
|| Bioinfo Publications || 66

Information Science and Technology
ISSN: 0976-917X & ISSN: 0976-9188, Volume 3, Issue 2, 2014, pp.-066-070.

Available online at http://www.bioinfopublication.org/jouarchive.php?opt=&jouid=BIJ0000002

DESAI C.G.*
Department of MCA, MIT, Aurangabad- 431 009, MS, India.
*Corresponding Author: Email- chitragdesai@gmail.com

Received: November 27, 2013; Accepted: July 17, 2014

Introduction

The object oriented approach to software development promises

better management of system complexity and a likely improvement

in project outcomes such as quality and the project cycle time [1].

This requires creating a good design. The term ‘good’ refers to a

design which is clear, easy to implement and easy to maintain.

Design complexity has been conjectured to play a strong role in the

quality of the resulting software system in object oriented develop-

ment environment [1]. This necessitates the early assessment and

evaluation of the object oriented design.

Quality measures of object oriented code or design artifacts usually

involve analyzing the structure of these artifacts with respect to the

interdependencies of classes and components as well as their inter-

nal elements. The underlying assumption is that such measures

can be used as objective measure to predict various external quality

aspects of the code or design artifacts, e.g., maintainability and

reliability. Quality is viewed from one’s perspective and hence the

set of metrics that evolves comes from context independent view of

quality.

One of the earliest software quality models was suggested by
McCall [7] and his colleagues. McCall’s quality model defines soft-
ware product qualities as a hierarchy of factors, criteria and metrics
and was the first of the several models of the same form. The quali-
ty model defined in ISO/EIC 9126-1 “Software engineering product
quality” standard classifies quality attributes as external, visible on
system and internal, properties of subsystem and components. All
these models vary in their hierarchical definition of quality, but they

share a common difficulty. The models are vague in their definition
of lower levels of details and metrics need to attain a quantitative
assessment of product quality [2]. Another difficulty with the earlier
models was the inability to account for dependency among quality
attributes.

Most aspects of software development process and respective
products are too complex to be adequately captured by one single
metric. This necessitates the framework requirement for object ori-
ented design metrics. The framework is a methodology for the de-
velopment of quality models in a bottom-up fashion, providing an
approach that will ensure that the lower level details are well speci-

fied and computable.

As per the observation and also reported by [2] there are no known
comprehensive and complete models or frameworks that evaluate
the overall quality of design developed using an object oriented
approach based on its internal design properties. This paper high-
lights the existing quality models; framework and metrics on object
oriented design and provides an insight motivating a thought pro-

cess for new paradigm for object oriented quality model.

Quality Models

Dromey [8,9] has addressed some of the problems of earlier mod-
els such as McCall’s and ISO 9126. The Quality Model for Object
Oriented Design QMOOD [2] extended the Dromey’s generic quality
model methodology. This model has the lower-level design metrics
well defined in terms of design characteristics, and quality is as-
sessed as an aggregation of the model’s individual high-level quali-
ty attributes. The high level quality attributes are assessed using a

Information Science and Technology
ISSN: 0976-917X & ISSN: 0976-9188, Volume 3, Issue 2, 2014

Abstract- Software quality has multidimensional facet and when it comes to assessment of quality of software it is essential to understand
what quality attributes contribute. These attributes should fit in specific framework of metrics so that the expected quality parameter assess-

ment is attained. Object oriented design has good set of metrics which can be used for object oriented design assessment.

This paper highlights the existing quality models; framework and metrics on object oriented design and provides an insight motivating a

thought process for new paradigm for object oriented quality model.

Keywords- Object oriented design, quality models, design metrics,

OBJECT ORIENTED DESIGN METRICS, FRAMEWORKS AND QUALITY MODELS

Citation: Keshamoni K. and Harikrishna M. (2014) Improved Visual Cryptography Scheme for Data Security, Information Science and Technol-

ogy, ISSN: 0976-917X & ISSN: 0976-9188, Volume 3, Issue 2, pp.-066-070.

Copyright: Copyright©2014 Keshamoni K. and Harikrishna M. This is an open-access article distributed under the terms of the Creative Com-
mons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source

are credited.

|| Bioinfo Publications || 67

set of empirically identified and weighted object oriented design
properties, which are derived from object oriented metrics which
measure the lowest level structural, functional, and relational details

of a design.

Although this model gives the indication that model of this type can
be effectively used in monitoring the quality of software product it
has not considered quality attributes such as reliability, maintaina-
bility and testability. There is evidence that design metrics is related
to a variety of quality characteristics of software product such as
reliability, testability and maintainability [10]. A set object oriented
design metrics for these attributes are not considered by QMOOD.
In QMOOD across each design property a single metric is used

which is not self sufficient in itself to justify the design properties.

