
Bioinfo Publications 327

APLOMB: AGENT PEDESTAL FOR LOAD BALANCING IN PEER-TO-PEER NETWORKS

Journal of Information Systems and Communication
ISSN: 0976-8742 & E-ISSN: 0976-8750, Volume 3, Issue 1, 2012, pp.-327-331
Available online at http://www.bioinfo.in/contents.php?id=45

PATEL R.B.1 AND VISHAL GARG2

1Department of Computer Science and Engineering, Deenbandhu Chhotu Ram University of Science & Technology, Murthal-1039, India
2Dept. of Computer Engineering, M.M. Engineering College, Mullana-133203, Haryana, India
*Corresponding Author: Email- patel_r_b@yahoo.com, vishalgarg_vg@yahoo.com

Received: January 12, 2012; Accepted: February 15, 2012

Abstract- This article presents a common pedestal to Peer-to-Peer (P2P) networks and distributed computing environment. An Agent pedes-
tal for Load Balancing (APLOMB) for P2P systems is main focus in which mobile agents are used to manage the network. It provides com-
mon solution to P2P system’s fault tolerance and load balancing problems and gives true distributed computing environment with the help of
mobile agents. APLOMB is component of adaptation manager of the NADSE which supports code mobility over the mobile/fixed peer device.
We also present a comparative study of the NADSE, Gnutella, and Freenet. Results show that APLOMB improves the performance of
NADSE when number of nodes in network is very large.
Keywords- Cluster Head (CH), P2P, NADSE, Mobile Agent.

Journal of Information Systems and Communication
ISSN: 0976-8742 & E-ISSN: 0976-8750, Volume 3, Issue 1, 2012

Introduction
Peer-to-peer (P2P) is a computing model in which peer nodes
collaboratively perform a computing task [8]. These peers can
serve as both clients and servers and eliminate the need for a
centralized node. More simply, a P2P network links the resources
of all the nodes on that network and allows the resources to be
shared in a manner that eliminates the need for a central host.
The claim for P2P architecture is that enables true distributed
computing [14, 15], creating networks of computing resources.
Hosts that have traditionally been used as clients can act as both
clients and servers. P2P allows systems to have temporary asso-
ciations with one other for a while, and then separate. Besides,
nodes in P2P systems are autonomous in the sense that: (i) they
can join the system anytime, (ii) they can leave without any prior
warning, and (iii) they can take routing decision locally in an ad
hoc manner. P2P Unlike the conventional centralized systems,
P2P systems offer scalability [16] and fault-tolerance [2]. It is a
feasible approach to implement global-scale systems such as the
Grid [3].
But the existing P2P systems take more computing time for finaliz-
ing the task. For the limitation of processing time of a request we

need a system which must support device and computation mobil-
ity as per need of the application.
In this article an Agent pedestal for Load Balancing (APLOMB) for
P2P systems is main focus in which mobile agents[12, 17, 18, 19]
are used to manage the network. APLOMB provides common
solution to P2P system’s fault tolerance and load balancing prob-
lems and gives true distributed computing environment with the
help of mobile agents. APLOMB is component of adaptation man-
ager of the NADSE which supports code mobility over the mobile/
fixed peer device. We also present a comparative study of the
NADSE, Gnutella, and Freenet. Results show that APLOMB im-
proves the performance of NADSE when number of nodes in
network is very large. We also present a comparative study of the
NADSE, Gnutella[4], and Freenet[6].
Rest of the article is organized as follows. Related work is ex-
plored in Section II. Section III highlights on challenges. System
model is presented in Section IV. Section V gives the brief archi-
tecture of APLOMB. Section VI presents performance study of
APLOMB based NADSE network and Freenet and Gnutella. Final-
ly article is concluded in Section VII.

Citation: Patel R.B. and Vishal Garg (2012) APLOMB: Agent Pedestal for Load Balancing in Peer-to-Peer Networks. Journal of Information
Systems and Communication, ISSN: 0976-8742 & E-ISSN: 0976-8750, Volume 3, Issue 1, pp.-327-331.

