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Abstract- A fractal is generally a rough or fragmented geometric shape that can be split into parts, each of which is  a reduced-size copy of 
the whole a property called self-similarity. Because they appear similar at all levels of magnification, fractals are often considered to be infi-
nitely complex approximate fractals are easily found in nature. These objects display self-similar structure over an extended, but finite, scale 
range. Fractal analysis is the modelling of data by fractals. In general, fractals can be any type of infinitely scaled and repeated pattern. It is 
possible to combine two fractals in one image. 
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Introduction 
A fractal is generally "a rough or fragmented geometric shape that 
can be split into parts, each of which is (at least approximately) a 
reduced-size copy of the whole"[1] a property called self-similarity. 
The term was coined by Benoit Mandelbrot in 1975 and was de-
rived from the Latin fractus meaning "broken" or "fractured." 
A fractal often has the following features[2]: 

It has a fine structure at arbitrarily small scales. 

It is too irregular to be easily described in traditional Euclidean 
geometric language. 

It is self-similar (at least approximately or stochastically). 

It has a Hausdorff dimension which is greater than its topological 
dimension (although this requirement is not met by space-filling 
curves such as the Hilbert curve). 

It has a simple and recursive definition. 
Because they appear similar at all levels of magnification, fractals 
are often considered to be infinitely complex (in informal terms). 
Natural objects that approximate fractals to a degree include 
clouds, mountain ranges, lightning bolts, coastlines, and snow 

flakes. However, not all self-similar objects are fractals- for exam-
ple; the real line (a straight Euclidean line) is formally self-similar 
but fails to have other fractal characteristics. 
To create a Koch snowflake, one begins with an equilateral trian-
gle and then replaces the middle third of every line segment with a 
pair of line segments that form an equilateral "bump." One then 
performs the same replacement on every line segment of the 
resulting shape, ad infinitum. With every iteration, the perimeter of 
this shape increases by one third of the previous length. The Koch 
snowflake is the result of an infinite number of these iterations, 
and has an infinite length, while its area remains finite. For this 
reason, the Koch snowflake and similar constructions were some-
times called "monster curves." 
The mathematics behind fractals began to take shape in the 17th 
century when mathematician and philosopher Leibniz considered 
recursive self-similarity (although he made the mistake of thinking 
that only the straight line was self-similar in this sense). It took 
until 1872 before a function appeared whose graph would today 
be considered fractal, when Karl Weierstrass gave an example of 
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a function with the non-intuitive property of being everywhere con-
tinuous but nowhere differentiable. In 1904, Helge von Koch, dis-
satisfied with Weierstrass's very abstract and analytic definition, 
gave a more geometric definition of a similar function, which is 
now called the Koch snowflake. In 1915, Waclaw Sierpinski con-
structed his triangle and, one year later, his carpet. Originally 
these geometric fractals were described as curves rather than the 
2D shapes that they are known as in their modern constructions. 
The idea of self-similar curves was taken further by Paul Pierre 
Lévy. Georg Cantor also gave examples of subsets of the real line 
with unusual properties- these Cantor sets are also now recog-
nized as fractals. 
Iterated functions in the complex plane were investigated in the 
late 19th and early 20th centuries by Henri Poincare, Felix Klein, 
Pierre Fatou and Gaston Julia. However, without the aid of mod-
ern computer graphics, they lacked the means to visualize the 
beauty of many of the objects that they had discovered. 
 
 
 
 
 
 

Fig. 1- The Mandelbrot set is a famous example of a fractal. 
 
 
 
 
 
 

Fig. 2- A closer view of the Mandelbrot set. 
 
In the 1960s, Benoit Mandelbrot started investigating self-similarity 
in papers such as How Long Is the Coast of Britain? Statistical 
Self-Similarity and Fractional Dimension, which built on earlier 
work by Lewis Fry Richardson. Finally, in 1975 Mandelbrot coined 
the word "fractal" to denote an object whose Hausdorff-
Besicovitch dimension is greater than its topological dimension. 
He illustrated this mathematical definition with striking computer-
constructed visualizations. These images captured the popular 
imagination; many of them were based on recursion, leading to 
the popular meaning of the term "fractal". A Julia set, a fractal 
related to the Mandelbrot set 
A relatively simple class of examples is given by the Cantor sets, 
Sierpinski triangle and carpet, Menger sponge, dragon curve, 
space-filling curve, and Koch curve. Additional examples of frac-
tals include the Lyapunov fractal and the limit sets of Kleinian 
groups. Fractals can be deterministic (all the above) or stochastic 
(that is, non-deterministic). For example, the trajectories of the 
Brownian motion[3] in the plane have a Hausdorff dimension of  2. 
Chaotic dynamical systems are sometimes associated with frac-
tals. Objects in the phase space of a dynamical system can be 
fractals. Objects in the parameter space for a family of systems 
may be fractal as well. An interesting example is the Mandelbrot 
set. This set contains whole discs, so it has a Hausdorff dimension 

