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Abstract- Automatic Speech Recognition has been an active topic of research for the past four decades. The main objective of the automatic 
speech recognition task is to convert a speech segment into an interpretable text message without the need of human intervention. Many 
different algorithms and schemes based on different mathematical paradigms have been proposed in an attempt to improve recognition rates. 
Cepstral coefficients play an important part in speech theory and in automatic speech recognition in particular due to their ability to compactly 
represent relevant information that is contained in a short time sample of a continuous speech signal. The goal of this paper is to discuss 
comparison of speech parameterization methods: Mel-Frequency Cepstrum Coefficients (MFCC) and improved Mel-Frequency Cepstrum 
Coefficients (MFCC) using ERB GAMMATONE filters. First, we remove signal correlation through normalization, then we use ERB GAMMA-
TONE filter to filtering the cepstral coefficients. Finally, we reduce dimension of the cepstral coefficients by the variances of cepstral coeffi-
cients in different dimension and obtain our features. By using various classifiers, we try to simulate the speech feature extraction at much 
optimal and least error rate providing robust method for Automatic Speech Recognition (ASRs) . 
Keywords- Automatic Speech Recognition, Mel frequency Cepstrum Coefficients (MFCC’s), ERB Gammatone Filtering, Hidden Markov Mod-
el 
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Introduction 
Automatic Speech Recognition has been an active topic of re-
search for the past four decades. The main objective of the auto-
matic speech recognition task is to convert a speech segment into 
an interpretable text message without the need of human inter-
vention. Many different algorithms and schemes based on differ-
ent mathematical paradigms have been proposed in an attempt to 
improve recognition rates. Since the problem of speech recogni-
tion is complex, under certain circumstances, recognition rates are 
far from optimal. In addition other constraints such as computa-
tional complexity and real-time constraints come into play in the 
design and implementation of a working product. Computer hard-
ware and software have significantly improved in terms of speed, 
memory, cost and availability, which have enabled the use of 
more sophisticated and computationally demanding algorithms to 

be implemented even on low-power low-cost handheld electronic 
devices. However, we prefer algorithms with low computational 
and memory requirements since they can be implemented easily 
and at lower cost. Due to improvements both in algorithms and in 
hardware, automatic speech recognition has become more afford-
able and available. Automatic speech recognition is still an open 
topic of research, where improvement and changes are constantly 
made in a hope for better recognition rates(J.C. Junqua and J.P. 
Haton)[1]. 
Automatic speech recognition (ASR) attempts to map from a 
speech signal to the corresponding sequence of Words it repre-
sents. To perform this, a series of acoustic features are extracted 
from the speech signal, and then pattern recognition algorithms 
are used. Thus, the choice of acoustic features is critical for the 
system performance. If the feature vectors do not represent the 
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underlying content of the speech, the system will perform poorly 
regardless of the algorithms applied. This task is not easy and has 
been the subject of much research over the past few decades. 
The task is complex due to the inherent variability of the speech 
signal. The speech signal varies for a given word both between 
speakers and for multiple utterances by the same speaker. Accent 
will differ between speakers. Changes in the physiology of the 
organs of speech production will produce variability in the speech 
waveform. For instance, a difference in height or gender will have 
an impact upon the shape of the spectral envelope produced. The 
speech signal will also vary considerably according to emphasis or 
stress on words. Environmental or recording differences also 
change the signal. Although humans listeners can cope well with 
these variations, the performance of state of the art ASR systems 
is still below that achieved by humans (H.G. Hirsh and D. Pearce) 
[2]. 
As the performance of ASR systems has advanced, the domains 
to which they have been applied have expanded. The first speech 
recognition systems were based on isolated word or letter recogni-
tion on very limited vocabularies of up to ten symbols and were 
typically speaker dependent. The next step was to develop medi-
um vocabulary systems for continuous speech, such as the Re-
source Management (RM) task, with a vocabulary of approximate-
ly a thousand words. Next, large vocabulary systems on read or 
broadcast speech with an unlimited scope were considered. 
Recognition systems on these tasks would use large vocabularies 
of up to 65,000 words, although it is not possible to guarantee that 
all observed words will be in the vocabulary. An example of a full 
vocabulary task would be the Wall Street Journal task (WSJ) 
where passages were read from the Wall Street Journal. Current 
state of the art systems have been applied recognizing conversa-
tional or spontaneous speech in noisy and limited bandwidth do-
mains. An example of such a task would be the Switchboard cor-
pus. The most common approach to the problem of classifying 
speech signals is the use of hidden markov model. Before delving 
into the worlds of phonology, we present an overview of automatic 
speech recognition and give insight to some commonly used tech-
niques that attempt to solve this formidable task. 

