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Abstract- Fuzzy logic and fuzzy systems have recently been receiving a lot of attention, both from the media and scientific community, yet 
the basic techniques were originally developed in the mid-sixties. Fuzzy logic  provides a formalism for implementing expert or heuristic rules 
on computers, and while this is the main goal in the field of expert or knowledge-based systems, fuzzy systems have had considerably more 
success and have been sold in automobiles, cameras, washing machines, rice cookers, etc. This report will describe the theory behind basic 
fuzzy logic and investigate how fuzzy systems work. This leads naturally on to neuro fuzzy systems which attempt to fuse the best points of 
neural and fuzzy networks into a single system. Throughout this report, the potential limitations of this method will be described as this pro-
vides the reader with a greater understanding of how the techniques can be applied. 
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Introduction 
Neuro Fuzzy (NF) computing is a popular framework for solving 
complex problems. If we have knowledge expressed in linguistic 
rules, we can build a FIS, and if we have data, or can learn from a 
simulation (training) then we can use ANNs. For building a FIS, 
we have to specify the fuzzy sets, fuzzy operators and the 
knowledge base. Similarly for constructing an ANN for an applica-
tion the user needs to specify the architecture and learning algo-
rithm. An analysis reveals that the drawbacks pertaining to these 
approaches seem complementary and therefore it is natural to 
consider building an integrated system combining the concepts. 
While the learning capability is an advantage from the viewpoint of 
FIS, the formation of linguistic rule base will be advantage from 
the viewpoint of ANN. 
Hayashi et al. showed that a feed forward neural network could 
approximate any fuzzy rule based system and any feed forward 
neural network may be approximated by a rule based fuzzy infer-
ence system . Fusion of Artificial Neural Networks (ANN) and 
Fuzzy Inference Systems (FIS) have attracted the growing inter-
est of researchers in various scientific and engineering areas due 

to the growing need of adaptive intelligent systems to solve the 
real world problems. A neural network learns from scratch by 
adjusting the interconnections between layers. Fuzzy inference 
system is a popular computing framework based on the concept 
of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. The 
advantages of a combination of neural networks and fuzzy infer-
ence systems are obvious. An analysis reveals that the draw-
backs pertaining to these approaches seem complementary and 
therefore  
it is natural to consider building an integrated system combining 
the concepts. The arrangement of this article is as follows: 
In part 2, an introduction to the basic concepts of fuzzy sets, fuzzy 
reasoning, fuzzy if-then rules are given. 
In part 3, Fuzzy inference System is Describe. 
In part 4, is devoted to the Neuro-Fuzzy systems. 
In part 5, a number of design techniques for fuzzy and neural 
controllers is described. 
In part 6, concludes the paper by pointing current problems and 
future directions. 
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Fuzzy Sets, Fuzzy Rules, Fuzzy Reasoning 
This section provides a concise introduction to and a summary of 
the basic concepts central to the study of fuzzy sets. 
 
A. Fuzzy sets 
Fuzzy logic starts with the concept of a fuzzy set. A fuzzy set is a 
set without a crisp, clearly defined boundary. It can contain el 
ments with only a partial degree of membership.  
A classical set is a container that wholly includes or wholly ex-
cludes any given element. Another version of this law is:  “Of any 
subject one thing must be either asserted or denied” 
That is, the transition from “belonging to a set” to “not belonging to 
a set” is gradual, and this smooth transition is characterized by 
membership function that give fuzzy sets flexibility in modeling 
commonly used linguistic expressions. 
 
B. Membership Function 
A membership function (MF) is a curve that defines how each 
point in the input space is mapped to a membership value (or 
degree of membership) between 0 and 1. The input space is 
sometimes referred to as the universe of discourse, a fancy name 
for a simple concept. 
The output-axis is a number known as the membership value be-
tween 0 and 1. The curve is known as a membership function and 
is often given the designation of µ.  
The simplest membership functions are formed using straight 
lines. Of these, the simplest is the triangular membership function, 
and it has the function name trimf. This function is nothing more 
than a collection of three points forming a triangle. The trapezoidal 
membership function, trapmf, has a flat top and really is just a 
truncated triangle curve. These straight line membership functions 
have the advantage of simplicity.  
 
 
 
 

 
 

Fig. 2.1- Triangular & Trapezoidal MF 
 

Two membership functions are built on the Gaussian distribution 
curve: a simple Gaussian curve and a two-sided composite of two 
different Gaussian curves. The two functions are gaussmf and 
gauss2mf. The generalized bell membership function is specified 
by three parameters and has the function name gbellmf.  

 
 
 
 
 
 

Fig. 2.2- Gaussian & Generalized Bell MF 
 

Also we can define the sigmoidal membership function, which is 
either open left or right. Asymmetric and closed (i.e. not open to 
the left or right) membership functions can be synthesized using 
two sigmoidal functions, so in addition to the basic sigmf, you also 
have the difference between two sigmoidal functions, dsigmf, and 
the product of two sigmoidal functions psigmf.  

 
 
 

 
 
 

Fig. 2.3- Sigmoidal MF 
 

C. Fuzzy If-Then Rules 
A fuzzy if-then rule (fuzzy rule, fzzy implication or fuzzy conditional 
statement) assumes the form 

If x is A then y is B, 
Where A and B are linguistic values defined by fuzzy sets on uni-
verse of discourse X and Y, respectively. Often “x is A” is called 
the antecedent  or premise while “y is B” is called the conse-
quence or conclusion. Examples of fuzzy if-then rules in our daily 
linguistic expressions are as follows: 

 If the road is slippery the driving is dangerous. 

