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Abstract- The electroencephalogram (EEG) is a non-invasive method of demonstrating cerebral function and it gives a course view of the 
neural activity. The EEG signal also indicates the electrical activity of the brain, which is highly random in nature. The EEG forward problem 
deals with the mapping of the current dipoles using the lead field matrix (LFM) of the observation model and finding the potential at an elec-
trode. The hypothetical dipoles or a current distribution inside the head provides scalp potentials. However, the EEG inverse problem deals 
with the problem of estimating the spatially extended sources of the electroencephalogram from corresponding scalp recordings of the EEG, 
i.e. for estimating the current distribution within human brain. By introducing dynamical inverse solutions, it is possible to link systematically 
the temporal aspect of EEG time series modeling with the spatial aspect of the instantaneous inverse solutions. The EEG consists of an un-
derlying background process with superimposed transient nonstationarities such as epileptic spikes (ESs). The detection of ESs in EEG is of 
particular importance in the diagnosis of epilepsy. The EEG signal is modeled as time-varying autoregressive (TVAR) model. The Kalman 
filter is used to estimate the parameters of the TVAR model. A threshold function is applied to estimate the EEG to detect epileptic spikes. 
The EEG is susceptible to various large signal contaminations or artifacts, like baseline wander, power line, muscle activity (EMG), Electrooc-
culogram or eye blinking (EOG), electrocardiogram (ECG), electrode movement and the normal brain background activity (sharp alpha activi-
ty or SAA). An independent component analysis (ICA) method and cascade adaptive filter may be used efficiently to remove the artifacts and 
interferences. 
Key words- Nonstationary EEG, epileptic spikes (ES), EEG inverse problem, Kalman filtering (KF), Akaike information criterion (AIC), arti-
facts.  
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Introduction 
The electroencephalogram (EEG) is a most commonly used in-
strument for clinical evaluation of human brain activity, discovered 
by Hans Berger in 1929. The clinical interpretation of bioelectrical 
signals plays an important role in the diagnosis of human being 
diseases, in which the important information is frequently carried 
by small amplitude bioelectric signals. The EEG is a clinical tool 
used in diagnosis, monitoring and management of neuro physio-
logical disorder related to epilepsy. The epilepsy is characterized 
by the sudden recurrent and transient disturbances of mental 
functions and movement of body due to excessive electrical dis-
charge in the brain. During the seizures (ictal activity), the EEG is 
characterized by high amplitude synchronized periodic waveforms 

due to epilepsy. These high amplitude synchronized periodic 
waveforms reflect abnormal discharge of a large group of neu-
rons. Between, before and after seizures (interictal activity), the 
EEG might contain occasional epileptiform transient waveforms. 
The Epileptiform activity (EFA) refers to the waves recorded in the 
interictal activity, which can be divided in spikes, sharp waves, 
spike-and-slow-wave complex, and multiple spike-and-slow-wave 
complexes. A signal modelling approach is used to detect these 
ESs in EEG recordings. 
The aspects of the brain that are the fundamental to this model 
include neuron, thalamus and cortex. The neuron is the most 
fundamental unit of the brain and nervous system. These cells 
communicate to each other via connections from axons to den-

Citation: Harish Kumar Garg, Poonam Gakhar Kohli and Amit Kumar Kohli (2012) A Review of Neural Signal Processing Paradigms based 
on Physiological Models for EEG. Journal of Artificial Intelligence, ISSN: 2229-3965 & E-ISSN: 2229-3973, Volume 3, Issue 2, 2012, pp.-56-
73. 
 
Copyright: Copyright©2012 Harish Kumar Garg, et al. This is an open-access article distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source 
are credited.  



Bioinfo Publications   57 

 

drites across a gap called a synapse. The impulses propagate 
through these via electrochemical gradients (action potentials) The 
pulses arrive at the dendrites, and are carried down to the cell 
body (soma). They then travel down the axon hillock to the axonal 
tree, where they are then imparted to other neurons. However, 
there are different types of neurons in the brain. The pyramidal 
cells are of particular importance, comprising 90% of the cerebral 
cortex and also play an essential part in the most neuronal cir-
cuits. There are also inhibitory cells that inhibit signals by chemical 
means, the action of these are highly localised. 
The physiology of the brain may be represented by a model. The 
physiological model has neuronal population of the cortex and the 
thalamus. The cerebral cortex comprises the greatest volume of 
the brain, but it is the structure that lies closest to the recording 
electrodes of an EEG. The cortex is the outermost layer of the 
brain; it is the main contributor to the scalp potentials as it is the 
closest to the scalp and also the site of termination of many of the 
electrical signals that arrive to the brain. The cortex receives most 
of the sensory information from the thalamus. With a relative thick-
ness of 2-4 mm, it is often treated in its unfolded state as a 2D 
sheet with a total length of 1 m. The thalamus is the main gating 
station for all sensory input received from the peripheral nervous 
system (except smell) and relays this information to other parts of 
the brain, namely the cortex. It also receives feedback from the 
cortex and forms closed corticothalamic loops. The thalamus is 
broken up into two main divisions, the relay nuclei, which function 
to transmit the signals to the cortex, and the reticular nucleus, 
which has an inhibitory effect on these signals. The sensory infor-
mation from external stimuli comes through the thalamus, which 
then transmitted to other structures in the brain. A series of electri-
cal pulses travel to the thalamus and are then sent primarily to the 
cerebral cortex, where they are further processed. This leads to 
the interactions in the form of circuits or loops between popula-
tions within the thalamus to the cortex and vice versa. 
Here a two-dimensional model is considered that specifically in-
corporates the dynamics of neuron somas, synapses and axonal 
propagation. The cortex consists of a large number of macrocol-
umns, each containing around 105 neurons in a volume of 1 mm2 
area by 1 mm2 thickness. The cortex model is a two-dimensional 
continuous area of macrocolumns. The mean-field continuum 
approach uses a set of coupled differential equations in time and 
space to describe the excitatory, inhibitory soma potentials within 
the cortex and the time-evolution of postsynaptic potentials 
(PSPs). The localization of neural brain sources based on EEG 
uses scalp potential data to infer the location of underlying neural 
activity. This procedure entails with 
i)Modeling of the brain electrical activity 
ii)Modeling of the head volume conduction process for linking the 
neural electrical activity to EEG recordings, and 
iii)Reconstructing the brain electrical activity from recorded EEG 
data (measured scalp potentials) 
The first two modelling steps serve to solve the so-called EEG 
forward problem, which describes the distribution of electric poten-
tials for the given source locations, orientations and signals. The 
third modelling step serves to solve the inverse of the previous 
ones; thereby it is commonly referred to as the EEG inverse prob-
lem solution. A model of brain electrical activity (in short “source 