Fig. 1- General Speech Recognition Systems 
 
A speaker recognition system mainly consists of two main mod-
ules, speaker specific feature extractor as a front end followed by 
a speaker modeling technique for generalized representation of 
extracted features as defined by (S. Saha and D. Bobbert and M. 
Wolska) [3, 4]. Since long time MFCC is considered as a reliable 
front end for a speaker recognition application because it has 
coefficients that represents audio based on perception mentioned 

by (K. Fujita et al and D. OShaughnessy) [5, 6]. In MFCC the fre-
quency bands are positioned logarithmically (on the Melscale) 
which approximates the human auditory systems response more 
closely than the linear spaced frequency bands of FFT or DCT. 
This allows for better processing of data. Fig.1 shows the speaker 
recognition system used in this investigation. Accuracy of auto-
matic speaker recognition is known to degrade severely when 
there is acoustic mismatch between the training and testing mate-
rial which is clearly defined by (Renals S. et. al and B.H. Juang 
and L.R. Rabiner) [7,8]. 
 
Mel Frequency Cepstral Coefficients 
Cepstral coefficients play an important part in speech theory and 
in automatic speech recognition in particular due to their ability to 
compactly represent relevant information that is contained in a 
short time sample of a continuous speech signal (N. Morgan and 
Bourlard) [9]. The definition for real Cepstral coefficients is given 
by the following equation- 
Cepstrum (x) = IDFT (log (DFT(x))      (1.1) 
We also note that 
Cepstrum (x*y) = Cepstrum (x) + Cepstrum (y)   (1.2)  
Equation 1.2 can be easily derived from 1.1 and is useful in case 
we model the speech signal as a result of an excitation convolved 
with an impulse response of the vocal tract filter. DFT is the Dis-
crete Fourier Transform often implemented by the Fast Fourier 
Transform algorithm. The Mel Frequency Cepstral Coefficients 
(MFCCs) are obtained by converting the result of the log- absolute 
value frequency spectrum to a Mel perceptually-based spectrum 
and taking an inverse discrete cosine transform of the result. Us-
ing Cepstral terminology we regard the Mel mapping to be a rec-
tangular low frequency filter followed by a discrete cosine trans-
form. The result is a smoothed cepstrum which can be further 
sampled to a specific number of coefficients. Qfrequency is a 
cepstrum value ('cepstrum frequency value') while a lifter is a 
weighted cepstrum or in other words a filter for the cepstrum coef-
ficients. 
 
 MFCC= 
 
 
 i=1,2………………….M 
M is the number of Cepstral Coefficients and Σ n represents the 
log energy output of the kth Mel filter. The triangular lifters are line-
arly spaced up to 1000 Hz and logarithmically spaced afterwards 
up to 4000 Hz. The hidden assumption is that more important 
speech information is encapsulated in the low frequency band of 0 
- 1000 Hz while the higher 1000-4000 Hz band contains less infor-
mation per Hz. The triangular lifters can be regarded as a possibil-
ity function which serves as an upper bound to a symmetrical dis-
tribution where only the mean and variance are known. The possi-
bility function entails all the possible distributions that might occur 
and is the coarsest upper bound we can obtain knowing only the 
mean and variance of a stochastic process. The human ear filters 
sound linearly for lower frequencies and logarithmically for higher 
frequencies. Partitioning the frequency range into two different 
spacing schemes that also resemble the Bark scale yields an effi-
cient representation of the spectrum. 
MFCC’s are based on the known variation of the human ears criti-
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cal bandwidths with frequency, filters spaced linearly at low fre-
quencies and logarithmically at high frequencies have been used 
to capture the phonetically important characteristics of speech. 
The characteristics are expressed on the mel-frequency scale, 
which is linear frequency spacing below 1000 Hz and a logarith-
mic spacing above 1000 Hz. In addition, rather than the speech 
waveforms themselves, MFCC’s are shown to be less susceptible 
to the above mentioned variation of the speakers voice and sur-
rounding environment. The basic concept of a mel-frequency 
cepstral coefficient processor is described below.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ERB Gammatone MFCC’s 
Fig. 2- Block diagram of MFCC processor with ERB Gammatone 