equal to its topological dimension of 2-but what is truly surprising 
is that the boundary of the Mandelbrot set also has a Hausdorff 
dimension of 2 (while the topological dimension of 1), a result 

proved by Mitsuhiro Shishikura in 1991. A closely related fractal is 
the Julia set. 
Even simple smooth curves can exhibit the fractal property of self-
similarity. For example the power-law curve (also known as a Pa-
reto distribution) produces similar shapes at various magnifica-
tions. 
Generating fractals 
Four common techniques for generating fractals are: 
1.Escape-time fractals- (also known as "orbits" fractals) These 
are defined by a recurrence relation at each point in a space (such 
as the complex plane). Examples of this type are the Mandelbrot 
set, Julia set, the Burning Ship fractal, the Nova fractal and the 
Lyapunov fractal. The 2d vector fields that are generated by one 
or two iterations of escape-time formulae also give rise to a fractal 
form when points (or pixel data) are passed through this field re-
peatedly. 
2.Iterated function systems- These have a fixed geometric re-
placement rule. Cantor set, Sierpinski carpet, Sierpinski gasket, 
Peano curve, Koch snowflake, Harter-Heighway dragon curve, T-
Square, Menger sponge, are some examples of such fractals. 
3.Random fractals- These are generated by stochastic rather 
than deterministic processes, for example, trajectories of the 
Brownian motion, Levy flight, fractal landscapes and the Brownian 
tree. The latter yields so-called mass- or dendritic fractals, for 
example, diffusion-limited aggregation or reaction-limited aggrega-
tion clusters. 
4.Strange Attractors- These are generated by iteration of a map 
or the solution of a system of initial-value differential equations 
that exhibit chaos. 
 
Classification of fractals 
Fractals can also be classified according to their self-similarity. 
There are three types of self-similarity found in fractals: 
1.Exact self-similarity- This is the strongest type of self-similarity; 
the fractal appears identical at different scales. 
2.Quasi-self-similarity- This is a loose form of self-similarity; the 
fractal appears approximately (but not exactly) identical at different 
scales. Quasi-self-similar fractals contain small copies of the entire 
fractal in distorted and degenerate forms. 
3.Statistical self-similarity- This is the weakest type of self-
similarity; the fractal has numerical or statistical measures which 
are preserved across scales. Most reasonable definitions of 
"fractal" trivially imply some form of statistical self-similarity. 
 
Fractals in nature 
Approximate fractals are easily found in nature. These objects 
display self-similar structure over an extended, but finite, scale 
range. Examples include clouds, snow flakes, crystals, mountain 
ranges, lightning, river networks, cauliflower or broccoli, and sys-
tems of blood vessels and pulmonary vessels. Coastlines may be 
loosely considered fractal in nature. 
Trees and ferns are fractal in nature and can be modeled on a 
computer by using a recursive algorithm. This recursive nature is 
obvious in these examples - a branch from a tree or a frond from a 
fern is a miniature replica of the whole: not identical, but similar in 
nature. 
In 1999, certain self similar fractal shapes were shown to have a 
property of "frequency invariance" - the same electromagnetic 
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properties no matter what the frequency - from Maxwell's equa-
tions. 
Fractal patterns have been found in the paintings of American 
artist Jackson Pollock. While Pollock's paintings appear to be 
composed of chaotic dripping and splattering, computer analysis 
has found fractal patterns in his work. Decalcomania, a technique 
used by artists such as Max Ernst, can produce fractal-like pat-
terns.  It involves pressing paint between two surfaces and pulling 
them apart. 
Fractals are also prevalent in African art and architecture. Circular 
houses appear in circles of circles, rectangular houses in rectan-
gles of rectangles, and so on. Such scaling patterns can also be 
found in African textiles, sculpture, and even cornrow hairstyles. 
 
