
Bioinfo Publications 58

DISTRIBUTED DATABASE: FRAGMENTATION AND ALLOCATION

Journal of Data Mining and Knowledge Discovery
ISSN: 2229–6662 & ISSN: 2229–6670, Volume 3, Issue 1, 2012, pp.-58-64.
Available online at http://www. bioinfo. in/contents. php?id=42

BHUYAR P.R.1* AND GAWANDE A.D.2

1Computer Science and Engineering Department, Sipna COET, Sgbau Amravati, MS, India.
2Department of I.T., Sipna COET, Sgbau Amravati, MS, India.
*Corresponding Author: Email- priyanka.bhuyar@gmail.com

Received: February 21, 2012; Accepted: March 15, 2012

Abstract- The purpose of this paper is to present an introduction to Distributed Databases which are becoming very popular now a days
with the description of fragmentation and allocation. Today’s business environment has an increasing need for distributed database and
Client/server applications as the desire for consistent, scalable, reliable and accessible information is Steadily growing. Data fragementation
and allocation are two of the critical aspects of distributed database. The data fregementation and fragement allocation problems in distribut-
ed database design are NP-Hard in nature and difficult to solve, which makes developing good solution methods a high priority. Data alloca-
tion is typically treated independentally of fragementation. The fragment allocation design is an essential issue that improves the perfor-
mance of the applications processing in the Distributed Database systems (DDBs). The database queries access the applications on the
distributed database sites and should be performed effectively. Therefore, the fragments that accessed by queries are needed to be allocat-
ed to the DDBs sites so as to reduce the communication cost during the applications execution and handle their operational processing. We
present a method for grouping the sites of the DDBs according to their communication cost in order to determine the fragment allocation to a
group of sites instead of allocating the fragments to site by site.
Keywords- Distributed database, data fragmentation, fragment allocation, sites.

Journal of Data Mining and Knowledge Discovery
ISSN: 2229–6662 & ISSN: 2229–6670, Volume 3, Issue 1, 2012

Introduction
A distributed database is a collection of data that logically belongs
to the same system but is spread over the sites of a computer
network. A distributed database management system (DDBMS) is
defined as the software system that provides the management of
the distributed database system and makes the distribution trans-
parent to the users [1, 2]. It is not necessary that database system
have to be geographically distributed. The sites of the distributed
database can have the same network address and may be in the
same room but the communication between them is done over a
network instead of shared memory.
The primary concern of DBMS design is the fragmentation and
allocation of the underlying database. The distribution of data
across various sites of computer networks involves making proper
fragmentation and placement decisions. The first phase in the

process of distributing a database is fragmentation which clusters
information into fragments. This process is followed by the alloca-
tion phase which distributes, and if necessary, replicates the gen-
erated fragments among the nodes of a computer network. The
use of data fragmentation to improve performance is not new and
commonly appears in file design and optimization literature.

DDBS Architecture

1. The Hardware
Due to the extended functionality the DDBS must be capable of,
the DDBS design becomes more complex and more sophisticat-
ed. At the physical level the differences between centralized and
distributed systems are:
a. Multiple computers called sites.

Citation: Bhuyar P.R. and Gawande A.D. (2012) Distributed database: Fragmentation and allocation. Journal of Data Mining and
Knowledge Discovery, ISSN: 2229–6662 & ISSN: 2229–6670, Volume 3, Issue 1, pp.-58-64.

Copyright: Copyright©2012 Bhuyar P.R. and Gawande A.D. This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Bioinfo Publications 59

b. These sites are connected via a communication network, to
enable the data/query communications. Figure 1.1 illustrates
this architecture.