Filtering 
 
ERB Gammatone Filters 
After the development of third-octave filter banks, psycho acousti-
cians performed further studies to obtain more accurate estimates 
of the auditory filter bandwidths. Most recently, they arrived at a 
formula they use to refer to Equivalent Rectangular Bandwidth 
(ERB). While a formula to convert frequency values into ERB-
based frequencies is the bandwidth of an ERB filter centered at a 
given frequency fc is 
BWERB = 24.7 (0.00437fc + 1)  
It is important to note that the formula above converts a frequency 
(in Hz) to a bandwidth (also in Hz). To convert a frequency in Hz 
to a frequency in units of ERB-bands, the formula should be used, 
namely 
ERBrate = 21.4 log (0.00437fc + 1) 
The bandwidths of the filters are set by a critical band function and 
so filter bandwidth increases with center frequency. If the energy 
at the output of each filter is calculated at a given point in time, 
and the values are plotted as a function of filter center frequency, 
the result is essentially the excitation pattern described by Moore 
and Glasberg (1983) [10]. The gammatone auditory filter can be 
described by its impulse response: 

         (1) 
This function was introduced by Aertsen and Johannesma (1980) 
[11] and used by de Boer and de Jongh (1978) [12] to character-
ize “recover” data from cats. The primary parameters of the filter 

are b and n. b largely determines the duration of the impulse re-
sponse; n is the order of the filter and it largely determines the 
slope of the skirts of the filter. When the order of the filter is in the 
range 3-5, the shape of the magnitude characteristic of the gam-
matone filter is very similar to that of the roex(p) filter commonly 
used to represent the magnitude characteristic of the human audi-
tory filter (Patterson and Moore, 1986) [13]. 
Glasberg and Moore (1990) [14] have summarized human data on 
the equivalent rectangular bandwidth (ERB) of the auditory filter 
with the function: 
ERB=24.7+0.108*fc         (2) 
Together, equations (1) and (2) define a gammatone auditory 
filterbank if one includes the common assumption that the filter 
center frequencies are distributed across frequency in proportion 
to their bandwidth. When the order of the filter is 4, b is 1.018 
ERB. The 3-dB bandwidth of the gammatone filter is 0.887 times 
the ERB. 
 
ERB GAMMATONE Filtering of MFCC’s 
This function computes the filter coefficients for a bank of Gamma-
tone filters. These filters were defined by Patterson and Holdworth 
for simulating the cochlea. The result is returned as an array of 
filter coefficients. Each row of the filter arrays contains the coeffi-
cients for four second order filters. The transfer function for these 
four filters shares the same denominator (poles) but have different 
numerators (zeros). All of these coefficients are assembled into 
one vector that the ERB FilterBank function can take apart to im-
plement the filter. 
The filter bank contains numChannels channels that extend from 
half the sampling rate (fs) to lowFreq. The ERB filter function com-
putes four separate second order filters. This avoids a problem 
with round off errors in cases with very small characteristic fre-
quencies (<100Hz) and large sample rates (>44kHz). The problem 
is caused by roundoff error when a number of poles are com-
bined, all very close to the unit circle. Small errors in the eighth-
order coefficient are magnified when the eighth root is taken to 
give the pole location. These small errors lead to poles outside the 
unit circle and instability.  
The robustness of PLP after ERB GAMMATONE filtering shows 
improved performance. Because ERB GAMMATONE is based on 
human auditory perception, this technology was taken to MFCC in 
recent years. In fact that human perception tends to tract the rela-
tive value of input rather than to its absolute values is very obvious 
in vision. Similarly, we can take knowledge of this fact in human 
auditory perception. Some circumstantial evidence indicates that 
there is a preference for sounds with a certain rate of change too. 
The ERB GAMMATONE filtering technique suppresses the spec-
tral components that change more slowly or quickly than typical 
range of change of speech, and enhance the dynamic parts of 
noisy speech. The low cut-off frequency of the filter determines 
the fastest spectral change of the log spectrum, which is ignored 
in the output, whereas the high cut-off frequency determines the 
fastest spectral change that is preserved in the output parameters. 
The high-pass portion of the equivalent bandpass filter is expected 
to alleviate the effect of convolution noise introduced in the chan-
nel. The lowpass filtering helps to smooth some of the fast frame-
to frame spectral changes present in the short term spectral esti-
mate due to analysis artifacts. Because Mel frequency domain 
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also is nonlinear frequency domain, we can filter the cepstral do-
main with ERB GAMMATONE filtering technique, in other word, 
we can append a filtering processing after DCT. And the DCT 
essentially is a linear transformation, it is not distinct between 
before the DCT and after, that means it is equivalent to filtering in 
the cepstral domain.  
We found that recognition accuracy using MFCC features was 
disappointing however, the insertion errors were very high. In 
order to decrease the insertion errors, and filtering features sig-
nals in the time domain, we use the ERB GAMMATONE filtering 
technique proposed after MFCC.  
 