model”) is composed of bioelectric units distributed within the en-
tire brain volume or over specific brain surfaces or confined to a 
few brain locations. A single source unit is often modelled as a 
current dipole, which well approximates the synchronized synaptic 
currents at a columnar level. When confined to the cerebral cortex, 
the orientation of the current dipoles can be either free or con-
strained to be perpendicular to the cortical surface. Linking the 
source model to the physical electromagnetic signals measurable 
at the sensor locations on the scalp (forward model) require the 
construction of a volume conductor model that explains the propa-
gation of the currents throughout the human head in terms of ge-
ometry and conductivity of this medium. The modelling errors pro-
duced by the differences between the actual head and the volume 
conductor model affect the accuracy of the EEG forward and also 
the inverse problem solution, as the observed scalp potentials are 
determined not only by the location and strength of the neural 
generators, but also by the geometry and the conductive proper-
ties of the head. The modelling errors include differences in actual 
head and model shape, skull thickness, and electrical conductivi-
ties of the head tissues. 
The forward problem estimates the scalp potential i.e. EEG signal. 
The scalp potential is represented by time varying AR model. The 
parameters of the model may be estimated by Kalman filter. The 
use of time-varying AR model enhances spikes. The EEG inverse 
problem is applied to the task of localising the source of an epilep-
tic spike from a clinical EEG data set. The inverse problem recon-
structs EEG source by mapping the voltage back on scalp, and 
also finds the current dipole position on the scalp (true location of 
source). Then, the filter may be used to estimate dynamic neural 
activity from EEG signals for the cases of linear and nonlinear 
models having either time-invariant or time-varying parameters. A 
Kalman filtering approach using physiological models may be 
used for linear model, in which both spatial and temporal dynam-
ics are used to estimate dynamic neural activity from EEG signals. 
The best performance in terms of estimation is achieved with a 
nonlinear model with time-varying parameters. 
The EEG is a set of data measured by electrodes placed on the 
scalp, and is always influenced by artifacts. There are several 
types of noises and artifacts in the EEG signal. The occurrence of 
artifacts in EEG recording obscures the underlying processes and 
makes EEG analysis difficult. The scalp EEG is severely contami-
nated by low frequency artifacts (baseline wander) of high ampli-
tude produced by movement of the patients and varying electrode-
skin impedance. The strong signals from A/C power supplies can 
corrupt EEG data during transfer from scalp electrodes to record-
ing device. The additive artifacts EMG, EOG and ECG are caused 
by activity in different muscle groups like neck and facial muscles, 
the reorientation of the retinocorneal dipole; and when an elec-
trode is placed near a blood vessel, it causes pulse or heart beat. 
The recordings are therefore low-pass filtered to remove low-
frequency artifacts (usually between 0.5 and 1 Hz) and also high-
pass filtered  to  remove  high-frequency  artifacts  (usually  be-
tween 35 and 70 Hz). However, most EEG machines have config-
urable noise cancellation options already built-in. 
In the next section, we describe the EEG model, followed by Sec-
tion III, which describes mathematical physiological model to eval-
uate the inverse problem. Section IV describes the physiology and 
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detection of Epileptiform activity. Finally, Section V represents a 
review of EEG artifacts contaminating our EEG dataset, and ap-
proaches taken in an attempt to remove these artifacts. 
 
EEG Source model 
Reconstruction of EEG source is a technique that reconstructs the 
electrical currents within the brain that gives rise to recordable 
potential fields at the scalp. The EEG source reconstruction is also 
known as source localization. In nature, the human brain is the 
most complex system. The neurons of brain relay information by 
electrical pulses, known as action potentials. The electromagnetic 
fields can be detected outside the head produced by electrical 
activity of large assemblies of neurons. 
The electrical fields can be observed as weak voltages by elec-
trodes attached to the skin and connected to differential amplifiers, 
giving rise to the electroencephalogram (Nunez, 1981). The EEG 
time-series contains detailed information on brain activity. The 
EEG source localization allows high temporal (milliseconds) reso-
lution, but relatively low spatial (centimetres) resolution. The in-
verse problem is non-unique due to small number of spatial meas-
urements (≤256) and volume conduction effects. To make the 
problem tractable, the priori assumptions (mathematical, anatomi-
cal and physiological) are imposed on the source and head model. 
Solution of the EEG inverse problem has two  main  classes. The 
first type is ‘‘parametric’’ method (also known as ‘‘equivalent cur-
rent dipole’’ approach), in which the sources are modelled by a 
relatively small number of focal sources at locations to be estimat-
ed from the data. The second type is ‘‘linear distributed’’ ap-
proaches (also known as ‘‘imaging’’ or ‘‘current density recon-
struction’’ methods), in which the sources are modelled by a 
dense set of dipoles (3-D grid of dipoles) distributed at fixed loca-
tions (voxels) throughout the head volume. The various tech-
niques described for non parametric methods are low resolution 
electrical tomography methods (LORETA), standardized low reso-
lution brain electromagnetic tomography (sLORETA), variable 
resolution electrical tomography methods (VARETA), quadratic 
regularization and spatial regularization (S-MAP), spatio-temporal 
regularization (ST-MAP), Backus-Gilbert, local autoregressive 
average (LAURA), shrinking LORETA FOCUSS (SLF), standard-
ized shrinking LORETA FOCUSS (SSLOFO) and adaptive stand-
ardized LORETA FOCUSS (ALF). The techniques for parametric 
methods are beam forming techniques, brain electric source anal-
ysis (BESA), subspace techniques such as multiple-signal classifi-
cation (MUSIC), first principal vector (FINES), simulated annealing 
(SA) and computational intelligence algorithms.  
The EEG potential sources are commonly modelled by current 
dipoles, forming a time-dependent distribution over all electrically 
active parts of the brain. To which extent, the field of a single di-
pole can be detected by a given pair of electrodes will depend not 
only on the position, but also on the direction of the dipole. Moreo-
ver, each pair of electrodes will record a superposition of the fields 
of all current dipoles that have suitable positions and directions. If 
detailed information about the activity at particular sites of the 
cortex or within deeper structures is required, it is usually neces-
sary to attach electrodes directly to the brain tissues in question, 
i.e. to resort to invasive methods. As an alternative to invasive 
approaches, one could try to estimate the time-dependent distribu-
tion of source currents from the EEG time-series data by appropri-

ate numerical procedures; this task represents the inverse prob-
lem of EEG generation. Distributed source model presents a high-
ly ill-posed inverse problem, particularly due to mismatch between 
the small number of measurements and the number of states to 
be estimated. One of the approaches for the inverse problem of 
EEG generation is LORETA (Pascual-Marqui et al., 1994; Stro-
bach et al., 1994). This method is instantaneous, i.e. it is applied 
repeatedly to the data recorded at each point of time, without tak-
ing the information into account, which is encoded in the temporal 
order of the available data. It ignores a huge amount of the tem-
poral order information. The temporal order of the data directly 
reflects the dynamics of the sources, while instantaneous methods 
play no role to give the temporal information of the source. 
 Recently various methods have been developed, which are ap-
plied to solve the inverse problem of EEG generation by exploiting 
temporal information (Galka et al., 1994a; Galka et al., 1994b). A 
linear model, which is a stochastic variant of a standard damped 
wave equation, is suggested for modelling of EEG data in (Barton 
et al., 2009). A linear state space (LSS) model describes the gen-
eration of the EEG from the primary current density vector field.  
 For the inverse direction, i.e. for the estimation of the primary 
current density from the EEG, a generalised variant of Kalman 
filtering can be employed. After fitting the LSS model to the data, 
estimates for the time-dependent primary current density can be 
obtained. The discretized state space model can be formulated in 
a different way; this will allow us to add moving-average (MA) 
terms to the dynamics, which leads to a more powerful model. The 
modified state space representation offers a very efficient imple-
mentation of this generalised predictive model. 
Another model “state space generalised autoregressive condition-
al heteroscedasticity GARCH/SSGARCH” is introduced in 
(Yamashita et al., 2004) for the state-adaptive covariance within 
Kalman filter, but it is unable to estimate additional model parame-
ters within the maximum-likelihood framework. The improved pro-
cedure, such as nonlinear maximization of likelihood is given in 
(Ary et al., 1981). In this method, the direct comparison with 
LORETA via information criteria such as Akaike information criteri-
on (AIC) and Bayesian information criterion (BIC) demonstrate 
that the dynamical model offers a much superior description of the 
data, as compared to LORETA. The AIC minimization step selects 
appropriate model parameters and noise covariances, which re-
sults in a well tuned filter as indicated by the reconstructed current 
densities and diagnostics. This shows that the likelihood maximi-
zation is effective for filter tuning, but tuning still requires an appro-
priate process model to be chosen. The process model is a teleg-
rapher’s equation, which contains a resonance, whose properties 
are examined. 
In (Ary et al., 1981), the space- and time-invariant models for data 
description are more suitable in combination with AIC minimization 
criterion. A number of potentially rewarding directions are identi-
fied, which focused on selecting an appropriate process model, 
variation of model parameters on the need for spatiotemporal and 
on handling the problem’s high dimensionality. 
The application of Kalman filtering to source localization is exam-
ined through a detailed study of the KF based inverse solution 
described in (Barton et al., 2009). A modified KF algorithm reduc-
es the high dimensionality of this problem by reformulating it as a 
coupled set of low-dimensional KFs running in parallel. A single 
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telegrapher’s equation is used to model the global source dynam-
ics; the likelihood maximization to estimate a small number of 
model parameters and noise parameters. This technique offers 
improved source localization over existing instantaneous solu-
tions (e.g., LORETA).  
EEG Forward Problem Formulations 
The EEG forward problem deals with the estimate of the potential 

 at an electrode. A single dipole has position 

vector r with dipole moment  (with magnitude j and orienta-

tion ei), positioned at . The Poisson's equation is used to 
find the potentials V on the scalp for different configurations of 

and . For multiple dipole sources, the electrode poten-
tial would be 

 
   (1) 
 

Assuming the principle of superposition, this can be rewritten as  
 
      (2) 
 

where  has three components corresponding to the 

cartesian directions, is a vector 
consisting of the three dipole magnitude components, (.)T denotes 

the transpose of a vector,  is the magnitude of its 

dipole and  is its dipole orientation. In practice, 
one calculates the potential between an electrode and the refer-
ence (which can be another electrode or an average reference). 