 If a tomato is red then it is ripe. 
Before we can employ fuzzy if-then rules to model and analyze a 
system, we first have to formalize what is meant by the expression 

“if x is A then y is B”, which is sometimes abbreviated as A  B. 
in essence, the expression describes a relation between two varia-
bles x and y; this suggests that a fuzzy if-then rule be defined as a 
binary fuzzy relation R on the product space X × Y. a binary rela-
tion R is an extension of the classical Cartesian product, where 
each element (x,y) € X × Y is associated with a membership grade 
denoted by µR(x,y). 
Interpreting an if-then rule involves distinct parts: first evaluating 
the antecedent (which involves fuzzifying the input and applying 
any necessary fuzzy operators) and second applying that result to 
the consequent (known as implication). In the case of two-valued 
or binary logic, if-then rules do not present much difficulty. If the 
premise is true, then the conclusion is true. If you relax the re-
strictions of two-valued logic and let the antecedent be a fuzzy 
statement, how does this reflect on the conclusion? The answer is 
a simple one. if the antecedent is true to some degree of member-
ship, then the consequent is also true to that same degree.  
 
D. Fuzzy Reasoning 
Fuzzy reasoning also known as approximate reasoning is an infer-
ence procedure used to derive conclusion from a set of fuzzy if-
then rules and one or more conditions. Before introducing fuzzy 
reasoning, we will discuss the compositional rule of inference. 
The compositional rule of inference is a generalization of the fol-
lowing notion. Suppose that we have a curve y = f(x) that regu-
lates the relation between x and y. when we are given x=a, then 
from y=f(x) we can infer that y = b = f(a)which is shown below fig. 
 
 
 
 
 

 
Fig. 2.4- Compositional Rule (a) a & b are points (b) a & b are 

intervals  
Using the compositional rule of inference, we can formulize an 
inference procedure, called fuzzy reasoning, upon a set of fuzzy if-
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then rules. The basic rule of inference in traditional two-valued 
logic is modus ponens, according to which we can infer the truth 

of a proposition B from the truth of A and the implication A B. 
for instance, if A is identified with “the tomato is red” and B with 
“the tomato is ripe”, then if it is true that “the tomato is red”, it is 
also true that “the tomato is ripe”. 
Premise 1 (fact)- x is A, 
Premise 2 (rule)- if x is A then y is B, 
Consequence(conclusion)- y is B. 
However, in much of human reasoning, modus ponens is em-
ployed in an approximate manner.  
Using this compositional rule we can perform fuzzy reasoning. 
The various types of reasoning are:  

 Based on max-min composition 

 Single rule with single antecedent 

 Single rule with two antecedents 

 Multiple rules with two antecedents 
 
Fuzzy Inference Systems 
Fuzzy inference is the process of formulating the mapping from a 
given input to an output using fuzzy logic. The mapping then pro-
vides a basis from which decisions can be made, or patterns dis-
cerned. The process of fuzzy inference involves all of the pieces 
that are described in the previous sections: Membership Func-
tions, Fuzzy set theory, and If-Then Rules and Fuzzy reasoning. 
Because of its multidisciplinary nature, fuzzy inference systems 
are associated with a number of names, such as fuzzy-rule-based 
systems, fuzzy expert systems, fuzzy modeling, fuzzy associative 
memory, fuzzy logic controllers, and simply (and ambiguously) 
fuzzy systems. 
Basically a fuzzy inference system is composed of five functional 
blocks: 

 A rule base containing a number of fuzzy if-then rules; 

 A database which defines the membership functions of the 
fuzzy sets used in the fuzzy rules; 

 A reasoning mechanism which performs the inference proce-
dure upon the rules and a given condition to derive a reasona-
ble output; 

 A fuzzification interface which transforms the crisp inputs into 
degrees of match with linguistic values; 

 A defuzzification interface which transform the fuzzy results of 
the interface into a crisp output. 

Usually, the rule base and the database are jointly referred as 
knowledge base.  
 

 
 
 
 
 

Fig.3.1- Block diagram for fuzzy inference system 
 
The dashed line indicates a basic fuzzy inference system with 
fuzzy output and the defuzzification block serves the purpose of 

transforming a fuzzy output into a crisp one. With crisp inputs and 
outputs, a fuzzy inference system implements a non-linear map-
ping from its input space to output space. This mapping is done by 
a no of fuzzy if-then rules, each of which describes the local be-
havior of the mapping. 
Now, we will first introduce three types of fuzzy inference systems 
that have been widely employed in various applications. The dif-
ference between these three fuzzy inference systems lie in the 
consequents of their fuzzy rules, and their aggregation and de-
fuzzification procedures. 
 
A. Mamdani Fuzzy Model 
The Mamdani Fuzzy Model was proposed to control a steam e 
gine and boiler combination by a set of linguistic control rules. 
Following fig. shows how a two-rule fuzzy inference system of the 
Mamdani type derives the overall output z when subjected to two 
crisp inputs x and y. 
 
 
 
 
 
 

 
Fig. 3.2- Max-Min composition  

 
If we adopt product and max as our choice for the fuzzy AND and 
OR operators and use max-product composition instead of max-
min composition, then the resulting fuzzy reasoning is shown be-
low:  
 
 
 
 
 

 
Fig. 3.3- Max-Product composition  

 
Since the plant takes only crisp values as inputs, we have defuzzi-
fier to convert a fuzzy set to a crisp value. The most frequently 
used defuzzification strategy is the centroid of area, which is de-
fine as  

 
 
 

where, µA(z) is the aggregated output MF. 
Other defuzzification strategies arise for specific applications, 
which include bisector of area, mean of maximum, largest of maxi-
mum, and smallest of maximum and so on.  
 