Experimental Results 
The feature extraction and classification algorithm was implement-
ed using Matlab with TIMIT databases. In Matlab, we make an 
audio function folder for root directory for accessing the matlab 
files and functions. The various functions created and scripted in 
matlab were used to extract the features from the wav files of 
TIMIT database and then classify using various classifiers. MFCC 
function is used to create Cepstral coefficients. Finally, the 
Cepstral Coefficients are classified according to various classifica-
tion algorithms. In this study, we have use Hidden Markov Model 
as classifiers using HTK tools. The following results show the 
whole implementation. 
This phase includes converting the speech waveform into a para-
metric representation with a considerably low information rate for 
further analysis and processing. This phase is often referred to as 
the signal processing front end. The speech signal can be de-
scribed as a slowly timed varying signal, or quasistationary. A 
sample of speech from the well known speech database TIMIT, in 
this case from a version of TIMIT with noise added and a sample 
rate of 8000 Hz, can be seen below. 

Fig. 3- Speech data from TIMIT, Fs = 16000Hz, 16-bits, telephone 
noise added 

 
Frame Blocking 
The first step of the feature extraction is to frame the speech into 
frames of approximately 30 msec (30 msec at Fs = 16000Hz 
gives 312 samples). To be able to extract as much features as 
possible from a speech sample, the technique of overlapping 
frames is used. The speech is blocked into frames of N samples 
(N = 312 in our case). With a overlapping of 50% one will get M 
number of frames out of a speech sample consisting of S sam-
ples: 

Windowing 
The next step in the processing is to window each individual frame 
so as to minimize the signal discontinuity at the beginning and end 
of each frame. The concept here is to minimize the spectral distor-
tion by using the window to taper the signal to zero at the begin-
ning and end of each frame. A typical window utilized for speaker 
verification is the Hamming window. 
 
Fast Fourier Transform (FFT) 
The next step is to apply a Fourier Transform on the windowed 
speech frame. A Radix-4 Fast Fourier Transform is utilized, con-
verting each frame from the time domain into the frequency do-
main. The FFT is a fast algorithm to implement the Discrete Fouri-
er Transform (DFT). To get a better display of the Fourier Trans-
form, the process of zero padding is applied. It is important to note 
that zero padding does not provide any additional information 
about the spectrum Y(w) of the sequence {x(n)}. 