Inspired from QMOOD [2] a reliability focused quality model RFQ
MOOD was proposed. The initial set of design quality attributes in
QMOOD is functionality, effectiveness, understandability, extendibil-
ity, reusability and flexibility. However, the quality attributes concen-
trated by RFQMOOD are reliability, reusability, testability and main-

tainability.

As discussed earlier a quality model takes the form of the viewpoint
we take of quality which is still a vague and multifaceted concept,
the earlier quality models provides a framework from which to pro-
ceed. The next session provides overview on the existing object

oriented design metrics and framework.

Overview of the Existing Objects Oriented Metrics and Frame-
works

Software measures are a tool to measure the quality of software.
The area of software measurement is also known as software met-
rics. A metric here is not considered in the sense of a metric space,
it is considered as: measurement is a mapping of empirical objects
to numerical objects by homomorphism. A homomorphism is a
mapping, which preserves all relations and structures. Put in words:

Software quality should be linearly related to software measure.

Measuring the relatedness in software started changing with the
changing approach towards software development i.e., from tradi-
tional to object- oriented. History of software measurement by Horst
Zuse gives complete overview of the milestones in the development
of software measures. According to him more than 5000 paper
about software measurements were published till 1996 and more till

date.

As this paper is related in identifying the candidate metrics for ob-
ject oriented design it restrict the survey to the existing object ori-
ented metrics and frameworks. In the next section a insight on
some of the most widely cited object oriented metrics is brought

forth.

Existing Object Oriented Metrics

Moreau and Dominick

They proposed following metrics [11]:

a. Message Vocabulary Size (MVS)

b. Inheritance Complexity (IC)

c. Message domain Size (MDS)

The three defined metrics need classification such as what exactly
is meant by “sending message” and how the metrics are to be com-
puted. However we can draw some parallels between these metrics
and the three object-oriented software quality abstractions of cou-

pling, inheritance complexity and cohesion.

Chidamber and Kemerer

The Chidamber and Kemerer metric suite [12] is the most cited set
of metrics and also most criticized. There are six metrics in the

suite, all of them being design metrics:

a. Weighted method per class (WMC)

b. Depth of inheritance tree (DIT)

c. Number of children (NOC)

d. Coupling between object classes (CBO)

e. Response for class (RFC)

f. Lack of cohesion in methods (LCOM)

Churcher and Shepperd [14] point out that definition of some of the

basic direct counts are imprecise, which could have impact on the

defined metrics. The main concern lies with the number of methods
in a class count, used directly in computation of WMC and indirectly

in LCOM. Due to the various possibilities in counting the methods,

the results could vary dramatically, leading to confusion. Hitz and

Montazeri [15] argue that CBO is not sensitive enough measure of
coupling, since it considers all couples to be of equal strength. Hen-

derson-Seller [16] shows LCOM measure is not sensitive enough

for cases of high cohesion.

Li and Henry [17] conducted their own empirical experiments, and
showed that by using a combination of five of six CK metrics

(Omitting CBO), along with some newly defined metrics, it is possi-

ble to predict maintenance effort required for a software system.
Basili, et al [18] shows that five of the six CK metrics were useful in

predicting class fault-proneness during the high and low level phas-

es of life cycle.

Li and Henry

They [17] present ten metrics in their system; they include five of

the six metrics defined by CK, namely DIT, NOC, RFC, LCOM and

WMC. In addition they define five more metrics of their own. These
are:

a. Message Passing Coupling (MPC)

b. Data Abstraction Coupling (DAC)

c. Number of Methods (NOM)

d. Number of Semicolons (SIZE1)

e. Number of Properties (SIZE2)

Experimenting with these metrics the authors concluded that there

is a strong relationship between metrics and maintenance effort in
object oriented systems. Also maintenance effort can be predicted

from combinations of metrics collected from source code.

However, in SIZE1, the authors use number of semicolons in a
class, which is language-dependent and also not derivable until the

source code is available. The DIT metric is used as a measure of

complexity, where the larger the value of DIT, the more complex the

system is supposed to be. But trying to minimize DIT leads to the
guideline “do not use inheritance at all”, while inheritance is one of

the major advantages of the object oriented paradigm.

Martin’s Package Metrics

Martin [19] identifies criteria for the proper distribution of classes
into packages. These criteria are essentially based on he notion of

dependency. The goal is to reduce dependency, especially depend-

encies on concrete class.