 
 
 
 
 
 
 

Fig 3.4- Defuzzification Strategies 
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B. Sugeno Fuzzy Model 
The sugeno fuzzy model also known as TSK fuzzy model was 
proposed to develop a systematic approach to generating fuzzy 
rules from a given input-output data set. A typical fuzzy rule in a 
sugeno fuzzy model has the form 

If x is A and y is B the z = f(x,y) 
Where A and B are fuzzy sets in the antecedent and z = f(x,y) is a 
crisp function in the consequent. when f(x,y) is a first order poly-
nomial, the resulting fuzzy inference system is called a first order 
sugeno fuzzy model. When f is constant, then we have zero-order 
sugeno fuzzy model, which can be viewed as a special case of 
the mamdani fuzzy inference system. 
 
 
 
 
 
 
 

Fig. 3.5- First Order Sugeno Fuzzy Model 
 
figure 3.5 shows the reasoning procedure for a first-order sugeno 
fuzzy model. The aggregator and defuzzifier blocks in fig 3.1 are 
replaced by the operation of weighted average, thus avoiding the 
time consuming procedure of defuzzification. Sometimes the 
weighted average operator is replaced with the weighted sum 
operator. However, this simplification could lead to the loss of MF 
linguistic meanings unless the sum of firing strength is close to 
unity. 
 
C. Tsukamoto Fuzzy Model 
In the Tsukamoto fuzzy model, the consequent of each fuzzy if-
then rule is represented by a fuzzy set with a monotonical MF as 
shown in fig. The inferred output of each rule is defined as a crisp 
value induced by the rule’s firing strength. The overall output is 
taken as the weighted average of each rule’s output. 
 
 
 
 
 
 
 

Fig. 3.6- Tsukamoto Fuzzy Model 
Since each rule infers a crisp output, the Tsukamoto fuzzy model 
aggregates each rule’s output by the method of weighted average 
and also avoids the time consuming process of defuzzification. 
 
Neuro-Fuzzy Systems 
Neuro Fuzzy (NF) computing is a popular framework for solving 
complex problems. If we have knowledge expressed in linguistic 
rules, we can build a FIS, and if we have data, or can learn from a 
simulation (training) then we can use ANNs. For building a FIS, 
we have to specify the fuzzy sets, fuzzy operators and the 
knowledge base. Similarly for constructing an ANN for an applica-
tion the user needs to specify the architecture and learning algo-
rithm. An analysis reveals that the drawbacks pertaining to these 
approaches seem complementary and therefore it is natural to 

consider building an integrated system combining the concepts. 
While the learning capability is an advantage from the viewpoint of 
FIS, the formation of linguistic rule base will be advantage from 
the viewpoint of ANN. 
The process for constructing a fuzzy inference system is usually 
called fuzzy modeling, which has following features: 

 Due to the rule structure of a fuzzy inference system, it is easy 
to incorporate human expertise about the target system direct-
ly into the modeling process. Fuzzy modeling takes advantage 
of domain knowledge that might not be easily or directly em-
ployed in other modeling approaches. 

 When the input-output data of a system to be modeled is 
available, conventional system identification techniques can 
be used for fuzzy modeling. 

The term neuro-fuzzy modeling refers to the way of applying vari-
ous learning techniques developed in the neural network literature 
to fuzzy inference systems. Now, we present cooperative NF sys-
tem and concurrent NF system followed by the different fused NF 
models. 
 
A. Cooperative And Concurrent Neuro-Fuzzy Systems 
In the simplest way, a cooperative model [1][2][3]can be consid-
ered as a preprocessor wherein artificial neural network (ANN) 
learning mechanism determines the fuzzy inference system (FIS) 
membership functions or fuzzy rules from the training data. Once 
the FIS parameters are determined, ANN goes to the background. 
The rule based is usually determined by a clustering approach or 
fuzzy clustering algorithms. Membership functions are usually 
approximated by neural network from the training data. 
 
 
 
 

 
 
 

Fig. 4.1- Cooperative NF model  
 

In a concurrent model[1][2], neural network assists the fuzzy sys-
tem continuously (or vice versa) to determine the required param-
eters especially if the input variables of the controller cannot be 
measured directly. Such combinations do not optimize the fuzzy 
system but only aids to improve the performance of the overall 
system. Learning takes place only in the neural network and the 
fuzzy system remains unchanged during this phase. In some cas-
es the fuzzy outputs might not be directly applicable to the pro-
cess. In that case neural network can act as a postprocessor of 
fuzzy outputs. Figure 4.2 depicts a concurrent neuro-fuzzy model 
where in the input data is fed to a neural network and the output of 
the neural network is further processed by the fuzzy system. 
 

 
 
 
 
 
 

Fig. 4.2- Concurrent NF model 
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B. Fused Neuro-Fuzzy Systems 
In an integrated model[1][2][3], neural network learning algorithms 
are used to determine the parameters of fuzzy inference systems. 
Integrated neuro-fuzzy systems share data structures and 
knowledge representations. A fuzzy inference system can utilize 
human expertise by storing its essential components in rule base 
and database, and perform fuzzy reasoning to infer the overall 
output value. The derivation of if-then rules and corresponding 
membership functions depends heavily on the a priori knowledge 
about the system under consideration. However there is no sys-
tematic way to transform experiences of knowledge of human 
experts to the knowledge base of a fuzzy inference system. There 
is also a need for adaptability or some learning algorithms to pro-
duce outputs within the required error rate. On the other hand, 
neural network learning mechanism does not rely on human ex-
pertise. However, in reality, the a priori knowledge is usually ob-
tained from human experts, it is most appropriate to express the 
knowledge as a set of fuzzy if-then rules, and it is very difficult to 
encode into a neural network.  
 
