional order, we have applied the Mickens non-standard dis-
cretization scheme [12] to the Grunwald-Letnikov discretization 
process. This non-standard scheme, in the contest of a KD non-
linear fractional differential equation, leads to faster convergence 
and more accurate results as compared to standard alternative 
methods. 
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KD Equation Presented by FDE 
We consider the KD equation presented by an FDE in time deriva-
tive 

  (1) 

where a, b are real parameters, is the 

order Riemann-Liouville integral operator defined by

w i t h  a n d 

being ordinary derivative of order n for time  
 Following the procedure in [5] for ODE case, we let

, with c as a wave speed and k as a parameter. 

It follows that and . Substi-
tuting this transformation into the system (1) yields, 

      (2) 

Integrating both sides of system (2) with respect to leads to 

   (3) 

Here, and are integral constants. Now we let 

, , ,

, and . Then (3) 
reads 

    (4) 

Obviously, for system (4) becomes  

     (5) 

with some modification in parameter . As stated in [5], the 
H a m i l t o n i a n  f u n c t i o n  o f  s y s t e m  ( 5 )  i s

a n d  t h e 

phase portrait, , define by system (5) determines all 
solutions of the system (1) in the form of ODE. In this case, one 
can investigate the bifurcation sets and phase portraits of the sys-

tem (5) in -phase plane as parameter changes. To do this 
the first step is to find the fixed points of system (5). Obviously, 

system (5) has three fixed points, say , and

. Note that, the fixed points of system (4) in -

phase plane can be similarly determined with zero  coordi-

nates and some constants change in corresponding to the 

changes in  and . Thus, the fixed points of system (4) can 
be obtained from those of system (5) by a constants transfor-

mation in  direction. Now, at any of these fixed points, the 
Jacobean of the left hand side equations in (5) has the form 

. So, from theory of dynamical systems 

if  then the Jacobian has two purely imaginary ei-

genvalues which means the system has a center around . 

For  we have two eigenvalues with different signs 

and thus a saddle occurs around . Also for 

and zero Poincare index for , there is a cusp. Finally, if the 

level sets for two different fixed points and have 
the same values, then the heteroclinic loop occurs. In this article, 
we will use the same sets of bifurcation parameters as those used 
in [5] for system (5) in order to investigate the qualitative behavior 
of these phase portraits for system (4) with varying values of deriv-

ative order . Here, we suppose and fixed as a 

positive number, say 1, and we choose and as bifurcation 
parameters. As discussed in [5], the qualitative behavior of phase 

portraits for zero or negative values of  is similar to the ones 

with positive . So we can vary only and . Now, accord-
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ing to the theory of dynamical systems, if we apply the conditions 
for the saddle, center, cusp and heteroclinic loop to the system (5) 

the plane will be divided in 9 areas by the curves and the 

l i n e s ;  

and as in Fig. 1. These areas are consid-
ered as 
 

,

, 

 

 

 

Fig.1- Different regions for the bifurcation set of parameters d and 
f. 

 
Discretization and Numerical Results 
Here, we shall use the Grunwald-Letnikov method [9,10] to discre-
tize system (4). In this method, fractional derivative is discretized 

as , where is the step size,  

denotes the integer part of ,  and  are the 
G r u n w a l d - L e t n i k o v  c o e f f i c i e n t s  d e f i n e d  b y

. These coefficients can also be 

e v a l u a t e d  r e c u r s i v e l y  b y  a n d

. Using this method, system 
(4) discretized as follow.  

  (6) 
Note that in this discretization we have used the non-standard 
Mickens’ method [8] to obtain a stronger result. This means that in 

the discretization process we have replaced with 

or with . To be consist-
ence with [5] we have chosen the bifurcation parameters d and f 
f r o m  t h e  f o l l o w i n g  6  d i f f e r e n t  a r e a s

, ,

, and 

. Now, we are ready to solve the 
discretized system (6) by choosing the bifurcation parameters 
from these 6 regions with different initial values. We have illustrat-
ed the results in Fig. 2. Each figure in the set of Fig. 2 represents 
the phase portrait for each above 6 different regions of parame-
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ters. In these figures, we have taken the order of derivative

. As we can see in these figures, the qualitative behav-
ior of the saddle points did not show significant change. This is the 
same for the cusp points. On the other hand, the center points are 

very sensitive to the value of derivative order . We have tried 
to take the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Phase portriates of KD equation presented by FDE for 

derivative order and varying values of parameters d 
and f in 6 different regions shown in the text. 

 

smallest possible values for the order of derivative such that 
the qualitative behavior of phase portraits remain unchanged com-

paring to the original phase portraits in the case of .  
We have observed that the different fixed points of the system that 
exist for the bifurcation values d and f, will brake done and will be 

extremely sensitive for the values of . For example, as 
we can see in Fig. 3 even the saddle points related to figures 1-e 
to 1-f are losing their qualitative behavior for the order derivatives 
less than 0.8. Of course, these infrastructures are clearer for the 
center points in these figures (see Fig. 3).  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Fig. 3. Phase Portriates of KD equation presented by FDE. Fig-

ures a-c are similar to the figures d-f in Fig. 1 for . Fig-

ures d-f are also similar to figures d-f in Fig. 1 for . 
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