Fig 4- Windowing of audio sample 

Fig. 5- Converting the signal into frequency amplitude domain 
using Fast Fourier Discrete Transform 

Fig. 6- Power Spectrum of SpeechFrame  
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Mel-Frequency Wrapping 
As mentioned above, studies have been conducted that show that 
the human perception of the frequency contents of sounds for 
speech signals does not follow a linear scale. Thus for each tone 
with an actual frequency, f, measured in Hz, a subjective pitch is 
measured on a scale called the Mel scale. The Mel-frequency 
scale is linear frequency spacing below 1000 Hz and a logarithmic 
spacing above 1000 Hz. As a reference point, the pitch of a 1 kHz 
tone, 40 dB above the perceptual hearing threshold, is defined as 
1000 mels. Our approach to simulate the easier way of extracting 
the power from the speech is to apply a filterbank to the Power 
Spectrum. This filterbank is uniformly spaced on the mel scale, 
has a triangular bandpass frequency response, and the spacing 
as well as the bandwidth is determined by a constant mel frequen-
cy interval. The number of Mel spectrum coefficients, K, is typical-
ly chosen as 13, but will vary a little depending on the sampling 
frequency. To be observed is that we are applying these filters in 
the frequency domain; therefore we simply multiply those triangle-
shape windows in figure 7 on the Power Spectrum. 

Fig. 7- Mel Frequency Filterbanks 
 
Cepstral Coefficients 
The next step is to convert the log Mel spectrum back to time. The 
result is called the Mel frequency cepstral coefficients (MFCC). 
The cepstral representation of the speech spectrum provides a 
good representation of the local spectral properties of the signal 
for the given frame analysis. Because the Mel spectrum coeffi-
cients are real numbers, we can convert them to the time domain 
using the Discrete Cosine Transform (DCT)- 
 
  
 MFCC= 
 
  
 i=1,2………………….M 
The filter bank is constructed using 13 linearly-spaced filters 
(133.33Hz between center frequencies,) followed by 27 log-
spaced filters (separated by a factor of 1.0711703 in frequency.) 
Each filter is constructed by combining the amplitude of FFT bin 
as shown in the figure 8. 
The outputs from this routine implemented in Matlab are the 
MFCC coefficients and several optional intermediate results and 
inverse results. reqresp the detailed fft magnitude used in MFCC 
calculation, 256 rows. fb the mel-scale filter bank output, 40 rows. 
Here is the result of calculating the cepstral coefficients of the ‘A 

huge tapestry hung in her hallway’ utterance from the TIMIT data-
base (TRAIN/DR5/FCDR1/SX106/ SX106.ADC) spoken by 7 
speakers. The utterance is 50189 samples long at 16kHz, and all 
pictures are sampled at 100Hz and there are 312 frames. Note, 
the top row of the mfcc-cepstrum, ceps is known as C0 and is a 
function of the power in the signal. Since the waveform in our 
work is normalized to be between -1 and 1, the C0 coefficients are 
all negative. The other coefficients, C1-C12, are generally zero-
mean. 

Fig. 8- Mel Frequency Cepstrum Coefficients Representation 

Fig. 9- Spectrogram of sample audio signal with power spectrum 
 
After combining several FFT channels into a single Mel-scale 
channel, the result is the filter bank output. This is shown below 
(the fb output of the mfcc command includes the log10 calcula-
tion.). 

Fig. 10- MFCC’s histrogram 
 

The ERB GAMMATONEOUT function implements the ERB GAM-
MATONE (Relative Spectra) algorithm. The ERB GAMMATONE 
algorithm is a common piece of a speech-recognition system’s 
front-end processing. It originally was designed to model adapta-
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tion processes in the auditory system, and to correct for environ-
mental effects. Broadly speaking, it filters out the very low-
frequency temporal components (below 1Hz) which are often due 
to a changing auditory environment or microphone. High frequen-
cy temporal components, above 13 Hz, are also removed since 
they represent changes that are faster than the speech articula-
tors can move. 
The first input to this routine in Matlab is an array of spectral data, 
as produced by the MFCC routines. Each row contains one 
“channel” of data; each column is one time slice. The fs parameter 
specifies the sampling rate, 100Hz in many speech recognition 
systems. The original ERB GAMMATONE filter is defined only for 
a frame rate of 100Hz. This code is equal to the original at 100Hz, 
but scales to other frame rates. Here the ERB GAMMATONE filter 
is approximated by a simple fourth order Butterworth bandpass 
filter.  