For electrodes and dipoles, it is clear that  
 
 
 
 
 
 
           (3) 
 
 
 
 
 
           (4) 
 
 
 

where  and . Each row of the 

gain matrix  is often referred to as the lead-field, 
and it describes the current flow for a given electrode through 

each dipole position. For  electrodes,  dipoles and

 discrete time samples, it can be shown that  
 
 
 
 
 
 
 
 
 
 
 
 
  (5) 
 

Where, is the matrix of data measurements at different times 

. In the above formulation, it is assumed that both the 
magnitude and orientation of the dipoles are unknown. However, 
based on the fact that apical dendrites producing the measured 
field are oriented normal to the surface, dipoles are often con-
strained to have such an orientation. In this case, only the magni-
tude of the dipoles will vary and the formulation in (3) can there-
fore be re-written as 
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where,  is now a matrix of dipole magnitudes at different 

time instants. Generally, a noise or perturbation matrix is 

added to the system such that the recorded data matrix  is 
composed of 

                                                       (9) 

Under this notation, the gain matrix is calculated in the 

forward problem.  is obtained by solving the forward prob-
lem for each dipole location and orientation. The data is corrupted 

by additive measurement noise . If the term in Eq. 
(5), then Eq. (5) is equal to Eq. (3). 
EEG Inverse Problem Formulations 
The inverse problem consists of finding estimates of the dipole 
magnitude matrix, given the electrode positions and scalp read-

ings . The EEG inverse problem defines a continuous cur-

rent vector field , where  and  denote space 
and time, respectively. The solution space is discretized into 

 grid points (voxels) , restricted to the 
cortical gray matter of the brain, where the majority of the EEG 
signals are generated (Nunez and Srinivasan, 2006). Time is dis-

cretized into points, . Discretized points 

are indicated by  and  here. At each voxel, the state vec-
tor is 

     
        (10) 
The global state vector for the entire system has dimension

, and it follows that 

 (11) 

The EEG signal that is recorded on the scalp at electrode 

sites produces the current at each electrode. If is the 

EEG voltage at a single electrode, where  is an electrode label 

( ); the -dimensional column vector com-
posed of all the electric potentials at all available electrodes shall 
be denoted by  

                              (12) 

Here, voltages refer to average reference (the average voltage is 
subtracted from each channel). The EEG signal is estimated by 
exploiting temporal information that relates to the current vectors 
by 

    (13) 

where the  matrix , often referred to as the lead 
field matrix (LFM) of the observation model, and also maps the 
current vectors to voltages at the scalp electrodes. In basic repre-
sentation, an EEG measures the electric signals from the scalp 
with international 10-20 electrode placing system. In (Barton et al., 
2009), the LFM is approximated for the 10-20 system (the 10-20 
system defines a number of electrodes locations by dividing the 
head into 10% and 20% interval using the nasion and the inion as 
landmark for the front to back direction and preaurical points for 
the side to side direction) by solving the vector Laplace equation 
for a three-shell spherical head model via the boundary element 
method.  

The dimensions of  and are  

and . The term is a  dimensional 
vector of observational noise, which is assumed to be white 
Gaussian noise (WGN) with zero mean and covariance matrix

, and uncorrelated between all pairs of sensors, with equal 

variance  at every electrode, so 

                                                                      (14) 

where,  is the identity matrix. 
Equation (13) cannot be inverted directly due to the large ratio of 
solution points to measurements. Hence, the inverse problem can 
only be solved by introducing additional constraints. The KF-
based source localization technique is proposed in (Galka et al., 
1994b). Key features of this algorithm are the following: the pro-
cess model is a space and time-invariant telegrapher’s equation 
and a spatial whitening transformation is used to reduce its com-
putational burden. Subsequently, the filter is tuned using likelihood 
maximization.  
 
Mathematical Physiological Model 
The incorporation of linear and nonlinear physiological models into 
inverse solution framework can provide a better description of the 
system dynamics. To observe brain activity and EEG, a compact 
model is used. This is based on the mean field formulation of the 
brain. This model is described by a single second order delay 
differential equation, which has only one explicit variable, the corti-
cocortical activity. The model can be linearized near steady 
states, captures the essential features of activities such as cortico-
cortical propagation and delayed feedbacks via extracortical path-
ways and external stimuli. Furthermore, a nonlinear model is de-
rived from compact model in the vicinity of steady states. The 
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linear models of first and second order with time invariant param-
eters are employed in (Robinson et al., 1997; Robinson and Kim, 
2007; Giraldo et al., 2010). 
 
Cortical Modeling based on Physiology 
The first feature incorporated is the neural response to the cell-
body potential. An excitatory neuron emits pulses (i.e., fires) at a 

mean rate  that is determined by the potentials generated in 
the dendritic tree by synaptic inputs of thousands of other neu-
rons. Threshold potentials, above which high firing rates occur, 
are not identical for all the neurons, but have centrally peaked 

distribution. The local mean firing rate  averaged over many 

neurons replaces . The mean dendritic potential  is intro-

duced. The is measured in units of the maximum value pos-

sible (250-1000 s-1 per neuron), and potential  is measured 
in units of the characteristic standard deviation of the threshold 
distribution. Similar considerations apply for inhibitory neurons, 

denoted by subscript . The mean firing rate  of excitatory 

 and inhibitory neurons are nonlinearly 

related to mean potential  measured relative to the resting 

level, by , where  is the sigmoid-

al function that increases from  to as  increases 

from to . It follows that 

                                         (15) 

where  is the maximum firing rate,  is the mean firing 

threshold and is the standard deviation of the threshold 

distribution in the neural population. The and  are meas-

ured in .  

 The signals arriving at neurons of type , stimulate neurotrans-
mitter release at synapses. This is followed by propagation of 
voltage changes along dendrites, with cable properties that tend 
to spread out the temporal profile of the signals (a form of low-

pass filtering). The total cell body potential  can thus be 
written as  

                                                            (16) 

where the subscript on the components  distinguishes 
the different combinations of afferent neural type and synaptic 

receptor,  denotes the spatial coordinates, and 
is the time. The weighted average over the receptor time con-
stants to yield effective values that will change when and if differ-
ent receptors dominate the dynamics in different brain states. 
This can be written by  

                        (17) 

                         (18) 

where encapsulates the overall time constants, in 

which  and  are the mean decay and rise rates, respec-
tively, of the cell-body potential produced by an impulse at den-

dritic synapses, and . The use of a single form of 

 corresponds to the approximation that the mean dendritic 
dynamics can be described by a single pair of time constants. On 
the right-hand side of Eq. (17), substitute, the value of 

 from Eq. (16) and then, replace  by 

 , where  is the mean number 

of synapses from neurons of type  to type 

; and  is the mean time-integrated strength of 

soma response per incoming spike, and is the 

mean spike arrival rate from neurons , allowing for a time 

delay  due to anatomic separations. The quantities  and 

corresponds to the excitatory , inhibitory , reticular 

thalamic  and specific relay  population and to exter-

nal stimuli . The only nonzero values of  in our model 

are , which correspond to cortico-

thalamic and thalamocortical propagation times. The time  

can be related to the characteristic loop length  and mean 
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axonal velocity by . Each part of the corticotha-
lamic system gives rise to neural pulses, whose values averaged 

over short scales form a field  in this model that propa-

gates at a velocity . To a good approximation, obeys a 
damped wave equation whose source of pulses is 

                                            (19) 

                    (20) 
The potential Va obeys the following differential equation: 

  (21)                                                                                           