Table 4.1- Comparison between neural networks and fuzzy infer-

ence systems 

Table 4.1 summarizes the comparison between neural networks 
and fuzzy inference system. To a large extent, the drawbacks 
pertaining to these two approaches seem complementary. There-
fore, it seems natural to consider building an integrated system 
combining the concepts of FIS and ANN modeling.. 
This problem can be tackled by using differentiable functions in 
the inference system or by not using the standard neural learning 
algorithm. Some of the major woks in this area are GARIC, FAL-
CON , ANFIS , NEFCON , FUN , SONFIN ,FINEST , EFuNN , 
dmEFuNN, evolutionary design of neuro fuzzy systems, and many 
others. 
 
C. Fuzzy Adaptive learning Control Network (FALCON) 
FALCON [1][2][9] has a five-layered architecture and implements 
a Mamdani type FIS. There are two linguistic nodes for each out-
put variable. One is for training data (desired output) and the other 
is for the actual output of FALCON. The first hidden layer is re-
sponsible for the fuzzification of each input variable. Each node 
can be a single node representing a simple membership function 
(MF) or composed of multilayer nodes that compute a complex 
MF. The Second hidden layer defines the preconditions of the rule 
followed by rule consequents in the third hidden layer. FALCON 
uses a hybrid-learning algorithm comprising of unsupervised 
learning and a gradient descent learning to optimally adjust the 
parameters to produce the desired outputs. The hybrid learning 
occurs in two different phases. In the initial phase, the centers and 
width of the membership functions are determined by self-
organized learning techniques analogous to statistical clustering 
techniques. Once the initial parameters are determined, it is easy 
to formulate the rule antecedents. A competitive learning algo-
rithm is used to determine the correct rule consequent links of 

each rule node. After the fuzzy rule base is established, the whole 
network structure is established. The network then enters the 
second learning phase to adjust the parameters of the (input and 
output) membership functions optimally. The back propagation 
algorithm is used for the supervised learning. Hence FALCON 
algorithm provides a framework for structure and parameter adap-
tation for designing neuro-fuzzy systems. 
 
 
 

 
 
 
 
 
 
 
 

Fig. 4.3- Architecture of FALCON  
 

D. Generalized Approximate Reasoning based Intelligent 
Control (GARIC) 

GARIC [1][2][9] is an extended version of Berenji’s Approximate 
Reasoning based Intelligent Control (ARIC) that implements a 
fuzzy controller by using several specialized feed forward neural 
networks. Like ARIC, it consists of an Action state Evaluation 
Network (AEN) and an Action Selection Network (ASN). Architec-
ture of the GARICASN is depicted in Fig.4.4. ASN of GARIC is 
feedforward network with  ASN of GARIC is feed forward network 
with five layers . 
 
 
 
 
 
 

 
 

Fig. 4.4- ASN of GARIC 
 

The first hidden layer stores the linguistic values of all the input 
variables. Each input unit is only connected to those units of the 
first hidden layer, which represent its associated linguistic values. 
The second hidden layer represents the fuzzy rules nodes, which 
determine the degree of fulfillment of a rule using a softmin opera-
tion. The third hidden layer represents the linguistic values of the 
control output variable η. Conclusions of the rule are computed 
depending on the strength of the rule antecedents computed by 
the rule node layer. GARIC makes use of local mean-of-maximum 
method for computing the rule outputs. This method needs a crisp 
output value from each rule. Therefore, the conclusions must be 
defuzzified before they are accumulated to the final output value 
of the controller. GARIC uses a mixture of gradient descent and 
reinforcement learning to fine-tune the node parameters. The 
hybrid learning stops if the output of the AEN ceases to change. 
The relatively complex learning procedure and the architecture of 
GARIC can be seen as a main disadvantage of GARIC. 
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Artificial Neural Network Fuzzy Inference System 

Difficult to use prior rule knowledge Prior rule-base can be incorporated 

Learning from scratch Cannot learn (linguistic knowledge) 

Black box Interpretable (if-then rules) 

Complicated learning algorithms Simple interpretation and implementation 

Difficult to extract knowledge Knowledge must be available 
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E. Neuro-Fuzzy Control (NEFCON) 
The learning algorithm defined for NEFCON[1][2][9] is able to 
learn fuzzy sets as well as fuzzy rules implementing a Mamdani 
type FIS [1][2]. This method can be considered as an extension to 
GARIC that also use reinforcement learning but need a previously 
defined rule base. Figure 4.5 illustrates the basic NEFCON archi-
tecture with 2 inputs and five fuzzy rules [1][2]. The inner nodes 
R1, . . . , R5 represent the rules, the nodes ξ1, ξ2, and η the input 
and output values, and μr, Vr the fuzzy sets describing the ante-
cedents and consequents. In contrast to neural networks, the 
connections in NEFCON are weighted with fuzzy sets instead of 
real numbers. Rules with the same antecedent use so-called 
shared weights, which are represented by ellipses drawn around 
the connections as shown in the figure 4.5. They ensure the integ-
rity of the rule base. The knowledge base of the fuzzy system is 
implicitly given by the network structure. The input units assume 
the task of fuzzification interface, the inference logic is represent-
ed by the propagation functions, and the output unit is the defuzzi-
fication interface. The learning process of the NEFCON model 
can be divided into two main phases. Incremental rule learning is 
used when the correct output is not known and rules are created 
based on estimated output values. As the learning progresses, 
more rules are added according to the requirement. For decre-
mental rule learning, initially rules are created due to fuzzy parti-
tions of process variables and unnecessary rules are eliminated in 
the course of learning. Decremental rule learning is less efficient 
compared to incremental approach.  
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 4.5- Architecture of NEFCON 
 