Copyright: Copyright©2012 Patel R.B. and Vishal Garg. This is an open-access article distributed under the terms of the Creative Com-
mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Bioinfo Publications 328

Related Works
Napster [7] adopts central database approach for song titles, but it
has inherent reliability and scalability problems that make it vulner-
able when there are attacks on the database. Another approach,
at the other end of the spectrum, is for the consumer S to broad-
cast a message to all its neighbors with a request for F. When a
node receives such a request, it checks its local database. If it has
F, it responds with the item. Otherwise, it forwards the request to
its neighbors, which execute the same protocol. Proceeding in this
manner will ensure that a requested resource is always be found
when it exists. However, this solution has some critical limitations
such as large overhead produced and the looping problem.
Gnutella [4] is a system approach for distributed data manage-
ment that is based on this idea with some mechanisms to avoid
request loops. It uses the time-to-live (TTL) flags in the request
message to limit the broadcast scope of the message. However,
this scoped broadcast approach does not scale either because of
the bandwidth consumed by broadcast messages and the compu-
ting cycles consumed by the many nodes that must handle these
messages. In fact, the day after Napster was shutdown, reports
indicated that the Gnutella network collapsed under its own load,
created when a large number of users migrated to Gnutella for
sharing MP3 music files. To reduce the cost of broadcast messag-
es, several other studies have been proposed in the literature to
support intelligently forwarding and directed bread first search.
Many variants of the well-known depth first search (DFS) have
been also proposed. Many of the current popular systems, such
as KaZaA [9], which are all based on the FastTrack [10] platform,
adopt DFS concept. However, the disadvantage of these ap-
proaches, which are considered as hierarchical, is that the nodes
higher in the tree take a larger fraction of the load than the leaf
nodes, and therefore require more expensive hardware and more
careful management. The failure or removal of the tree root or a
node sufficiently high in the hierarchy can be catastrophical for the
stability of the system.

Fig. 1- Life in a Highly-Connected World

What are challenges in the life of a common person? It is well
depicted in Figure 1, which shows that whole network is a setup of
P2P network. There are several unsolved questions in the mind of
a common user of this network. Few are as follows. How Intercon-
nected networks will be used to- manage the network traffic, Dis-
tributed data, Mobile workers, Business extranets, Remote ac-
cess, Web services, Wireless network, and Mobile smart devices,
etc?
The current available solutions for structured and unstructured
P2P have advantages and severe limitations with regard to perfor-
mance issues. A better P2P performance can be achieved with a
more flexible and intuitive architecture which should be well-
researched. Thus, we need to design an adequate P2P system
which should meet requirements/challenges for fulfilling need of a
successful resource management solution.

System Model
We are required to develop a computing/communication P2P sys-
tems that fulfills most of the above the challenges. The developed
system should enable the fast and cost-efficient deployment of self
-managed computing/communication devices with high overall
management cost, but with low management cost at each peer.
With developed system one should be able to deploy large scale
computing/ communication systems without the need of cost-
intensive supercomputing infrastructure in which management is
highly complex and requires high-skilled administrators for their
maintenance. The approach should be evolutionary in the sense
that it should give a new step towards the application of P2P into
real-time services scenarios. This system should facilitate to im-
prove the performance and incorporate new ideas. And also it
should implement a structured P2P concept which must enable
efficient resource management in P2P systems even during high
rate of network whips. When NADSE bridges two networks in that
situation it maintains services available in the network along with
route information to the node maintaining available services.

APLOMB Architecture
A “Neighbor Assisted Distributed and Scalable Environment
(NADSE)” based network both device and code mobility. A mobile
device will be the member of a cluster. A mobile node in a cluster
will work like cluster head (CH) and maintains information about
other members of the cluster in the form of database [1]. When a
mobile node wants to search some information it requests to CH
for members information (viz. IP address, identification certificate,
etc.). If the CH is not aware about availability of the type of ser-
vices a mobile node is interested and presence of the same in the
cluster then it guides the same to the mobile node. Then mobile
node uses Agent pedestal for Load Balancing (APLOMB) for P2P
systems [13] and creates a mobile agent to perform its desired
task in the present cluster.
It provides common solution to P2P system’s fault tolerance and
load balancing problems and gives true distributed computing
environment with the help of mobile agents. NADSE (“Neighbor
Assisted Distributed and Scalable Environment”) on support of
APLOMB provides both device and code mobility. A mobile device
will be the member of a cluster. A mobile node in a cluster will
work like cluster head (CH) and maintains information about other
members of the cluster in the form of database [5,6]. When a mo-