The is the contributions from other cortical neurons, and 

inputs from thalamic relay nuclei, delayed by a time  
required for signals to propagate from thalamus to cortex. The 

corticothalamic system it produces a field of pulses that trav-

els at a velocity (e.g., for excitary neurons ) 
and obeys a damped wave equation 

          (22) 

      (23)    

where is the temporal damping rate of pulse in 

axon  (mean decay rate), and  is the mean range of ax-

ons (assumed to have an approximately exponentially de-

creasing distribution at large ranges). The and  are 

measured in units ,  and . If intracortical connec-
tivities are proportional to the numbers of synapses involved, 

and which lets us concentrate on excitato-

ry quantities. The smallness of  also lets us set  and

. The model incorporates corticothalamic connectivities 

and thalamic nonlinearities. The latter relay external stimuli  
to the cortex as well as corticothalamic feedback. The cell-body 

potentials then satisfy 

  (24)                                                                                                                                                                                                                           

where, there is a delay for signals to travel from cortex to 

t h a l a m u s  o r  b a c k ,  a n d 

, applies because the small size of the 

thalamic nuclei enables us to assume large and 

 for  in Eq. (23). The  and are 

measured in units  and . It is assumed that  and 

are large compared to , therefore, it can be written as

in Eq. (21). Use as the approximations , 

and results in a single nonlinear equation for

. Solving this transcendental equation for  we 

obtain the formal solution in terms of a function  that only 

depends on ,  and . 
It leads to 

   (25)  
Substituting Eq. (25) in Eq. (23), we get a single time-delayed 

differential equation with one variable . 

 (26) 

This compact model requires only describing the brain activity 
(Robinson et al., 1997; Robinson and Kim, 2007), which implies 
that the brain dynamics can be studied in a reduced space under 
certain conditions. The Eq. (26) depends on only three quantities 

with apparent physiological meanings. The term repre-

sents activities due to nearby neurons, denotes 
delayed feedbacks via extracorticocortical loop, and the external 

stimulus is . Here, the delay time of the exter-

nal stimulus is , since the stimulus is relayed to cortex via 
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ties, parametrizes corticothalamic feedbacks, and para-
metrizes a delayed external stimulus that can be considered as 

random noise in many cases. The term  represents the den-
sities of synapses associated with stimuli. The solutions of linear 
dynamics model is well defined in the stable region only and di-
verge in the unstable region. Some nonlinear properties such as 
limit cycle and bifurcations are observed. To treat these nonlinear 
properties, the nonlinear dynamics model is considered. In nonlin-
ear dynamics model, Eq. (25) is expanded for cubic terms 
(Robinson and Kim, 2007). Expanding the left-hand side of Eq. 
(27) up to cubic terms, Eq. (33) becomes 

    (41) 

                                                     (42) 

                             (43) 

We may replace on the right-hand side of Eq. (41) with the 

linearized solution obtained from Eqs. (33)-(35), and its 

solution is generally too complex. If and

at a steady state. The Eq. (41) is further approximated 

by replacing all the on the left-side with . Subsequently, 
the equation (26) gives explicit form as 

   (44)     

where, the coefficients and are related to physiological 

model and . Right-hand side of Equation (44) 
depends only on the intracortical activity (first, third, and fourth 
terms), the delayed corticothalamic feedback (second term), and 
the delayed external input (last term). 

                                                  (45) 

                                              (46) 

                                     (47) 

                                                                         (48) 

                                                                             (49) 

where represents corticocortical activities with 

strength c1 due to nearby neurons,  denotes 
delayed feedbacks via extracorticocortical loop with strength c2, 
and the external stimulus (random noise) with strength c3 is 

. Based on the abovementioned physiological 
background, (Robinson et al., 1997; Robinson and Kim, 2007; 
Galka et al., 2008; Giraldo et al., 2010) have presented the math-
ematical modelling of compact model. 
Spatiotemporal Modeling based on Physiology 
The spatiotemporal (process model) describes the system dynam-
ics of the inverse problem, which give rise to the evolution of the 
current vectors. For this task, the following telegrapher’s equation 
is proposed in (Barton et al., 2009).  

 (50)                                             
where ωn is the natural frequency, ζ is the fractional damping 

coefficient, b is the wave velocity squared, and is a 
dynamical (process) noise term. This equation is selected for sev-
eral reasons: 1) it is the continuous form of the discrete model 
used here and in (Barton et al., 2009) it contains an explicit tem-
poral resonance, which is a key feature of EEG data; 3) it allows 
physically meaningful parameters to be determined through the 
estimation step; and 4) used as mean-field modelling (Galka et al., 
1994a), an equivalent equation successfully described the spatio-
temporal propagation of neuronal activity. The model defines a 

continuous current vector field , where  and
denote space and time, respectively. The solution space is discre-

tized into grid points , . Time is dis-

cretized into points , . Discretized 

points are indicated by  and  here. To implement a KF, 
Eq. (50) is discretized with respect to space and time to give 

      (51)                                                                                                            
at each voxel, where L is a discrete 3-D spatial Laplacian operator 

of dimensions that arises from the discretization 
of the second spatial derivative in Eq. (50) and is defined as 
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a half pathway. The linear dynamics model is derived from the 
compact model Eq. (26) in the vicinity of a steady state (Robinson 
and Kim, 2007). Assuming that the system is spatially homoge-

nous and .  

Substitute , , in Eq. (21), which gives 

              (27) 

Then, substitute ,  in Eq. 
(24), which gives 

  (28) 

Substitute in Eq. (28) 

                                       (29) 

Similarly, substitute , in Eq. 
(24), which gives 

          (30)  

Substitute  in Eq. (30), such that 

  (31) 
Since dynamical behaviours near steady state are of most inter-

e s t ,  l e t , ,  a n d 

, where and  are the 
steady-state values, and simplify the inverse sigmoidal function on 
the left-hand side of Eqs. (27), (29) and (31) using 

      (32) 
This gives 

          (33) 

    (34)                              

           (35) 

where and 

denotes the approximated value of  considering linear terms 

only. Eliminating and from Eqs. (33) to (35), which 
gives 

 (36)                                                                                                                                                                                                                               

Under local activity approximation, , 
equations (27) to (31) can be solved numerically to predict the 

response to specified incoming signals in terms of the 16 

quantities  and 

(this product is also termed  below, and we treat eight of 
these as nonzero and independent on the assumption of random 

cortical connectivity, which implies  for all b). If the 

var iab les ,  and 

 are used in place of the dimensional forms, one finds that 
the solutions depend only on these dimensionless forms, lowering 
the essential dimensionality of parameter space to 11. This re-
flects scaling properties under variation of the maximum firing 
rate, strength of interconnection, time scale, voltage scale, and 
length scale, respectively. Substituting Eq. (36) into the right-hand 
side of Eq. (26), finally give the linearized equation  

 (37) 

Where  is the dimensionless time unit, 

 is a dimensionless field, and R=r/ re is a di-

mensionless spatial vector so that  is a dimen-
sionless Laplacian, and the coefficients are 

                                                             (38) 

                                         (39) 

    (40)                              
The first term on right-hand side of Eq. (37) represents rapid corti-
cocortical feedbacks, while the second term represents feedback 
via extracortical pathways delayed by a time τ0. We therefore 

argue that parametrizes the strength of corticocortical activi-
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                                                      (52) 

where ⊗ indicates Kronecker multiplication, denotes the

-dimensional identity matrix and N is neighbourhood matrix 

of the voxel set, i.e. a  with element 

, if  is immediately adjacent to  
(maximum of six neighbours per voxel in a 3-D rectangular grid) 

and , otherwise. The operator se-
lects the column vector composed of the three elements of 

 that correspond to grid point . Restricting attention to 
classes of process models (Galka et al., 1994a) in which the local 
current components in each voxel are approximated as behaving 
independently of each other and only interacting with the corre-
sponding current vectors in neighbouring voxels, gives the follow-
ing local parameter matrices in Eq. (51) 

                          (53) 
From the discretization of Eq. (50), the model parameters in Eq. 
(53), assumed to be space- and time-invariant, are 

                                                          (54) 

                                                              (55) 

                                              (56) 

where  and  are the time step and voxel size 
(assuming cubic voxels). From Eq. (51), we write the global pro-
cess model as a second-order multivariate AR model 

  (57) 

where the global parameter matrices are 

                         (58)   