Due to the complexity of the calculations required, the decremen-
tal learning rule can only be used, if there are only a few input 
variables with not too many fuzzy sets. For larger systems, the 
incremental learning rule will be optimal. Prior knowledge whenev-
er available could be incorporated to reduce the complexity of the 
learning. Membership functions of the rule base are modified 
according to the Fuzzy Error Back propagation (FEBP) algorithm. 
The FEBP algorithm can adapt the membership functions, and 
can be applied only if there is already a rule base of fuzzy rules. 
The idea of the learning algorithm is identical: increase the influ-
ence of a rule if its action goes in the right direction (rewarding), 
and decrease its influence if a rule behaves counter productively 
(punishing). If there is absolutely no knowledge about initial mem-
bership function, a uniform fuzzy partition of the variables should 
be used. 
 

 
F. Fuzzy Inference Environment Software with Tuning 

(FINEST) 
FINEST[1][2][9] is designed to tune the fuzzy inference itself. 
FINEST is capable of two kinds of tuning process, the tuning of 
fuzzy predicates, combination functions and the tuning of an impli-
cation function [1]. The three important features of the system are: 

 The generalized modus ponens is improved in the following 
four ways:  

1. aggregation operators that have synergy and cancellation 
nature  

2. a parameterized implication function  
3. a combination function, which can reduce fuzziness  
4. backward chaining based on generalized modus ponens. 

 Aggregation operators with synergy and cancellation nature 
are defined using some parameters, indicating the strength of 
the synergic affect, the area influenced by the effect, etc., and 
the tuning mechanism is designed to tune these parameters 
also tune the implication function and combination function. 

 The software environment and the algorithms are designed for 
carrying out forward and backward chaining based on the 
improved generalized modus ponens and for tuning various 
parameters of a system. 

 
 
 
 
 
 
 

 
 
 
 
 

Fig. 4.6- Architecture of FINEST 
 

FINEST make use of a back propagation algorithm for the fine-
tuning of the parameters. Figure4.6 shows the layered architec-
ture of FINEST and the calculation process of the fuzzy inference. 
The input values (xi) are the facts and the output value (y) is the 
conclusion of the fuzzy inference. Layer 1 is a fuzzification layer 
and layer 2 aggregates the truth-values of the conditions of Rule i. 
Layer 3 deduces the conclusion from Rule I and the combination 
of all the rules is done in Layer 4. Referring to Fig. 4.6, the func-
tion andi, Ii and comb respectively represent the function charac-
terizing the aggregation operator of rule i, the implication function 
of rule i, and the global combination function. The functions andi, 
Ii, comb and membership functions of each fuzzy predicate are 
defined with some parameters. Back propagation method is used 
to tune the network parameters. It is possible to tune any parame-
ter, which appears in the nodes of the network representing the 
calculation process of the fuzzy data if the derivative function with 
respect to the parameters is given. Thus, FINEST framework 
provides a mechanism based on the improved generalized modus 
ponens for fine tuning of fuzzy predicates and combination func-
tions and tuning of the implication function.  
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G. Self Constructing Neural Fuzzy Inference Network 
(SONFIN) 

SONFIN [1][2][9] implements a Takagi-Sugeno type fuzzy infer-
ence system. Fuzzy rules are created and adapted as online 
learning proceeds via a simultaneous structure and parameter 
identification. In the structure identification of the precondition 
part, the input space is partitioned in a flexible way according to 
an aligned clustering based algorithm. As to the structure identifi-
cation of the consequent part, only a singleton value selected by a 
clustering method is assigned to each rule initially. Afterwards, 
some additional significant terms (input variables) selected via a 
projection-based correlation measure for each rule will be added 
to the consequent part (forming a linear equation of input varia-
bles) incrementally as learning proceeds. For parameter identifi-
cation, the consequent parameters are tuned optimally by either 
Least Mean Squares [LMS] or Recursive Least Squares [RLS] 
algorithms and the precondition parameters are tuned by back 
propagation algorithm. To enhance knowledge representation 
ability of SONFIN, a linear transformation for each input variable 
can be incorporated into the network so that much fewer rules are 
needed or higher accuracy can be achieved. Proper linear trans-
formations are also learned dynamically in the parameter identifi-
cation phase of SONFIN.  
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4.7- illustrates the 6-layer structure of SONFIN  
 

and the parameters in the precondition part are adjusted by the 
backpropagation algorithm. SONFIN can be used for normal oper-
ation at anytime during the learning process without repeated 
training on the input-output pattern when online operation is re-
quired. In SONFIN rule base is dynamically created as the learn-
ing progresses by performing the following learning processes: 
 