Fig. 11- MFCC’s after ERB Gammatone Filtering with more 
sharpen spectrum images 

 
Feature Matching 
In our experiments, we take voice sets of TIMIT databases. The 
various functions of applying feature extraction, filtering and clas-
sification is done in Matlab. For each voice in the test sets, we 
added Gaussian white noise to them, SNR level is from- 5db to 
20db, interval 5db, to get the clean voices. The size of each frame 
is 30ms, and frame shift is 15ms. We pre emphasize each frame 
after enframing the speech, pre-emphasis formula is: 

H (z) = 1−μz−1 

Where pre-emphasis factor μ = 0.9372, because the frame length 
is 30ms and the sampling frequency is 16 kHz, we can use the 
512-point FFT to obtain speech power spectrum. After Mel sub-
band filtering, we obtain the cepstral coefficients of each frame 
and use the ERB GAMMATONE filtering technique to process the 
cepstral coefficients, then we get the features coefficients which 
we need. We select the first 13 coefficients of feature vector which 
has been sorted in a descending order according to the variance, 
and we discard the other coefficients. What’s more, the logarith-
mic energy of each frame is very important to reflect characteristic 
of voice, we append it as the supplement of feature vectors. At the 
same time, in order to obtain the dynamic characteristics of voice, 
we calculate the first and second order differential as a supple-
mentary factor in the end of feature vector. Finally, the feature 
vector of each frame consists of 39 dimensional feature parame-
ters. The recognition model is built with the non-jump from left to 
right continuous Hidden Markov Model (HMM). Each HMM has 

five states, the probability density function of the values observed 
under each state is the mixed Gaussian probability density func-
tion, and the transfer matrix is diagonal. Model is trained and test-
ed by HTK. 
In Table 1, we compare the word recognition correct, recognition 
accuracy and the sentence recognition correct under different 
SNR level, they can be indicated with Corr, Acc and Correct re-
spectively. ERB means ERB GAMMATONE, “+” means combing 
two methods. The most of the experiment results show us that the 
whole robustness the ERB GAMMATONE+MFCC method offers 
much higher than classical PLP and classical MFCC method. 
Although compared to MFCC method, its average value of Corr 
slightly increased while its average value of Acc and Correct, it is 
also much higher than that of the MFCC and PLP method. The 
improved performance is obvious as compared to some classical 
feature extraction, and especially under slight high level SNR 
(>10db), we can get more robust feature for ASR. [See Table 1] 
 
Conclusions 
There are several motivations for using spectral-peak or formant 
features. Formants are considered to be representative of the 
underlying phonetic content of speech. They are also believed to 
be relatively robust to the presence of noise, and useful in low-
bandwidth applications. Additionally, it has been hypothesized 
that formants or spectral peak positions can be easily adapted to 
different speakers. However, the extraction of robust and reliable 
formant estimates is a nontrivial task. Recently, there has been 
increased interest in other methods for estimating spectral peaks, 
for example, using the HMM or gravity centroid features.  
We use a combination ERB GAMMATONE filtering technique for 
MFCC feature extraction in this study. One way is to replace Mel 
filters with ERB Gammatone filters, and another is to append a 
ERB GAMMATONE filtering in time domain after transformation. 
By two methods we obtain more robust feature, and we also refer 
that the speech enhancement can help improving robustness. 
Finally, because ERB Gammatone filtering used in this model is 
based on a linear assumption, and the voice is only similar to a 
linear model, in fact it is still nonlinear, we believe that the nonline-
ar filtering is potential, and the nonlinear filtering will become our 
direction in future. 
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Table 1- Classification Results 

Features SNR Clean 20dB 15dB 10dB 5Db 0dB -5dB Average 

PLP Corr 85.43 85.43 81.64 37.86 27.12 21.03 9.92 49.77 
Accurate -3.6 -3.6 -0.5 26.82 26.33 21.03 9.92 10.91 
Correct 0 0 0 0 0 0 0 0.36 

MFCC Corr 98.96 82.12 75.35 59.49 22.15 8.55 8.55 50.73 
Accurate 65.28 -7.14 -7.4 2.8 13.42 8.55 8.55 12..00 
Correct 32.5 0 0 0 0 0 0 4.64 

MFCC + ERB Corr 100 98.26 97.56 84.12 `52.78 21.45 10.32 66.35 
Accurate 83.22 92.51 58.46 1.23 -25.62 5.23 10.32 32.19 
Correct 59.69 70.56 41 5 0 0 0 25.17 
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