The -dimensional vector is a dynamical noise 
term that is assumed white, Gaussian, and unbiased, with covari-

ance matrix . The decomposition of this high-dimensional 
problem into a set of coupled low-dimensional, voxel-centered, 

local filtering problems requires this dynamical noise covariance 
matrix to be diagonal. However, for the process noise, assumption 
of a diagonal covariance matrix is typically not justified due to 
nonvanishing instantaneous correlations between neighbouring 
voxels. So, to diagonalize this matrix, a switch to a transformed 

(Laplacianized) state space  was proposed (Galka et 
al., 1994a), where 

                                               (59) 
Assuming that the same form of dynamics govern the Laplacian of 

, the process model is 

   (60) 
As a result of this transformation, the dynamical noise covariance 

matrix is closer to diagonal; since applying the Laplacian 

operator L to the state vector  reduces spatial correlations 
between neighbouring voxels through (second order) spatial dif-

ferentiation. Assuming the process noise covariance to be 
fixed in space and time, the covariance matrix is 

                                                            (61) 
We can rearrange Eq. (60) to obtain 

 (62)                                                                            
By equating the process noise term in (62) with the one in (57), 
we find  

 which yields the process noise 
covariance matrix in the original space 

 (63) 
This state space transformation is called “spatial whitening,” and 
allows decomposition of the filtering problem. From now on, we 
will operate in this Laplacianized state space by replacing 

 with  and with  . To obtain 
actual current densities and covariance’s, we simply apply the 
inverse of the spatial whitening transformation; as seen shortly, 
this step requires one-off inversion of a very large 

 matrix. 
 
Physiology and Detection of Epileptiform Activity 
A. Basic 
Electroencephalography (EEG) is the recording of electrical activi-
ty along the scalp produced by the firing of neurons within the 
brain. In clinical contexts, the EEG refers to the recording of the 
brain's spontaneous electrical activity over a short period of time, 
usually 20-40 minutes, as recorded from multiple electrodes 
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placed on the scalp. The EEG plays a decisive role in epilepsy 
research and treatment. The measured activity changes in EEG 
depend on the brain status (epilepsy, anesthesia, sleep, coma, 
encephalopathies, and brain death). A typical adult human EEG 
signal is about 10µV to 100 µV in amplitude when measured from 
the scalp, and it is about 10-20 mV when measured from subdural 
electrodes.  The 10-20 EEG measuring system is more practical 
for its simplicity of use and for the bigger spacing between elec-
trodes, which reduces the possibility of inter electrode interfer-
ence. 
In the 10-20 EEG measuring system, each channel location has a 
label and/or number to identify its sub-cranial lobe and hemispher-
ical location, where “FP” is the Front-Polar or prefrontal lobe, “F” is 
Frontal lobe, “T” is Temporal lobe, “C” is Central lobe, “P” is Parie-
tal lobe, and “O” is Occipital lobe.  There are two important refer-
ence landmarks known as nasion, which is in the front of the head 
(point between the forehead and nose) and inion, which is located 
at the back of the skull. To simplify and standardize electrode 
placement, caps are used, which have a maximum number of 
openings to place as much electrodes as needed. Since an EEG 
voltage signal represents a difference between the voltages at two 
electrodes, the display of the EEG for the reading encephalogra-
pher may be set up in one of several ways. The representation of 
the EEG channels is referred to as a montage. 

 Bipolar montage  
Each channel (i.e., waveform) represents the difference between 
two adjacent electrodes. The entire montage consists of a series 
of these channels. For example, the channel "Fp1-F3" represents 
the difference in voltage between the Fp1 electrode and the F3 
electrode. The next channel in the montage, "F3-C3," represents 
the voltage difference between F3 and C3, and so on through the 
entire array of electrodes. 

 Referential montage  
Each channel represents the difference between a certain elec-
trode and a designated reference electrode. There is no standard 
position for this reference; it is however at a different position than 
the "recording" electrodes. Midline positions are often used be-
cause they do not amplify the signal in one hemisphere vs. the 
other. Another popular reference is "linked ears", which is a physi-
cal or mathematical average of electrodes attached to either ear-
lobes or mastoids. 

 Average reference montage  
The outputs of all of the amplifiers are summed and averaged, 
and this averaged signal is used as the common reference for 
each channel. 

 Laplacian montage  
Each channel represents the difference between an electrode and 
a weighted average of the surrounding electrodes. 
 
B. Types of EEG activity 
The EEG activity can be divided into different groups, of which 
some can be labeled normal and some are considered abnormal, 
or pathological (Indicative of disease). The signal picked up by 
EEG electrodes can have many different characteristics and la-
beled as normal, depending on for sleep stage or age. Some fre-
quency-based categories of EEG are described in Table 1. The 
rhythmic activity   within certain frequency bands is found to have 

biological significance, or associated with certain regions of the 
scalp.  

Table1- Properties of some common EEG rhythms 

Most of the cerebral activity is traditionally thought to be   found in 
the range 1-20 Hz, but recent research suggests that important 
information can be found in the extremely low frequencies that 
most EEG amplifiers filter away. The   first   four   frequency   
bands   are not overlapping and cover the whole EEG spectrum, 
even though the higher frequencies of the Beta band are today 
usually named Gama rhythms. 
The above-mentioned types of activity are “continuous” in the 
sense that they describe more or less rhythmic activity   that goes 
on for some time, until they are changed by some change in men-
tal state or sleep stage. Many other types are intermittent, mean-
ing that one kind of activity is interrupted by sudden outbursts of 
other kind of activity. In the seizure case, one type of activity 
(seizures) can also be superimposed on another (e.g. burst sup-
pression).                                                                                   
The EEG is also used clinically to diagnose coma and encephalo-
pathy conditions as well as to monitor      anaesthesia. Most EEG 
is nowadays digitally sampled   between 256 and 512 Hz, alt-
hough higher frequencies are used sometimes for research pur-
poses.  
As opposed to scalp EEG, the Electrocorticography (ECoG) is 
typically recorded at higher sampling rates, since higher frequen-
cies are better revealed in subdural signals. 
 
C. Epilepsy: A Synopsis 
Epilepsy is a chronic neurological disease manifested by abnor-
mal electric discharges in the brain leading to seizures. It affects 
people of all ages, although it is predominantly a   paediatric disor-
der, with the mean age of epilepsy onset defined in the range 
between 8 and 10 years. Epilepsy is considered as one of the 
most common neurological disorders affecting 3 million people in 
the United States alone.  
According to Centres for Disease Control and Prevention,   one 
out of 100   adults has active epilepsy. According to the World 
Health Organization, it is estimated that 50 million people world-
wide have epilepsy, especially children and adolescents, with 
millions more that go unreported in poor and developing countries. 
It is estimated that 30% of the epileptic population has poor re-
sponse to medication, and around 10% undergo surgical interven-
tion [Epilepsy Foundation of America 2008]. Although congenital 
factors, head traumas and vascular   diseases are considered risk 
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Name Frequency  
limits 

Location Properties 

Delta 0.5 - 3.5 Hz Widespread Occur in infants and during deep 
sleep or anesthesia 

Theta 
  

3.5 - 7.5 Hz 
  

Mainly in 
parietal and 
temporal lobes 

Most prominent in small children 
and during drowsiness or sleep. 

Alpha 7.5 - 13 Hz Rear half of 
the head 

Occur during awake and resting 
state, high amplitude when eyes 
closed. Mostly sinusoidal shape. 

Beta above 13 Hz Most common 
in frontal and 
central regions 

Often divided in two sub-bands, 
of which the higher frequencies 
appear during tension and 
intense activation of the CNS 
and the lower are attenuated 
during mental activity. 
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factors, the etiology of epilepsy is unknown for approximately 
three fourth of all cases. Patient with epilepsy are initially treated 
with anticonvulsant medication; but in difficult clinical cases, sur-
gery becomes the only alternative for them. 
 