H. Fuzzy Net (FUN) 
In FUN[1][2][9] in order to enable an unequivocal translation of 
fuzzy rules and membership functions into the network, special 
neurons have been defined, through their activation functions, can 
evaluate logic expressions. The network consists of an input, an 
output and three hidden layers. The neurons of each layer have 
different activation functions representing the different stages in 
the calculation of fuzzy inference. The activation function can be 
individually chosen for problems. The network is initialized with a 
fuzzy rule base and the corresponding membership functions. 
Figure 4.8 illustrates the FUN network. The input variables are 
stored in the input neurons. The neurons in the first hidden layer 
contain the membership functions and this performs a fuzzification 
of the input values. In the second hidden layer, the conjunctions 

(fuzzy-AND) are calculated. Membership functions of the output 
variables are stored in the third hidden layer. Their activation func-
tion is a fuzzy-OR. Finally, the output neurons contain the output 
variables and have a defuzzification activation function.  
The rules and the membership functions are used to construct an 
initial FUN network. The rule base can then be optimized by 
changing the structure of the net or the data in the neurons. To 
learn the rules, the connections between the rules and the fuzzy 
values are changed. To learn the membership functions, the data 
of the nodes in the first and three hidden layers are changed. FUN 
can be trained with the standard neural network training strategies 
such as reinforcement or supervised learning.  
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 4.8- Architecture of the FUN showing the implementation of a 
sample rule 

 
I. Evolving Fuzzy Neural Networks (EFuNN) 
EFuNNs [1][2][9] and dmEFuNNs [1][2][9] are based on the ECOS 
(Evolving Connectionist Systems) framework for adaptive intelli-
gent systems formed because of evolution and incremental, hy-
brid (supervised/unsupervised), online learning. They can accom-
modate new input data, including new features, new classes, etc. 
through local element tuning. In EFuNNs all nodes are created 
during learning. EFuNN has a five-layer architecture as shown in 
Figure 4.9. The input layer is a buffer layer representing the input 
variables. The second layer of nodes represents fuzzy quantifica-
tion of each input variable space. Each input variable is represent-
ed here by a group of spatially arranged neurons to represent a 
fuzzy quantization of this variable. The nodes representing mem-
bership functions (triangular, Gaussian, etc) can be modified dur-
ing learning. The third layer contains rule nodes that evolve 
through hybrid supervised/unsupervised learning.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4.9- Architecture of EFuNN  
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The rule nodes represent prototypes of input-output data associa-
tions, graphically represented as an association of hyper-spheres 
from the fuzzy input and fuzzy output spaces. Each rule node r is 
defined by two vectors of connection weights: W1(r) and W2(r), 
the latter being adjusted through supervised learning based on 
the output error, and the former being adjusted through unsuper-
vised learning based on similarity measure within a local area of 
the input problem space. The fourth layer of neurons represents 
fuzzy quantification for the output variables. The fifth layer repre-
sents the real values for the output variables. In the case of “one-
of-n” EFuNNs, the maximum activation of the rule node is propa-
gated to the next level. In the case of “many-of-n” mode, all the 
activation values of rule nodes that are above an activation 
threshold are propagated further in the connectionist structure. 
 
J. Dynamic Evolving Fuzzy Neural Networks (dmEFuNNs) 
Dynamic Evolving Fuzzy Neural Networks (dmEFuNN) model[1]
[2][9] is developed with the idea that not just the winning rule 
node’s activation is propagated but a group of rule nodes is dy-
namically selected for every new input vector and their activation 
values are used to calculate the dynamical parameters of the 
output function. While EFuNN make use of the weighted fuzzy 
rules of Mamdani type, dmEFuNN uses the Takagi-Sugeno fuzzy 
rules. The architecture is depicted in Figure 4.10 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 4.10- Architecture of dmEFuNN  
 
The first, second and third layers of dmEFuNN have exactly the 
same structures and functions as the EFuNN. The fourth layer, 
the fuzzy inference layer, selects m rule nodes from the third layer 
which have the closest fuzzy normalized local distance to the 
fuzzy input vector, and then, a Takagi Sugeno fuzzy rule will be 
formed using the weighted least square estimator. The last layer 
calculates the output of dmEFuNN. The number m of activated 
nodes used to calculate the output values for a dmEFuNN is not 
less than the number of the input nodes plus one. Like the 
EFuNNs, the dmEFuNNs can be used for both offline learning and 
online learning thus optimizing global generalization error, or a 
local generalization error. In dmEFuNNs, for a new input vector 
(for which the output vector is not known), a subspace consisted 
of m rule nodes are found and a first order Takagi Sugeno fuzzy 
rule is formed using the least square estimator method. This rule 
is used to calculate the dmEFuNN output value. In this way, a 
dmEFuNN acts as a universal function approximator using m 
linear functions in a small m dimensional node subspace. The 
accuracy of approximation depends on the size of the node sub-
spaces, the smaller the subspace is, the higher the accuracy. It 

means that if there are sufficient training data vectors and suffi-
cient rule nodes are created, a satisfying accuracy can be ob-
tained. 
 
K. Evolutionary and Neural Learning of Fuzzy Inference Sys-

tem (EvoNF) 
In an integrated neuro-fuzzy model there is no guarantee that the 
neural network learning algorithm converges and the tuning of 
fuzzy inference system will be successful. Natural intelligence is a 
product of evolution. Therefore, by mimicking biological evolution, 
we could also simulate high-level intelligence. Evolutionary com-
putation works by simulating a population of individuals, evaluat-
ing their performance, and evolving the population a number of 
times until the required solution is obtained. The drawbacks per-
taining to neural networks and fuzzy inference systems seem 
complementary and evolutionary computation could be used to 
optimize the integration to produce the best possible synergetic 
behavior to form a single system. Adaptation of fuzzy inference 
systems using evolutionary computation techniques has been 
widely explored. EvoNF is an adaptive framework based on evolu-
tionary computation and neural learning wherein the membership 
functions, rule base and fuzzy operators are adapted according to 
the problem. The evolutionary search of MFs, rule base, fuzzy 
operators etc. would progress on different time scales to adapt the 
fuzzy inference system according to the problem environment. 
Membership functions and fuzzy operators would be further fine-
tuned using a neural learning technique. Optimal neural learning 
parameters will be decided during the evolutionary search pro-
cess. 
 