 
 
 
 

Fig. 3- A fractal is formed when pulling apart two glue-covered 
acrylic sheets 

 
 
 
 
 

Fig. 4- A DLA cluster grown from a copper (II) sulfate solution in 
an electrodeposition cell  

 
 
 
 
 

Fig. 5- A fractal flame created with the program Apophysis  
 
 
 
 
 

Fig. 6- High voltage breakdown within a 4″ block of acrylic creates 
a fractal Lichtenberg figure.  

 
 
 
 
 
 

Fig. 7- A "woodburn" fractal  
 
 
 
 
 
 

Fig. 8- Pascal generated fractal fractals 
 

Fractal analysis 
Fractal analysis is the modelling of data by fractals. It consists of 
methods to assign a fractal dimension and other fractal character-

istics to a signal, dataset or object which may be sound, images, 
molecules, networks or other data. Fractal analysis is now widely 
used in all areas of science. 
Fractal analysis is a contemporary method of applying  nontradi-
tional  mathematics to patterns that defy understanding with tradi-
tional Euclidean concepts. 
In essence, it measures complexity using the fractal dimension. 
The field was developed to describe computer-generated fractals 
such as the diffusion limited aggregates shown on this page, but 
fractals are not necessarily computer-generated images. Rather, 
whereas the Euclidean geometry in familiar shapes like oranges 
and watermelons. Fractal geometry in familiar forms like meander-
ing coastlines, growing crystals, and swirling galaxies are seen. 
Fractals are not necessarily physical forms - they can be spatial or 
temporal patterns, as well. In general, fractals can be any type of 
infinitely scaled and repeated pattern. In this regard, it is important 
to be aware that theoretical fractals are abstractions, but the sub-
jects of fractal analysis, such as digital images limited by screen 
resolution, are generally not true fractals in the strictest sense. 
Similarly, the so-called fractals typically found in nature are not 
infinitely scaled, thus, like finite computer generated patterns, are 
generally only approximations to fractals in the strictest sense. 
We believe fractal geometry makes fundamental changes in sci-
ence and far beyond, but are waiting for the evidence to accumu-
late. One of the roles of this Panorama is to share some evidence 
we have already seen. Another role, more important in our eyes, 
is to invite us to share our examples with us. 
 
Pseudo HiColor formula for Overlaying two fractals 
It is possible to combine two fractals (say fractal_0 and fractal_1) 
in one image. Let us imagine that alternate screen pixels form a 
checkerboard pattern (represented by 0's and 1's) as follows: 
 
 
 
 
 
 
 
If one fractal is drawn on the "white squares" (the 1's) and the 
other on the black squares (the 0's), the separate fractals is visi-
ble, and at higher screen resolutions we are not be able to see the 
way the individual pixels intermesh with the others. The effect is 
as if the two fractals were drawn on separate transparent sheets 
and overlaid. 
Fractint v. 19.5 provides a predefined variable "whitesq", which is 
automatically set to 1 prior to the calculation of a white square 
pixel, and to 0 prior to calculation of a black square pixel. Use of 
this variable in a formula is described as under. 
 
Assignment statements 
Let us suppose that fractal_0 and fractal_1 have the following 
assignment statements: 
fractal_0 
var = something 
fractal_1 
var = somethingelse 
To overlay the two fractals in PHC (Pseudo HiColor) fashion, we 
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have used the following IF..ELSE instruction in a formula: 
IF (whitesq == 0)        ; "whitesq == 0" is TRUE 
var = something 
ELSE                      ; "whitesq == 0" is FALSE 
var = somethingelse 
ENDIF 
 
or, even more simple: 
IF (whitesq)              ; "whitesq == 1" is TRUE 
var = somethingelse 
ELSE                      ; "whitesq == 1" is FALSE 
var = something 
ENDIF 
 