D. Seizures 
Brain discharges lasting more than a few seconds usually repre-
sent ictal activity (called a seizure) rather than EFA. During a sei-
zure, the EEG clearly shows high activity in most channels, often 
manifested with much higher frequencies and amplitudes. Fre-
quency and amplitude increase during the seizure or ictal state.  
Seizures are the result of abnormal synchronization of groups of 
neurons, and may or may not give rise to clinical symptoms 
(symptoms that are easily noticed in the clinic). The type of   
symptoms depends on the affected part of the brain. If it is a mo-
tor area of the brain, then the result can be wild and uncontrollable 
motion of the body. On the other hand, if it is a sensory area in the 
brain that is affected, the result may be that the person experienc-
es e.g. visual flashing or unpleasant odors. There may also be 
sub-clinical seizures that do not cause any detectable symptoms, 
but are present in the EEG. The seizure is concentrated to the left 
part of the rear of the brain. The high frequency noise in P4 and 
T6 is probably due to that the baby was lying with the right side 
down. Burst-suppression is one of several indicators of severe 
pathology in the electroencephalogram signal that may occur after 
brain damage, caused by e.g. asphyxia (insufficient oxygen and 
nutrient supply) around the time of birth. Certain characteristics of 
this pattern can provide clinicians with important information about 
the prognosis of the patient. 
As opposed to MRI, CT, PET and SPECT, EEG is a relative inex-
pensive technology to estimate locations of tumours and epileptic 
foci in the brain. By reading EEG, experts can find    specific pat-
terns, which are indicative of seizure activity. If   these patterns 
consistently repeat in specific electrodes (or channels), then the 
approximate location of the seizure focus is expected to be in a 
region enclosing these electrodes. Therefore, the EEG provides a 
simple way of roughly locating the seizure focus. 
With time, procedures to study epilepsy have become more   so-
phisticated and, when necessitated, invasive. For example, part of 
the pre-surgical evaluation of persons with refractory   seizures is 
the implantation of electrode arrays, which are placed in the cor-
tex of the brain called ECoG. The placement of these arrays coin-
cides with the location, where the seizure focus was suspected by 
using scalp EEG. The ECoG is considered in clinical practice, the 
golden standard for   locating epileptogenic zones due to its high 
spatial resolution and lower degrees of noise than the scalp EEG, 
whose recordings are attenuated due to high scalp inductivity. The 
treatment options for intractable seizures are limited to resorting 
the focal resections of abnormal brain tissue, when the epilepto-
genic region can be accurately defined; a critical task that may 
require intracranial EEG recordings of seizures to define their 
onset and region of involvement. More recently, an alternative 
treatment option has evolved, where chronic intracranial implants 
apply electrical stimuli directly to the brain surface with the ulti-
mate aim of preventing or aborting seizures. The implants continu-
ously record the EEG activity and apply the stimuli when seizures 
are detected or are presumed to be imminent. 

Usually, signs of the seizure are first observed in specific chan-
nels, called “channels that initiate the seizure”, electrode pairs 
FP1-F7, F7-T3, T3-T5, F8-T4, and T4- T6   initiate   the   seizure.   
It   has   been   recently   found that   these channels are closer to 
seizure focus or tumour and have much lower coherence than the 
remaining channels. During pre-surgical evaluation, an electrode 
grid is usually implanted in the brain of patients for a better locali-
zation of the seizure focus. Patients are then put in an observation 
room until it is deemed that sufficient data containing interictal 
spikes or seizures is collected. On occasions, this process may 
last for more than a week. 
Then, the patient is sent to the operation room for surgery. But 
before that, an EEG expert has to visually scan the EEG to find 
the interictal spikes and seizures, if any. Considering that EEG 
recording sessions can last for days, reviewing such EEG data 
can be an exhausting process, besides that it is prone to subjec-
tive assessment. However, the detection of seizures during moni-
toring is crucial for the surgery outcome, since the grid electrodes   
that   initiate   the   seizure   are   consequently   used to   pinpoint   
the   seizure   focus more accurately. For that reason, methods for 
the automated detection of interictal spikes and seizures can 
serve as valuable tools for the scrutiny of EEG data in a more 
objective and computationally efficient manner. 
 
E. Interictal Spikes 
Interictal spikes are spikes recorded in the time between seizures, 
while the subject is not having any seizures. Their detection is 
critical in locating the seizure focus. Interictal spikes usually occur 
in neighbouring electrodes (spatio-temporal context), consisting 
on raising and falling amplitude and duration. Medical experts and 
neuroscientists have established several criteria as necessary 
conditions to declare the existence of an interictal spike, their 
detection, and    extraction.   
 
F. Epileptiform Activity 
Epileptiform activity (EFA) is a term used in EEG to describe 
waves that are clearly distinguishable from the background activity 
and are similar to the waves found in EEG from   epileptic sub-
jects. The EFA refers to the waves recorded in the interictal activi-
ty (the time between seizures), but not during the seizure itself. 
The EFA can be divided in spikes, sharp waves, spike-and-slow- 
wave complex, and multiple spike-and-slow-wave complexes. The 
distinctions are as follows:  

 A Sharp wave is a transient distinguishable from EEG back-
ground which lasts 70 to 200 milliseconds. 

 A Spike is a sharp wave with duration of 20 to 70 milliseconds. 

 A Spike-and-slow-wave complex is a spike followed by a slow 
wave, whereas the later has usually higher amplitude. 

 Multiple spike-and-slow-wave complex is a concatenation of 
spike-and-slow- wave complexes. 

In practice, however, it is more important to distinguish   them 
from the background activity than to detect their morphological 
distinctions. A signal modelling approach is used to detect ESs in 
EEG recordings. This method is unsupervised, and can be divided 
into two steps. The first step is a pre-processing step whose main 
goal is to pre-emphasize the ESs. In the analysis of non-stationary 
EEG, the interest is often to estimate the time-varying spectral 
properties of the signal. A traditional approach to this is the spec-

A Review of Neural Signal Processing Paradigms based on Physiological Models for EEG 

Journal of Artificial Intelligence 
ISSN: 2229-3965 & E-ISSN: 2229-3973, Volume 3, Issue 2, 2012 



Bioinfo Publications   68 

 

trogram method, which is based on Fourier transformation. The 
disadvantages of this method are the implicit assumption of sta-
tionarity within each segment and poor time/frequency resolution. 
A better approach is to use parametric spectral analysis methods 
based on e.g. time-varying autoregressive moving average 
(ARMA) modelling. The EEG signal is first modelled as an output 
of time-varying autoregressive model (TVAR). The TVAR parame-
ters are estimated with a Kalman Filter (KF) algorithm. The track-
ing lag can be avoided using Kalman smoother algorithm. This is 
the main advantage of the Kalman smoother algorithm compared 
to other adaptive algorithms. In the second step, ESs are identi-
fied by the output of the filter, compared to a threshold. More spe-
cifically, a threshold function is applied in the estimated EEG to 
detect the ESs. To our knowledge, several spike detection algo-
rithms rely on a simple voltage threshold with little or without pre-
processing. Simple thresholding has proved to be attractive for the 
real-time implementations because of its computational simplicity. 
 
Mathematical model of spike detection 
I. Pre-emphasis step: Kalman filter 
The Kalman filter is a set of mathematical equations that provides 
an efficient computational (recursive) means to estimate the state 
of a process, in a way that minimizes the mean of squared error. 

The EEG signal is recorded on the scalp at electrodes. The 

EEG single electrode records the voltage , where  is 

the electrode label; the  - dimensional column vector com-
posed of all the electric potentials at all available electrodes. The 
observation vector containing the scalp voltages at all EEG chan-
nels is given as 

( 6 4 )                               
and the EEG signal is estimated by  

 (65) 

The model defines a continuous current vector field , 

where denotes the time. The EEG dynamics is estimated us-
ing TVAR model of order p given by 

    (66) 

where the dimensions of and  are 

. denotes the dynamic noise, which is as-
sumed to be white Gaussian noise with zero mean and covari-

ance matrix . When fitting such models 

to given data, represents a time series of innovations, 
i.e., components of the data that cannot be explained from the 

dynamics itself. It is the aim of modelling to find dynamical models 
that produce a Gaussian white innovation time series, such that 
the process of modelling can be regarded as ‘‘temporal whiten-
ing’’. 

 where  .                                                              (67) 

The parameter matrix  is of size , which is of the 

order of . This large number of parameters is still far too 
high to be estimated from real data; therefore we need additional 
reductions of model complexity. Also, the practical application of 
Kalman filtering requires a simplified model structure.  