Information Science and Technology
ISSN: 0976-917X & ISSN: 0976-9188, Volume 3, Issue 2, 2014

Object Oriented Design Metrics, Frameworks and Quality Models

|| Bioinfo Publications || 68

Unfortunately, martin does not define what a dependency exactly

is? He only says that dependencies are caused by class relation-

ships like inheritance, aggregation and uses. As an educated guess

the depends-on-relation, which includes the examples given by

Martin, is used for formal definitions.

Martin does not consider nested packages, even though dependen-

cies of classes in packages nested inside a package to classes

within that package can be considered to have a special status, as

they are more “local” than dependencies from classes in outside

packages. The metrics proposed by Martin is as follows:

a. Relational cohesion (H)

b. Afferent coupling (Ca)

c. Efferent coupling (Ce)

d. Abstractness (A)

e. Instability (I)

f. Distance from main sequence (D)

Martin’s metrics focus on high level, architectural design issues, so

they can be formalized easily. There are some vague points in the

original definitions, but these could be overcome in the formalization

by educated guesses.

Brito e Abreu

e Abreu, [20,21] derived a set of six metrics known as the MOOD

(Metrics for Object Oriented Design) metrics. It includes:

a. Method Hiding Factor (MIF)

b. Attribute Hiding Factor (AHF)

c. Method Inheritance Factor (MIF)

d. Attribute Inheritance Factor (AIF)

e. Polymorphism factor (POF)

f. Coupling Factor (COF)

These metrics refer object-oriented paradigm in following ways:

1. Encapsulation (MHF and AHF)

2. Inheritance (MIF and AIF)

3. Polymorphism (POF)

4. Message Passing (COF)

And are expressed as quotients

Metric = X/ Total

The numerator represents the actual use of those mechanisms for a

design. The denominator acting as a normalizer represents the

hypothetical maximum achievable use for the same mechanism on

the same design. The value for each metric will therefore be in the

range 0-1 i.e., between 0-100%.

Definition for MIF and AIF are inconsistent with the 0-1 scale as

shown in [22]. Also the AIF is meaningless in the sense that the

concept of inheritance concerns the behavior defined in a method,

an attribute does not have behavior, and thus cannot be overridden

or inherited.

The MOOD metrics have been subjected to much empirical evalua-
tion, with claims made regarding the usefulness of the metrics to
assess external attributes such as quality. The theoretical evalua-
tion of MOOD metrics by [23] show that any empirical validation is
premature due to the majority of the MOOD metrics being funda-
mentally flawed. The metrics either fails to meet the MOOD team’s

own criteria or is founded on an imprecise, and in certain cases

inaccurate, view of Object oriented paradigm.

Lorenz and Kidd

Lorenz and Kidd [24] defined many object oriented design metrics,
but did not validate nor thoroughly test them [13]. The metrics are

listed in [Table-1] along with the level at which they are taken.

Table 1- Lorenz and Kidd Metrics

Existing Framework for Object Oriented Metrics

Most aspects of software development process and respective
products are too complex to be adequately captured by one single
metric. However, the choice of a set of metrics exposes the well-

known pitfalls of measuring:

 Too much, there by getting overwhelmed by a big amount of

unmanageable numeric data;

 Too little, thereby not gaining sufficient insight to be able take

corrective actions,

 The wrong attributes, thereby deriving delusive conclusions.

To avoid these traps a framework for the implementation of metrics
initiatives has to be adopted. Several researchers have proposed
different frameworks for object oriented metrics along different di-
mensions in an attempt to organize the metric collection [Table-2].

Shows the framework by Henderson-Seller [25].

Table 2- Henderson-Seller Framework

Sheetz, et al [4] defines four levels along which metrics can be clas-
sified. All the metrics measures the complexity of the software.

[Table-3] gives the details of Sheetz framework.

Yet another approach to classifying metrics comes from Bellin [4] as

shown in [Table-4].

Information Science and Technology
ISSN: 0976-917X & ISSN: 0976-9188, Volume 3, Issue 2, 2014

Desai C.G.

Property Associated Metric

Method Size
Number of messages send, number of statements, lines of
code, average method size.

Method internals Method complexity, strings of message send.

Class Size

Number of public instance methods per class, number of in-
stance method per class, average number of instance method
per class, number of instance variables per class, number of
class variables per class.

Method Inheritance
Number of methods over ridden by a sub class (NOV), number
of methods inherited by a subclass, number of methods added
in sub class, specialization index.

Class intervals

Class cohesion, global usage, average number of parameters
per method, use of friend function, percentage of function orient-
ed code, average number of comment lines per method, aver-
age number of commented methods, number of problem reports
per class or contracts

Class externals
Class coupling, number of times a class is reused, number of
classes per method over thrown away.