Journal of Information Systems and Communication
ISSN: 0976-8742 & E-ISSN: 0976-8750, Volume 3, Issue 1, 2012

APLOMB: Agent Pedestal for Load Balancing in Peer-to-Peer Networks

Bioinfo Publications 329

bile node wants to search some information it requests to CH for
members information (viz. IP address, identification certificate,
etc.). If the CH is not aware about availability of the type of ser-
vices a mobile node is interested and presence of the same in the
cluster then it guides the same to the mobile node. APLOMB per-
mits a mobile node to create a mobile code for performing its de-
sired task in the present cluster. Further, if the requested task is
not completed with members of the present cluster mobile node
may move to next cluster or it may take help of APLOMB running
at the CH for multicasting the mobile code to the CHs in the net-
work. After completion of the task final result reaches to the mo-
bile node which was its launching station.
At present APLOMB contains mainly five agents- Mapping Agent
(MAPA), Route Estimating Agent (REA), Migration Planning Agent
(MPA), Code Container Agent (CCA) and Result Container agent
(RCA)in future number of agents may be increased as per need of
the applications. For balancing the load over the network these
agents work together as a multiagent system. RCA and CCA facil-
itates distributed environment for adapting the nature of the net-
work bandwidth. These agents are components of the adaptation
manager (AM) [11]. Network manager (NM)[11] identify the topolo-
gy of the network with assistantship of MAPA. APLOMB supports
code mobility over the mobile/fixed peer device. Architecture of
the functioning of the multiagent system is given in Figure 3. Brief
introductions of these agents are as follows.
Mapping Agent (MAPA)- It is used by a mobile agent to locate
services and to access information on network connection quali-
ties. Connection qualities are especially important for the REA or
and the MPA to achieve optimizations. In addition to throughput,
latency and other network status information, this agent collects
and distributes information on application-level services provided
by the CH in the network. MAPA cares for precise and up-to-date
knowledge (maps) within its local CH and provides a rough sum-
marized view of the linked remote CHs. Utilizing the service de-
scriptions in those maps, a mobile agent is able to locate points of
interest within the network and see changes in the network struc-
ture. Once a list of interesting CH has been determined, another
system component - the REA as shown in Figure 2 - can be used
by the agent to plan an itinerary. REA calculates the shortest trip
through the net based on the map data.
Route Estimating Agent (REA)-After getting the list of interesting
CH that has been determined by the MAPA, another system com-
ponent - the Route Estimating Agent (REA) as shown in Figure 2 -
can be used by the agent to plan an itinerary. REA calculates the
shortest trip through the net based on the map data. It uses the
classic local optimization algorithms. If necessary, an itinerary can
be recalculated and amended, for example, in the case of chang-
es in the network or when the agent moves into new CHs and thus
shifts its focus with regards to the fisheye paradigm. It facilitates to
the mobile agents for optimizing the sequence of CH to visit, i.e.,
the itinerary. If an agent chooses a random path through a net-
work, i.e., if an agent is visiting few nodes in cluster then visiting
next cluster nodes and in future looking into the previously visited
clusters once again then the sequence may lead to a non-optimal
total migration time. The route estimating process itself is basically
the Traveling Salesman Problem, which is a NP-complete type of
problem. But dividing the problems into set of small subsets of
problems eases the complex problems. For optimal migration time

agent creates a clone for a cluster and number of clones being
equal to the number of clusters of interest where the required
services may be available. As a consequence, getting an optimal
solution in practical application is ruled out. But there are heuristic
algorithms (such as local search, genetic, simulated annealing,
neural network algorithms, etc.) that have been supporting this
working style of agents applied extensively for solving such prob-
lems.
The computation of an itinerary is based on the map data. We
calculate a kind of distance matrix simply by using the reciprocal
values of measured bandwidth. This matrix has to be updated at
regular time intervals to fit the environment’s dynamic behavior.
Then, a pathfinder algorithm is applied in order to get a distance
matrix with shortest paths between two places. In some experi-
ments, we figured out that our distance matrix is not symmetrically
in general. This is caused by variation in the bandwidth values and
non-symmetrical connections measured by the MAPA.
The variation in network throughput influences the result and suc-
cess of the route estimating, especially short time variations. The
REA generates an itinerary with a fast path through the net on the
basis of distance matrix. Thereby, some of the best paths may be
blocked by short-time traffic. At the point in time, when an agent
uses the optimized itinerary, the generated path may not be the
best one any more or, in the worst case, is by now the slowest
one. The probability that this happens is lower in networks with
clearly differing connection qualities. The route estimating is espe-
cially useful in networks with different connection qualities and in
networks with connections which have different loads over a long-
er time period. In networks with nearly identical connection quali-
ties, the use of Route estimating algorithms makes no sense - just
choose a random path instead of spending time to calculate the
random path.