The term denotes the estimate of local 

current vector at voxal  at time , i.e., the local state 

estimate, and  the corresponding estimate of 

the local error covariance matrix . For each voxal, the 
state prediction is given as 

 (68)               
and the corresponding local prediction error covariance matrix can 
be approximated by 

 (69)              
Innovation is described by 

                               (70) 

 (71) 
The corresponding observation prediction error covariance matrix 
can be approximated by 

  (72) 

                                                                   (73) 
The Kalman gain matrix for voxel v follows as 

                        (74) 
and 

                        (75) 

The term is the identity matrix with dimensions .  
II. Spike detection  
The peaks from the output of filter, which are higher than thresh-
old, are considered as an indication of the existence of an ES at 
that location in the time series. The absolute value of the estimat-
ed EEG is used for comparison with threshold. In spike detection, 
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the threshold is optimized to minimize missing of true peaks, while 
keeping the number of falsely detected peaks within a reasonable 
limit. The threshold is taken as scaled version of the mean of the 
absolute value of the estimated data in the whole signal duration. 
This modification makes the detection algorithm robust. Therefore, 
the threshold value for the KF-based approach is chosen as 

                                                              (76) 

where  is the number of samples, is a scaling factor and 

is the absolute value of the estimated data. 
 
EEG Artifacts 
A. Baseline wander 
The baseline wander is an extraneous, low-frequency activity in 
the EEG, which may interfere with the signal analysis, making the 
clinical interpretation inaccurate. When baseline wander takes 
place, EEG measurements related to the isoelectric line cannot be 
computed, since it is not well-defined. Baseline  wander  is  often  
exercise-induced  and  may  have  its  origin  in  a  variety of 
sources, including perspiration, respiration, body movements and 
poor electrode contact. The spectral content of the baseline wan-
der is usually in the range between 0.05-1Hz, but during strenu-
ous exercise, it may contain higher frequencies. 
B. Power line interference 
In many situations, the recorded signal is corrupted by different 
types of noise and interference, originated by another physiologi-
cal process of the body. When an electrode is poorly attached to 
the body surface or when an external source such as the sinusoi-
dal 50Hz power-line interferes with the signal, the recorded signal 
is distorted in a way that it could be difficult to perform any auto-
matic diagnosis. The most external interferences associated with 
bioelectric signals are originated from the power line source.  
Such  additive  disturbances  are  usually modelled by: (1) a fixed 
frequency sinusoidal with random phase and amplitude  (electrical  
field  interference),  and  (2)  higher  order  harmonics due to mag-
netic fields originated from nonlinear characteristics of the propa-
gation path (e.g. main power transformer) due to other equip-
ments like fluorescent lamp reactors. 
C. Electromyographic (EMG) or Muscle Activity, Electrooc-

culogram (EOG) and Electrocardiogram (ECG) 
The artifacts in electroencephalogram records are caused by vari-
ous factors, like line interference, Electromyographic (EMG) or 
Muscle Activity, EOG (electro-oculogram) and ECG 
(electrocardiogram). The EEG records carry information about 
abnormalities or responses to certain stimuli in the human brain. 
Some of the characteristics of these signals are the frequency and 
the morphology of their waves. These components are in the or-
der of just a few up to 200 μV, and their frequency content differs 
among the different neurological rhythms, as the alpha, beta, delta 
and theta rhythms. Such rhythms are analyzed by physicians in 
order to detect neural disorders and cerebral pathologies. Howev-
er, these rhythms are generally mixed with other biological sig-
nals, for example alpha is commonly mixed with the EOG (electro-
oculogram). In this case, opening, closing or movements of the 

eyes produce artifacts in the EEG. The electrocardiogram (ECG) 
describes the electrical activity of the heart.  It is obtained by plac-
ing electrodes on the chest, arms and legs. With every  heartbeat,  
an  impulse  travels  through  the  heart,  which  determines  its 
rhythm & rate, and it causes the heart muscle to contract and 
pump blood.  The voltage variations measured by the electrodes 
are caused by the action potentials of the excitable cardiac cells, 
as they make the cells contract.  The ECG is characterized by a 
series of waves, whose morphology and timing provide infor-
mation used for diagnosing diseases reflected by disturbances of 
the electrical activity of the heart. The time pattern that character-
izes the occurrence of successive heartbeats is also very im-
portant. 
D. Artifact drawbacks 
The presence of artifacts in electroencephalogram records in-
creases the difficulty in analysing the EEG and in obtaining clinical 
information. The artifacts introduce spikes, which can be confused 
with neurological rhythms. Thus, noise and undesirable signals 
must be eliminated or attenuated from the EEG to ensure a cor-
rect analysis and diagnosis. 
E. Artifact excision technique 
In the first step, the baseline wander, whose frequency is less 
than 1.0 Hz, is simply removed by high pass filtering. The baseline 
wander is also removed by a filter composed of a moving window 
centered at the sample under process. The signals obtained after 
the application of this window to the scalp, the EEG signal is sub-
tracted from the original signal removing low frequency artifacts.  
Several techniques have been developed to suppress power line 
interference (60 Hz or 50 Hz) and its higher harmonics from bioe-
lectric signals. The physical solutions such as shielding, grounding 
and careful amplifier printed circuit board design are usually em-
ployed. Typically, such solutions are insufficient to provide the 
required signal quality level. The conventional low-pass analog 
filtering tends to severely attenuate signal components above its 
cut off frequency, which limits the system's frequency range. Such 
a limitation cannot be tolerated in applications, such as high-
resolution electrocardiography. Different filtering solutions have 
been used for the removal of power line interference from EEG 
signal. Digital filter has been selected to overcome this problem, 
which can be divided into following categories. 

 Low Pass Filters    

 General Notch-Rejection Filters    

 Adaptive Filters   

 Global filters   
The removal of power line interference from EEG signal can be 
removed by adaptive filtering, while the harmonics and high fre-
quency noise can be removed by implementing general notch 
rejection filters. A notch filter is used to remove power line noise 
with a cut-off frequency of 60Hz in USA (or 50Hz in Europe and 
Asia). However, by this method brain activities with the same fre-
quency are also removed out. Adaptive filtering is an alternative 
solution to power line interference cancellation. The adaptive 
noise canceller (ANC) developed by Widrow (Widrow et al., 1975) 
has been shown to lead to significant interference suppression in 
bioelectric signals. Its high selectivity, frequency tracking capabil-
ity, low distortion and low computational cost characteristics are 
very attractive for bioelectric acquisition systems. Many modern 
commercial systems incorporate adaptive (active) noise cancelling 
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or techniques. Despite its excellent performance in 60 Hz (50 Hz) 
cancellation, the linear filtering structure of the ANC leads to a 
poor performance, when higher harmonics cancellation is neces-
sary. For the suppression of power line harmonic in biomedical 
signals, a new technique proposes in (Marcio et al., 2009) is very 
effective and low computational cost strategy. In this technique, 
the power line reference is obtained from analog to digital conver-
sion, while higher harmonics are mathematically estimated 
through trigonometric relations. These samples and estimates 
make up a set of reference signals to be processed by a multi-
channel LMS adaptive canceller. The performance comparison 
with the conventional adaptive canceller in ECG and EEG demon-
strates the new algorithm that can improve the signal to interfer-
ence ratio of such bioelectric signals due to suppression of power 
line and harmonic interference. 
To overcome EMG and EOG problems, many regression-based 
techniques have been proposed, including simple time domain 
regression (Croft and Barry, 2000) and frequency domain (Dimitris 
and Manolakis, 2000). The regression methods need calibration 
trials for determining the transfer coefficients between EOG, EMG 
and each of the EEG channels; they are not suitable for real time 
implementation. The real time artifacts removal is implemented by 
multi-channel Least Mean Square algorithm (Saeid et al., 2007). 
In this method horizontal EOG (HEOG), vertical (VEOG), and 
EMG signals are used as three reference digital filter inputs.  
A recurrent neural network (RNNs) (Erfanian  et al., 2005) was 
employed for modelling the interference signals. The RNNs are 
biologically more and computationally more powerful than feed-
forward networks and their use is very appropriate for modelling 
nonlinear dynamic systems. The eye movement and eye blink 
artifacts were recorded by the placing of an electrode on the fore-
head above the left eye and an electrode on the left temple. The 
reference signal was then generated by the data collected from 
the forehead electrode being added to data recorded from the 
temple electrode. The reference signal was also contaminated by 
the EEG. To reduce the EEG interference, the reference signal 
was first low-pass filtered by a moving averaged filter and then 
applied to the ANC. Matlab Simulink was used for real-time data 
acquisition, filtering and ocular artifact suppression.  Simulation 
results show the validity and effectiveness of the technique with 
different signal-to-noise ratios (SNRs) of the primary signal. On 
average, a significant improvement in SNR up to 27 dB was 
achieved with the recurrent neural network. The results from real 
data demonstrate that the proposed scheme removes ocular arti-
facts from the contaminated EEG signals and scheme is suitable 
for real-time and short-time EEG recordings.  A digital signal pro-
cessing technique like Independent Component Analysis (ICA) is 
used to remove the artifacts and interferences (Hu et al., 2004; 
Zhou  et al., 2005).    
A new automatic modified ICA approach (Devuyst  et al., 2008) is 
used to eliminate ECG noise in an electroencephalogram or EOG. 
It is based on a modification of the ICA algorithm which gives 
promising results while using only a single-channel electroenceph-
alogram (or electrooculogram) and the ECG. To check the 
effectiveness of approach, it is compared with other methods, that 
is, ensemble average subtraction (EAS) and adaptive filtering 
(AF). In the EAS method (Pander, 2004; Nakamura and Shibasa-
ki, 2006; Dhiman et al., 2010), an average ECG-artifact waveform 