 
 
 
 

 
 
 
 

Fig. 4.11- Interaction of evolutionary search mechanisms in the 
adaptation of fuzzy inference system 

 
Figure 4.11 illustrates the general interaction mechanism of the 
EvoNF framework with the evolutionary search of fuzzy inference 
system (Mamdani, Takagi -Sugeno etc.)  evolving at the highest 
level on the slowest time scale. For each evolutionary search of 
fuzzy operators (best combination of T-norm and T-conorm, de-
fuzzification strategy etc), the search for the fuzzy rule base pro-
gresses at a faster time scale in an environment decided by the 
problem. In a similar manner, evolutionary search of membership 
functions proceeds at a faster time scale (for every rule base) in 
the environment decided by the problem. Hierarchy of the differ-
ent adaptation procedures will rely on the prior knowledge.  
 
L. Adaptive Network Based Fuzzy Inference System (ANFIS) 
In this section we will discuss the architecture and learning proce-
dure of the adaptive network which is in fact a superset of all 
kinds of feed forward neural networks with supervised learning 
capability. As its name implies, adaptive network structure con-



Bioinfo Publications   82 

 

Nikam S.R., Nikumbh P.J. and Kulkarni S.P. 

Journal of Artificial Intelligence 
ISSN: 2229-3965 & E-ISSN: 2229-3973, Volume 3, Issue 2, 2012 

sisting of nodes and directional links though which the nodes are 
connected.  Also, part or all of the nodes are adaptive, which 
means each output of these nodes depends on the parameters of 
this node, and learning rule specifies how these parameters 
should be changed to minimize a prescribed error measure. 
Since the basic learning rule is based the gradient method which 
s notorious for its slowness and tendency to become trapped in 
local minima, here we propose a hybrid learning rule which can 
speed up the learning process. 
 
ANFIS Architecture 
Functionally, there are almost no constraints on the node func-
tions of an adaptive network except piecewise differentiability. 
Structurally, the only limitation of network configuration is that it 
should be feed-forward type. Due to this restrictions, the adaptive 
networks applications are immediate and immense in various 
areas.in this section, we describe a class of adaptive network 
which are functionally equivalent to fuzzy inference systems. 
For simplicity, assume the fuzzy inference system under consider-
ation has two inputs x and y and one output z. suppose that the 
rule base contains two fuzzy if-then rules of Takagi and Sugeno 
type: 
Rule 1: If x is A1 and y is B1, then f1 = p1x+q1y + r1 
Rule 2: If x is A2 and y is B2, then f2 = p2x + q2y +r2. 
Then type-3 fuzzy reasoning is given in belo fig 4.  

Fig. 4.13- ANFIS- type 3 
And equivalent ANFIS architecture is,  
 
 
 
 
 
 
 

 
 

Fig. 4.14- Equivalent ANFIS architecture 
 

Layer 1 Every node I in this layer is a square node with a node 
function 
Where x is the input to node I, and Ai is the linguistic label 
(small,large, etc) associated with this node function. In other 
words, Oi1 is the membership fuction of Ai and it specifies the 
degree to which the given x satisfies the quantifier Ai. Usually µA
(x) is choose as bell-shaped with maximum equal to 1 and mini-
mum equal to 0, such as, 
Where {ai, bi, ci} is parameter set. As the values of these parame-
ters change, the bell-shaped fuctions vary accordingly. Parame-
ters in this layer are reffered to as premise parameters. 
 

 
 
Layer 2  Every node in this layer is a circle node label as II which 
multiplies the incoming signals and sends the product out.  
 i=1,2 
Each node output represents the 

firing strength of a rule. Also T-norm operators that perform gener-
alized AND can be used as a node function. 
Layer 3 Every node in this layer is a circle node label N. the i-th 
n o d e calculates the ratio of the i-th 
rule’s firing strength to the sum of all 
rules firing strength. 

 
 

Outputs of this layer is called as normal-
ized firing strength. 
Layer 4  Every node I in this layer is a square node with a node 
function 
 
 
Where wi is the output of layer 3 and {pi, qi, ri} is the parameter 
set. Param- eters in 
this layer will be 
referred as consequent parameters. 
Layer 5  the single node in this layer is a circle node labeled ∑ 
that computs the overall output as summation of all incoming 
signals 
 
 
Thus we have constructed adaptive network which is functionally 
equivalent to type-3 fuzzy inference system. For type-1 fuzzy 
inference systems the extension is quite straightforward and type-
1 ANFIS is shown in below fig. 
Where the output of each rule is induced jointly by the output 
membership function and the firing strength. For type-2 fuzzy 
inference systems, if we replace the centroid defuzzification oper-
ator with a discrete version which calculates the centroid of area, 
then type-3 ANFIS can still be constructed accordingly. 
 