Fig. 2- Architecture of Agent pedestal for Load Balancing
(APLOMB)

Migration Planning Agent (MPA)-At any point in time, as long as
we have an itinerary, a mobile agent may also use a so called
Migration Planning Agent (MPA) as shown in Figure 2 to optimize
each single migration included in the itinerary. MPA is mainly de-
signed to reduce network load by selecting and transmitting only
those code and data portions of the agent that are needed at the
upcoming remote CH. This is, if necessary, done by a concept
called slicing or designated code. Other options are to place code
in advance in the network, to send data home to carry fewer lug-

Patel R.B. and Vishal Garg

Journal of Information Systems and Communication
ISSN: 0976-8742 & E-ISSN: 0976-8750, Volume 3, Issue 1, 2012

Route Estimating

Agent (REA)

Algorithms

A1

An

Itinerary

Map/Requireme

nts

Decision centre

Task

Services

Map

Migration Planning

Agent (MPA)

Itinerary

Migration State

4

3

Client
2

1

R
C

A

C
C

A

M
apping A

gent
(M

A
PA

)

Bioinfo Publications 330

gages’s, to change the transmission protocol, etc. An agent may
contain one or more task code to be executed at different nodes in
the network. The point of time when an agent’s tasks are transmit-
ted depends on the migration strategy, i.e., how a mobile agent is
transmitted over the network? There are so called push strategies
which transmit an agent’s tasks along with the agent’s state and
data before the agent is started at a remote CH. Using a pull strat-
egy, an agent’s tasks are downloaded dynamically while the agent
is executed at a remote CH from its home site/Code Container
Agent (CCA). The agent’s home platform is the Agent Submitter
(AS) [7] where the agent was started first time, i.e., a client
equipped with AS. Furthermore, strategies can be distinguished
by which tasks are transmitted: all tasks code at once or only
some tasks. For example, the pull-all strategy means: transmit an
agent, start it at the remote site and in case that at least one task
is required; download all tasks of the agent from its home/CCA.
Using a push strategy, agent’s tasks can be transmitted to the
next CH of the agent’s route or even to all CH visited by the agent.
For example, the push-tasks-to-all strategy transmits first some of
agent’s tasks (those tasks which are needed potentially at remote
CHs) to all CH which are visited by the agent. Missed tasks will be
downloaded dynamically. Then the agent is migrated to the first
CH of its itinerary. For the next hops, only the agent is transmitted.
The MPA is used to optimize time and network load caused by a
transmission. This is done by calculating the expected transmis-
sion times for different migration strategies. The results are com-
pared to select a best fit migration strategy. It allows us to calcu-
late network load and transmission time for migration of a mobile
agent from home network, between CH of its route and back
home. For the computation, it takes in account an agent’s size
(state, data, and tasks), data which is collected on its itinerary
(increases with a constant factor) and connection qualities
(latency and bandwidth). Thereby, a task is used at a remote CH
with a certain probability. The data collected by an agent increas-
es by a non constant size and might be transmitted back home
from a CH on the agent’s route. There are some technical prob-
lems to determine the actual size of an agent at runtime. For the
comparison of different migration strategies, this size is constant
and needs not to be involved in the computation. The same holds
for the collected data. Hence, the MPA compares the transmission
time for the tasks of an agent. The number of tasks and the point
in time of transmission differs for different strategies. Possible
requests for task downloads have to be taken in account.
In more detail, a computation of the migration time for different
migration strategies for a hop is done according to the following

scheme: A agent wants to hop from CH to . The

agent’s home site is client’s node. The latency between two

CH is defined by the function . Function denotes the avail-
able bandwidth between two CH. The amount of bytes which will

be transmitted is (size of all tasks) for push-all-to-next is

 and for pull-all is

.