Perspective Measures Metrics

Inside a class Size and Complexity WMC, NOM, NO Attribute Count

External at the
class level

Concerns interface of classes.
Metrics here can be viewed as meas-
uring the services offered by a class.

System level
Measures from the above two
perspectives

System level
relationships

Coupling

Inheritance
coupling

Inheritance hierarchy and
coupling

|| Bioinfo Publications || 69

Table 3- Sheetz Framework

Table 4- Bellin Framework

e Abreu [20] has pointed out several frameworks, summarized in
[Table-5] to [Table-7], below based on different perspectives such
as target, structure and obtainment criterion. He also pointed out
that the above taxonomies, although relevant, do not cover the
semantics of metrics usage. Neither have they covered the level of
abstraction within the paradigm concept. To overcome these prob-
lems a new framework was proposed i.e., TAPROOT (Taxonomy

Precise for Object Oriented Metrics) framework [5].

Table 5- Target Taxonomy for Metrics

The metrics are classified along two “independent Vectors”, catego-
ry and granularity. The authors [5] reveal that the categories were
derived after a sample of 128 references was reviewed in order to
find a common denominator in the extensive metric literature. The
categories are design, size, complexity, reuse, productivity and
quality. The second dimension granularity further refines the catego-

ries by considering metrics in each category at the method, class

and system level.

Table 6- Structure taxonomy for Metrics

Table 7- Obtainment Criterion Taxonomy for Metrics

Table 8- TAPROOT Classification Framework

However TAPROOT cannot be considered as a final proposal.
Looking in depth at each metric abstraction it is observed that val-
ues across these metrics cannot be obtained till date in the imple-
mentation phase. So it cannot be considered as a framework to be
used in the early design phase. Also at the granularity level packag-
es has not been given any consideration. Therefore a framework
called Framework for Predicting Reliability of Object Oriented De-
sign FPROOD was proposed which is useful in the early design
phase for assessing the design quality and predicting the reliability

of the object oriented software.

Information Science and Technology
ISSN: 0976-917X & ISSN: 0976-9188, Volume 3, Issue 2, 2014

Object Oriented Design Metrics, Frameworks and Quality Models

Level Metrics

Variable level Variable fan-in, Variable fan-out.

Method level
Method input parameters, method parameters returned, object varia-
bles accessed, method

Group Objective Metrics

A
Capturing statistical as-
pects of OO design

Number of classes, Number of methods, number
of messages, number of receiving classes,
Number of sender classes, Number of levels in
hierarchy.

B Dealing with code reuse
Number of classes reused, percent of reused
classes modified.

C
Deals with the quality of on
abstraction of OO system.

Coupling, cohesion.

Type Description Examples

Product Metrics
Quantification of attributes
of the software develop-
ment deliverables

Length in words of the user manual,
lines of source code, number of relations
in database.

Process Metric
Quantification of attributes
of the software develop-
ment process

Design duration, coding effort, mainte-
nance cost. Average effort for the appli-
cation of 1 test

Hybrid Metrics
Mixture of product and
process metrics

Cost per function point, time to deliver n
LOC, average monthly failure rate per I/
O interface.

Type Description Examples

Elementary
Metrics

Quantification of a single attrib-
ute of the software development
process or deliverables.

Requirement specification dimension in
words, LOC, time to complete the
design phase,

Composite
Metrics

Mathematical combinations of
several elementary metrics.

Man Month per KLOC, average time for
correcting one error, testing efficiency.

Type Description Examples

Objective
Metrics

Precisely defined and equally
obtainable on a repeatable
fashion, irrespective of the col-
lector or time.

Number of uncommented lines of
source of code, average number of
yearly produced versions, the number
of input screens.

Subjective
Metrics

Depends upon the collector’s
judgment; may lead to incoher-
ent and non repeatable
measures

Programmer’s experience, average
learning time, ease of utilization of a
certain application

 Method Class System

Design MD CD SD

Size MS CS SS

Complexity MC CC SC

Reuse MR CR SR

Productivity MP CP SP

Quality MQ CQ SQ

Table 9- FPROOD Framework

 Design Metric Size Metric Complexity Metric

Class
a. DIT (Depth of iheritance tree
b. RFC (Response for class)
c. CBO (Coupling between objects

a. Number of methods
b. Number of children (NOC)

a. WMC (Consider number of method in class) if (activity diagram
across key methods available then consider CC

Package

Coupling Metric
a. Instability (I=Ce/(Ca+Ce))
b. Abstractness (A=Na/N)
a. Distance from main sequence line.
Cohesion Metric:
a. Relational cohesion (H=(R+1)/N)

a. Number of classes in a package (N)
b. Number of abstract classes in a package (Na)

a. Number of relationship between classes in a package (R)
b. Afferent coupling (Ca)
c. Efferent coupling (ce)