 
 
 

 
 
 
 
 
Fig 4.15- (a)Type 1 Fuzzy Reasoning  (b) Equivalent ANFIS- 

type1 
Below figure shows a 2-input, type-3 ANFIS with 9 rules. Three 
membership functions are associated with each input, so the input 
space is partitioned into 9 fuzzy subspaces, each of which is gov-
erned by a fuzzy if-then rules. The premise part of a rule deline-
ates a fuzzy subspaces, while the consequent part specifies the 
output within this fuzzy subspace. 
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Fig. 4.16- (a) ANFIS type-3 with 2 input and 9 rules (b)
Corresponding fuzzy Subspaces  

 
Hybrid Learning Algorithm 
From the type-3 anfis architecture it is observed that given values 
of premise parameters, the output can be expressed as a linear 
combinations of the consequent parameters. The output f in fig. 4 
can be rewritten as, 
 
 
 
   = 
= 
 
Which is linear in consequent parameters (p1, q1, r1, p2, q2, and 
r2). 
S = set of total parame- ters 
S1 = set of premise pa- rameters 
S2 = set of consequent parameters 
In forward pass of hybrid learning algorithm, functional signals go 
forward till layer 4 and the consequent parameters are identified 
by the least squares estimate. In the backward pass, the error 
rates propagate backward and the premise parameters are updat-
ed by the gradient descent. Below table summarizes the activities 
in each pass. 
 

Table 4.2- Summarizing the activities in each pass 

 
The consequent parameters identified are optimal under the con-
dition that premise parameters are fixed. Accordingly the hybrid 
approach is much faster than the strict gradient descent.  
It should be noted that computation complexity of the least 
squares estimate is higher than that of the gradient descent. 
There are four methods to update the parameters, 
i. Gradient descent only:- all parameters are updated by the 

gradient descent. 
ii. Gradient descent and one pass of LSE:- the LSE is applied 

only once at the very beginning to get the initial values of the 
consequent parameters and then gradient descent takes over 
to update all parameters. 

iii. Gradient descent and LSE:- this is proposed hybrid learning 
rule. 

iv. Sequential LSE only:- the ANFIS is linearized w.r.t all parame-
ters and the extended kalman filter algo is employed to update 

all parameters. 
The choice of above methods should be based on the trade-off 
between computation complexity and resulting performance. 
 
Conclusion and Future scope 
We presented the different ways to learn fuzzy inference systems 
using neural network learning techniques. As a guideline, for neu-
rofuzzy systems to be highly intelligent some of the major require-
ments are fast learning (memory based - efficient storage and 
retrieval capacities), on-line adaptability (accommodating new 
features like inputs, outputs, nodes, connections etc), achieve a 
global error rate and computationally inexpensive. The data acqui-
sition and preprocessing training data is also quite important for 
the success of neuro-fuzzy systems. Many neuro-fuzzy models 
use supervised/unsupervised techniques to learn the different 
parameters of the inference system. The success of the learning 
process is not guaranteed, as the designed model might not be 
optimal. Empirical research has shown that gradient descent tech-
nique (most commonly used supervised learning algorithm) is 
trapped in local optima especially when the error surface is com-
plicated. Global optimization procedures like evolutionary algo-
rithms, simulated annealing, tabu search etc. might be useful for 
adaptive evolution of fuzzy if-then rules, shape and quantity of 
membership functions, fuzzy operators and other node functions, 
to prevent the network parameters being trapped in local optima 
due to reliance on gradient information by most of the supervised 
learning techniques. Sugeno-type fuzzy systems are high per-
formers (less RMSE) but often requires complicated learning pro-
cedures and computational expensive. However, Mamdani-type 
fuzzy systems can be modeled using faster heuristics but with a 
compromise on the performance (accuracy). Hence there is al-
ways a compromise between performance and computational 
time.  
ANFIS implements a Takagi-Sugeno fuzzy system and applies a 
mixture of back propagation and least mean squares procedure to 
train the system. The adaptation process is only concerned with 
parameter level adaptation within fixed structures. For large scale 
problems, it will be too much complicated to determine the optimal 
premise consequent structures, rule numbers etc. the structure of 
ANFIS ensures that each linguistic term is represented by only 
one fuzzy set. The learning procedure of ANFIS does not provide 
the means to apply constraints that restrict the kind of modification 
applied to membership functions. Due to the high flexibility of 
adaptive networks, the anfis can have number of variants, for 
instance, the membership functions can be changed to L-R repre-
sentation which could be asymmetric, also we can replace II 
nodes in layer 2 with parameterized T-norm and the learning rule 
to decide the best T-norm operator for a specific application. By 
employing the adaptive network as a common framework, we 
have proposed other adaptive fuzzy models for data classification 
and feature extraction purposes. 
FUN system is initialized by specifying a fixed number of rules and 
a fixed number of initial fuzzy sets for each variable and there 
after uses a stochastic procedure that randomly changes parame-
ters of membership functions and connections within the network 
structure. The learning process is driven by a cost function, which 
is evaluated after random modification. 
NEFCON makes use of an incremental or decremental learning 
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algorithm for learning the rule base and back propagation algo-
rithm for learning the fuzzy sets. NEFCON system is capable of 
incorporating prior knowledge as well as learning from scratch. 
The performance of the system will very much depend on heuris-
tic factors like learning rate, error measure etc. 
FINEST provides a mechanism based on the improved general-
ized modus ponens for fine tuning of fuzzy predicates & combina-
tion functions and tuning of an implication function. FINEST uses 
a gradient descent technique to tune the various parameters. 
Parameterization of the inference procedure is very much essen-
tial for proper application of the tuning algorithm. 
SONFIN learns from scratch and the rules are created and 
adapted as online learning proceeds via simultaneous structure 
and parameter identification. As the learning proceeds, rules will 
get modified incrementally. 
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