To assign the appropriate value to var, PHC formula have been 
simulated to an IF...THEN...ELSE... construct: 
if (whitesq == 0)  /* if "whitesq == 0" is TRUE */ 
var = something ; 
else           /* if "whitesq == 0" is FALSE */ 
/* or "whitesq == 1" is TRUE */ 
var = somethingelse ; 
This have been done with the following line: 
var = something * (whitesq == 0) + somethingelse * (whitesq == 1) 
which results in "something" being assigned to var for the black 
squares, and "somethingelse" being assigned to var for the white 
squares. 
To understand how it works, it's important to know that Fractint 
represents TRUE with a one, and FALSE with a zero, therefore: 
* if whitesq is equal to 0: 
- "whitesq == 0" evaluates to 1 
- "whitesq == 1" evaluates to 0 
and var = something * 1 + somethingelse * 0 
= something 
* if whitesq is equal to 1: 
- "whitesq == 0" evaluates to 0 
- "whitesq == 1" evaluates to 1 
and var = something * 0 + somethingelse * 1 
= somethingelse 
We have noticed that the result of the test "whitesq == 1" is equal 
to the value of the variable "whitesq", so we can use the following 
statement: 
var = something * (whitesq == 0) + somethingelse * whitesq 
 
Bailout tests 
Let us suppose that fractal_0 and fractal_1 use the bailout tests 
bailout_0 and bailout_1. If the answer of a bailout test is 
"TRUE" (the real portion of the complex number is nonzero), the 
loop must be performed again; otherwise, it is time to quit iterat-
ing. The bailout test of the PHC formula must be the translation in 
the parser language of the following rule: 

 
 
 
 
 
 
 
 

 
 
 
 

 Fig. 9- Mandel Set    Fig. 10- Julia Set  Fig. 11- Overlay of 
       Mandel 
and Julia Sets 
Mandel and Julia types 

This is the easiest case: both fractal use the same itera-
tion instruction and the same bailout test. 

 
 
 
 
 
 
 
 
 

Since the only difference is the initial value of c, in the PHC formu-
la we have used whitesq only in the init section: 

 
 
 
 
 
 
 
 
 
 

and the Julia set is drawn on the white squares of the checker-
board, and the Mandelbrot set on the black squares. 
 
Mandel and Newton types 
Here, except "z = pixel", everything is different. 

 
 
 
 
 
 
 
 
 
 

The resulting PHC(Pseudo HiColor) formula is: 
 
 
 
 
 
 
 
 
 
 
 

Fractint Formula for Overlaying Fractals 

Journal of Information Systems and Communication 
ISSN: 0976-8742 & E-ISSN: 0976-8750, Volume 3, Issue 1, 2012 



Bioinfo Publications   351 

 

We have noticed that c is initialized to pixel even when  
whitesq == 1 but it is not used by the Newton algorithm 

 
 
 
 

Fig.12- Mandel Set            Fig. 13- Newton Set   Fig.14- Overlay of  
      Mandel Set and Newton 
       Set 

Pseudo True Color formula for overlaying three fractals ("24-
bit PTC") 
Overlaying three fractals can be done with the following pattern: 
 
 
 
 
 
Fractint v. 19.5 provides a predefined variable "scrnpix", which is 
set to (column, row) prior to calculation of each pixel. The upper 
left hand corner of the screen is (0,0); at resolution 1024x768, the 
lower right hand corner is therefore (1023,767). Here, we have 
used scrnpix to assign the value 0, 1 or 2 to a variable r. With col 
= real(scrnpix) and row = imag(scrnpix), the value of r should be: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We have merged them in the following way: 
ptc_mjn_A { ; overlay the Mandel set of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pseudo True Color formula for overlaying four fractals ("32-
bit PTC") 
The best dithering is produced by the following pattern: 
 
 
 
 
 
and r is given by the formula: 
r = (col + 2*row) modulo 4 
or, using the parser language: 
cr = real(scrnpix) + 2 * imag(scrnpix) 
r = cr - 4 * trunc(cr / 4) 
and r can then be used as in the previous examples, to combine 
four fractals in one image. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 15- Merged Set of mandel,    Fig.16- Overlay of four Mandels  

Julia and Newton sets    with different initializations 
 

Conclusion 
While Fractint has many different type of fractal formula built into 
it, the formula parser allows us to add new fractals without having 
to change the program. These formulas are stored in simple text 
files, and may be viewed and edit by the user. Fractint formula is 
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actually a little computer program not a set of mathematical equa-
tions.To avoid exponentiation , unnecessary calculations , use the 
algebraic rules are some precautions have to be taken to make 
formulas run a little faster  
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