System a. Average number of methods per class
a. Number of class
b. Total number of methods
c. Total number of package

a. Total length of inheritance chain

Conclusion

The object-oriented approach naturally inclined towards early as-
sessment and evaluation. To accomplish this we need a proper set
of metrics. Design metrics play an important role in helping develop-
ers understand design aspect of software and, hence, improve soft-

ware quality and developer productivity. Although, many object-
oriented metrics has been proposed, but there is as yet no consen-
sus on which are best, and most have not been well-validated. Also,
many of the metrics and quality models currently available for object
oriented software analyses can be applied only after a product is

|| Bioinfo Publications || 70

complete or nearly complete. They rely upon information extracted
from the implementation of the product. This provides information
late to help in improving internal product characteristics prior to the
completion of the product. Thus, there is a need for metrics and
models that can be applied in the early stages of development
(requirements and design) to ensure that the analysis and design
have favorable internal properties that will lead to the development
of a quality end product. RFQMOOD model and FPROOD frame-
work are useful in assessing quality attributes in early design phase
but it can be further explored for various aspects of object oriented
design parameters which contribute towards object oriented design

metrics.

Conflicts of Interest: None declared.

References

[1] Booch G. (2006) Object Oriented Analysis & Design with Appli-

cation, Pearson Education India.

[2] Bansiya J. and Devis C.G. (2002) IEEE Transaction on Soft-

ware Engineering, 28(1), 4-17.

[3] Subramanyam R. and Krishna M.S. (2003) IEEE Transaction on

Software Engineering, 24(4), 297-310.

[4] Abounader J.R. and Lamb D.A. (1997) A Data Model for Object

Oriented Design Metrics.

[5] e Abreu F.B. and Carapua R. (1994) Journal of Systems and

Software, 26(1), 87-96.

[6] Cortellessa V. and Pompei A. (2004) ACM SIGSOFT Software

Engineering Notes, 29(1), 197-206.

[7] McCall J.A., Richards P.K. and Walters G.F. (1977) Factors in

Software Quality, 1,2 and 3.

[8] Dormey G.R. (1995) IEEE Transaction Software Engineering,

21(2), 146-162.

[9] Dormey G.R. (1996) IEEE Software, 13(1), 33-43.

[10] Shepperd M. (1992) Information and Software Technology, 34

(10), 674-680.

[11] Moreau D.R. and Dominick W.D. (1989) Journal of Systems

and Software, 10, 23-28.

[12] Chidamber S.R. and Kemerer C.F. (1994) IEEE Transactions

on Software Engineering, 20(6), 476-493.

[13] Apvrille L., de Saqui-Sannes P., Lohr C., Sénac P. and Courtiat
J.P. (2001) The Unified Modeling Language: Modeling Lan-

guages, Concepts and Tools, 287-301.

[14] Churcher N.I. and Shepperd M.J. (1995) ACM SIGSOFT Soft-

ware Engineering Notes, 20(2), 69-75.

[15] Hitz M. and Montazeri B. (1996) IEEE Transactions on Software

Engineering, 22.

[16] Henderson-Sellers B. (1996) Software Metrics, Prentice Hall,

Hemel Hempstead, UK.

[17] Li W., Henry S., Kafura D. and Schulman R. (1995) Journal of

Object Oriented Programming, 48-55.

[18] Basili V.R., Briand L.C. and Melo W.L. (1996) IEEE Transac-

tions on Software Engineering, 22(10), 751-761.

[19] Martin R.C. (2000) Object Mentor, 1-34.

[20] e Abreu F.B. (1992) Pragmatic and Theoretical Directions in

Object-Oriented Software Metrics, 78-80.

[21] e Abreu F.B. and Melo W. (1996) Proc. METRICS' 96, Berlin,

Germany, 90-99.

[22] Saini S. and Salaria R.S. (2004) 2nd ACIS International Confer-
ence on Software Engineering Research, Management and

Applications, Los Angeles, 5-7.

[23] Mayer T. and Hall T. (1999) IEEE Technology of OO Lan-

guages and Systems, 108-117.

[24] Lorenz M. and Kidd J. (1994) Object Oriented Software Metrics,

Prentice Hall.

[25] Desai C. (2008) International Journal of Computational Intelli-

gence and Telecommunication Systems, 11-16.

Information Science and Technology
ISSN: 0976-917X & ISSN: 0976-9188, Volume 3, Issue 2, 2014

Desai C.G.