was computed for each homogeneous EEG portion, and an esti-
mate of the artifact was generated by repeating this template syn-
chronously with the interference peaks. This signal was then sub-
tracted from the contaminated EEG to correct it. The adaptive 
filtering (AF) by using an ECG channel is introduced in (Sahul et 
al., 1995) for artifact cancellation. (Strobach et al., 1994) showed 
that this method was not appropriate if the ECG and the real inter-
ference exhibit remarkably deferent waveforms.  They introduced 
a two-pass adaptive filtering algorithm, where an artificial refer-
ence was first generated by ensemble averaging related to the 
real interference than the ECG. Tests were  carried out on simu-
lated data obtained by addition of a filtered ECG on a visually 
clean original EEG and on real data made up of 10 excerpts of 
polysomnographic (PSG) sleep recordings containing ECG arti-
facts and other typical artifacts (e.g., movement, sweat, respira-
tion, etc.). 
A butterworth filter of order 10 with cut-off frequency of 45 Hz is 
used in (corsini et al., 2006). The conventional filtering cannot be 
applied to eliminate these types of artifacts because EEG signal 
and artifacts have overlapping spectra. To decrease such artifacts 
in EEG records, a cascade of three adaptive filters based on a 
least mean squares (LMS) algorithm is used. The adaptive filters 
are based on the optimization theory. The first one eliminates line 
interference, the second adaptive filter removes the ECG artifacts 
and the last one cancels EOG spikes. Each stage uses a finite 
impulse response (FIR) filter, which adjusts its coefficients to pro-
duce an output similar to the artifacts present in the EEG. The 
cascade adaptive filter was tested in five simulated EEG records. 
In all cases, line-frequency, ECG and EOG artifacts were attenu-
ated. An adaptive filter reduces the common artifacts present in 
EEG signals without removing significant information embedded in 
these records. The objective of an adaptive filter is to change 
(adapt) the coefficients of the linear filter, and hence its frequency 
response, to generate a signal similar to the noise present in the 
signal to be filtered. The adaptive process involves minimization of 
a cost function, which is used to determine the filter coefficients. 
By and large, the adaptive filter adjusts its coefficients to minimize 
the squared error between its output and a primary signal. In sta-
tionary conditions, the filter should converge to the Wiener solu-
tion. The advantages of using a cascade of three filters instead of 
filtering the three signals with a single adaptive filter are among 
others, 

 The coefficient’s adaptation in three independent filters is 
simpler and faster than their adaptation in a single filter. 

 At each stage output, the error signals, EEG with one of the 
three attenuated artifacts are present; such separation (by 
artifact) may be useful in some applications, where such out-
put might be enough. 

The advantages of adaptive filters over conventional ones include 
preservation of components intrinsic to the EEG record. Besides, 
they can adapt their coefficients to variations in heart frequency, 
abrupt changes in the line frequency (caused, say, by ignition of 
electric devices) or modifications due to eye movements. 
A difficulty found in this work was the determination of L (filter 
order) and μ (convergence factor). These parameters are very 
important; L, because it leads to appropriate filtering, and μ, to get 
adequate adaptation. If μ is too big, the filter becomes unstable, 
and if it is too small, the adaptation may turn out too slow. Several 
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tests were carried out to determine the optimum value for these 
parameters. 
 
Concluding Remarks & Future Scope 
In EEG source analysis, the inverse problem estimates the 
sources within the brain giving rise to a scalp potential recording. 
The KF model based an estimation technique is well suited to 
solve inverse problem. In the inverse problem, an EEG source 
can be reconstructed using linear and nonlinear physiological 
based dynamic models with time varying parameters and Kalman 
filter. Using Kalman filter the current densities and parameters of 
the model can be estimated simultaneously. The inverse problem 
is formulated for linear and nonlinear dynamics compact Physio-
logical model as follows 

   (77) 

Eq. (77) is the ill posed problem and the estimation  of 

 can be obtained by minimizing the objective function 
given in Eq. (78) for each time t independently 

    (78) 

where  is a matrix with dimensions. It is ob-

tained by spatial smoothness constraints, where the source 

vector of  acts as discrete differentiating operator (Laplacian 
operator), by forming the difference between the nearest neigh-

bours of the source itself.  is the regularization parame-
ter which balances between fitting the model and prior constraint 

of minimizing  . An estimate  can be 
obtained by minimizing the Eq. (78). 

( 7 9 )                                                                                         
The dynamic inverse problem sustains the same equation for the 
measurement of observations, but taken into account the dynam-

ics of current densities . This problem can be formulat-
ed for the linear dynamics compact Physiological model as follows 

 (80) 

where  is a vectorial function that takes into the dynamics of 

the current density and . In which 

 is covariance matrix associated with η. In 
case of discretized linear model, (80) is defined in (81). The global 
process model as a second-order multivariate AR model 

        (81) 

where the global parameter matrices are 

   (82)   

The  -dimensional vector is a dynamical noise 
term that is assumed white, Gaussian, and unbiased, with covari-

ance matrix . In which are matrix of

. The structure of are selected ac-

cording to spatiotemporal physiological model. In which,  

considers the variability among sources in time and  in 
space. 
Equation (81) can be reformulated in the form of first order model 
as 

 (83) 
This problem can be formulated for the nonlinear dynamics com-
pact Physiological model as follows 

          (84) 
where 

               (85) 

                                        (86)                                                                                
Similarly, an ill posed dynamic inverse problem for nonlinear dy-
namics compact Physiological model can be solved by minimizing 
the following objective function 

   (87) 

The initial estimate for  of the state can be 
obtained by any approach for solving the inverse problem. For 

, where  is the total number of samples, 

we can obtain  by minimizing (87). For the solution of 
linear and non-linear models, two sequence Kalman filter and two 
sequence extended Kalman filter in (87) are used for neural activi-
ty estimation and parameter estimation. 
 The Kalman filter approach uses the temporal information and the 
time varying nature of EEG component to detect the ESs. In the 
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presence of noise, the detection of ESs in EEG is difficult because 
of the wide variation of the ESs characteristics. The independent 
component analysis (ICA) is used to remove the artifacts and 
interferences. Three adaptive filters in cascade, based on LMS 
algorithm, are used in order to cancel common artifacts (line inter-
ference, ECG and EOG) present in EEG records. The EEG for-
ward problem estimates field matrix without considering the arti-
facts. In EEG source analysis, the inverse problem estimates the 
sources within the brain giving rise to a scalp potential recording 
without considering the artifacts. Artifacts can be introduced for 
the calculation of forward and inverse problem. 
However, despite the large body of literature on “Neural Signal 
Processing Paradigms”, the current knowledge on the 
“Physiological Models for EEG” is probably still only the tip of the 
iceberg.  
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