Furthermore, it is difficult to determine the probability for the
usage of a certain task at a remote CH it is not designated if it is
designated it can be very easily traced with the database map-
ping. Thus, we decided to use the worst case assumption that
every task has to be downloaded as long as we do not have any
other options. A time computation can be made by pull-tasks

,

where is the size of the kth task code of the agent.
denotes the size of a request for downloading a certain task code.
Code Container Agent (CCA)- It contains all tasks of an agent.
The CH is sued to serve as CCA. Such a server can be used by
an agent to download tasks instead of downloading from home
site. An automatic CCA initialization might be useful in a case
where it takes more time to download tasks from the home site
than from a near CCA with a fast connection. Such a CCA is the
code base for further migrations as long as there is a good con-
nectivity. This is useful only for pull strategies (downloading tasks
code dynamically). The optimization is simply based on a compar-
ison of migration times with and without a CCA initialization. With
a low optimization degree, the module compares the migration
time with the home site as a CCA and with a local CCA on the
current CH. A medium optimization degree is reached, if all availa-
ble CCAs are taken into account. As a variation of the low degree
optimization, the migration times for further migrations with a dy-
namic CCA initialization are computed (high optimization degree).
Result Container Agent (RCA)- It is used by an agent to upload
collected data instead transmitting data to the home site. The
initialization of a RCA depends on whether an agent wants to
transmit collected data to home site. Collected data loads the
network again and again when the agent migrates. Where a mo-
bile agent does not need this collected data for further computa-
tions, the data should be sent home site. MPA computes that
whether it is cheaper to initialize a RCA to upload data instead of
using home site to upload data. Automatic data upload variant
calculates the migration time to the next CH, if all data is carried
along with the agent. The result is compared with the time to up-
load collected data and to migrate without unnecessary data. An
agent can initialize code and RCAs on its route. With this extend-
ed network model, the effort and the advantage of initializing and
using code and RCAs can be computed. The introduced optimiza-
tion variants are some approaches to reduce network load and
migration time of a mobile agent. CH is also used as RCA.

Implementation and Performance Study
For testing NADSE we have used total 25 nodes (2.2 Core 2 Due
processor, 1 GB RAM, 160 GB HDD, Windows-XP, Java SDK
1.5), one server (for Internet communication), 1 access point
(2700 DLink), 6 routers (2 No. CISCO 2851, 2 No. CISCO 2811,
and 2 No. CISCO 1841) dividing 24 nodes into six networks of
categories (Class A, Class B and Class C). 25th node used to
take the services of the global network.
Here in this setup this node (25th) used to move the mobile agent
on the infrastructured network, i.e. wired network. Complete setup
is wireless. Further it is also considered that same node may be
considered for multiple times for increasing the number of nodes

iC 1iC

0C

cB

 11 ,, iicii CCBCCT

 1010 ,, ici CCBCCT

n

k
i

k
ci CCBBCCT

1
1010 ,,

k
cB B

APLOMB: Agent Pedestal for Load Balancing in Peer-to-Peer Networks

Journal of Information Systems and Communication
ISSN: 0976-8742 & E-ISSN: 0976-8750, Volume 3, Issue 1, 2012

Bioinfo Publications 331

in the system or mobile agent may visit infrastructure network
depending on the availability of the services. This node also main-
tains list of available services and route to destination where ser-
vices are available.
We have tested APLOMB the NADSE network for searching and
downloading an information file over/from the network when
NADSE services are active and not active. Figure 3 presents the
time consumed in the completion of task (distributing an infor-
mation file of size 512 KB). From the result it is clear that Freenet
and Gnutella takes almost same time but NADSE is superior in
term of overall performance. Reason behind the better perfor-
mance is mobile agent which distributes the task in parallel by
cloning itself and collects the outcome of the clones.

Fig. 3- Distributing an Information file which is distributed over
several nodes when NADSE service node is active.

Fig. 4- Distributing an Information file which is distributed over
several nodes when NADSE service node is not active.

Figure 4 presents the time consumed in the completion of task
(distributing an information file of size 512 KB) when NADSE ser-
vice is not active. From the result it is clear that Freenet and
Gnutella takes almost same time but due to unavailability of
NADSE service maintenance node NADSE network takes more
time in comparison to NADSE service provider. It is found that still
NADSE based network is superior in term of overall performance.
Reason behind the better performance is mobile agent which
distributes the task in parallel by cloning itself and collects the
outcome of the clones.
Comparative results show that NADSE network performs better in
comparison to Gnutella, and Freenet. From results it is also clear
that APLOMB improves the performance of NADSE when number
of nodes in network is very large.

Conclusion and Future work
In this article we have presented an Agent pedestal for Load Bal-
ancing (APLOMB) for P2P systems. In this system mainly mobile
agents are used to manage the network. APLOMB provides com-
mon solution to P2P system’s fault tolerance and load balancing
problems and gives true distributed computing environment with
the help of mobile agents. In future we will see more performance
issues related to P2P networks.

References
[1] Kai Guo and Zhijng Liu (2008) Fuzzy Systems and Knowledge

Discovery, 352-355.
[2] Nikta Dayhim, Amir Masoud Rahmani, Sepideh Nazemi

Gelyan, Golbarg Zarrinzad (2008) Third International Confer-
ence on Convergence and Hybrid Information Technology,
166-171.

[3] Qian Zhang, Yu Sun, Zheng Liu, Xia Zhang and Xuezhi Wen
(2005) 3rd Annual Communication Networks and Services
Research Conference, 1-6.

[4] Ripeanu M. and Foster I.T. (2002) First International Work-
shop on Peer-to-Peer Systems, 85-93.

[5] Patel R.B. and Garg K. (2004) A New Paradigm for Mobile
Agent Computing, 1(3), 57-64.

[6] Clarke I., Sandberg O. and Wiley B. (2000) Workshop on
Design Issues in Anonymity and Unobservability, 25-26.

[7] Waldman M., Ad R. and Lf C. (2000) 9th USENIX Security
Symposium.

[8] Theotokis S.A., Spinellis D. (2004) ACM Computing Surveys,
36(4), 335-371.

[9] Kazaa (2003) http://www. kazaa.com.
[10] FastTrack Accessed on-line (2003) http://www.fasttrack.nu.
[11] Patel R.B., Vishal Garg (2009) International Conference on

Innovative Computing, Information and Communication Tech-
nology, 16-18, 323-329.

[12] Patel R.B. and Garg K. Design and Implementation of a Se-
cure Mobile Agent Platform for Distributed Computing.

[13] Patel R.B. and Vishal Garg (2009) International Conference
on Recent Trends in Computing and Communications, 18-19,
147-152.

[14] Bernhard Amann, Benedikt Elser, Yaser Houri, and Thomas
Fuhrmann (2008) Eighth International Conference on Peer-to-
Peer Computing 77-78.

[15] Hyuncheol Kim, Younghwa Kim and Kwangjoon Kim (2008)
Science and Security, 58-61.

[16] Gareth Tyson, Andreas Mauthe, Sebastian Kaune, Mu Mu
and Thomas Plagemann. (2009) 16th ACM/SPIE Multimedia
Computing and Networking Conference.

[17] Gorodetsky V., Karsaev O., Samoylov V., Serebryakov S.,
Balandin S., Leppanen S. and Turunen M. (2008) Second
International Conference on Mobile Ubiquitous Computing,
Systems, Services and Technologies, 422-429.

[18] Kovacs E., Roehrle K. and Reich M. (1998) Second Interna-
tional Workshop on Mobile Agents, 124-135.

[19] Shih T.K. (2001) Mobile agent evolution computing, Infor-
mation Sciences, 137, 53-73.

Patel R.B. and Vishal Garg

Journal of Information Systems and Communication
ISSN: 0976-8742 & E-ISSN: 0976-8750, Volume 3, Issue 1, 2012

0

500

1000

1500

2000

2500

3000

3500

1 2 4 8 12 16 20 24 28 32

Number of Nodes in the Network

T
u

rn
 a

ro
u

n
d

 t
im

e
(m

s)

NADSE

FREENET

GNUTELLA

0

500

1000

1500

2000

2500

3000

3500

1 2 4 8 12 16 20 24 28 32

Number of Nodes in the Network

Tu
rn

 a
ro

un
d

tim
e

(m
s)

NADSE

FREENET

GNUTELLA