Fig. 2.1- Client/server architecture [1]

Networks can have several types of topologies that defines how
nodes are physically and logically connected. One of the popular
topologies used in DDBS, the client-server architecture is de-
scribed as follows: the principle idea of this architecture is to de-
fine specialized servers with specific functionalities such as: print-
er server, mail server, file server, etc. these serves then are con-
nected to a network of clients that can access the services of
these servers. Stations (servers or clients) can have different de-
sign complexities starting from diskless client to combined server-
client machine. This is illustrated in Figure 2.1. The server-client
architecture requires some kind of function definition for servers
and clients. Th e DBMS functions are divided between servers
and clients using different approaches. We present a common
approach that is used with relational DDBS, called centralized
DMBS at the server level. The client refers to a data distribution
dictionary to know how to decompose the global query in to multi-
ple local queries. The interaction is done as follows:
1. Client parses the user’s query and decomposes it into inde-

pendent site queries.
2. Client forwards each independent query to the corresponding

server by consulting with the data distribution dictionary.
3. Each server process the local query, and sends back the re-

sulting relation to the client.
4. Client combines (manually by the user, or automatically by

client abstract) the received subqueries, and do more pro-
cessing if needed to get to the final target result.

2. The Software
In a typical DDBS, three levels of software modules are defined:
a. The server software: responsible for local data management at

site.
b. The client software: responsible for most of the distribution

functions; DDBMS catalog, processes all requests that require
more than one site. Other functions for the client include: con-
sistency of replicated data, atomicity of global transactions.

c. The communications software: provides the communication
primitives, used by the client/server to exchange data and
commands Figure 2.2.

Advantages of Client/Server architecture include: More efficient
division of labor, horizontal and vertical scaling of resources, bet-
ter price/performance on client machines, ability to use familiar
tools on client machines, client access to remote data (via stand-

ards), full DBMS functionality provided to client workstations, and
overall better system price/performance.

Fig. 2.2- Client/Server Software [2]

Fig. 2.3- Layers of transparency

Disadvantages of Client/Server architecture include: server forms
bottleneck, server forms single point of failure, and database scal-
ing is difficult [2]. It is preferable for a DDMBS to have the property
of distribution transparency (Figure 2.3), where the user’s can
issue a global queries without knowing or worrying about the glob-
al distribution in the DDBS.

Fragmentation
Primary concern of distributed database system design is to mak-
ing fragmentation of the relations in case of relational database or
classes in case of object oriented databases, allocation and repli-
cation of the fragments in different sites of the distributed system,
and local optimization in each site. Fragmentation is a design
technique to divide a single relation or class of a database into two
or more partitions such that the combination of the partitions pro-
vides the original database without any loss of information This
reduces the amount of irrelevant data accessed by the applica-
tions of the database, thus reducing the number of disk accesses.
Fragmentation can be horizontal, vertical or mixed/hybrid.

1. Horizontal Fragmentation
Horizontal fragmentation (HF) allows a relation or class to be parti-
tioned into disjoint tuples or instances. Intuition behind horizontal
fragmentation is that Every site should hold all information that is
used to query at the site and the information at the site should be
fragmented so the queries of the site run faster. Horizontal frag-
mentation is defined as selection operation, σ _p(R).

Computing horizontal fragmentation (idea)
a. Compute the frequency of the individual queries of the site q1,

. . . , qQ

Journal of Data Mining and Knowledge Discovery
ISSN: 2229–6662 & ISSN: 2229–6670, Volume 3, Issue 1, 2012

Distributed database: Fragmentation and allocation

Bioinfo Publications 60

b. Rewrite the queries of the site in the conjunctive normal form
(disjunction of conjunctions); the conjunctions are called
minterms.

c. Compute the selectivity of the minterms
d. Find the minimal and complete set of minterms (predicates)

 The set of predicates is complete if and only if any two tuples
in the same fragment are referenced with the same probability
by any application.

 The set of predicates is minimal if and only if there is at least
one query that accesses the fragment

e. There is an algorithm how to find these fragments algorithmi-
cally (the algorithm CON MIN and PHORIZONTAL (pp 120-
122) of the textbook of the course) DDB

An example on horizontal fragmentation is the PROJ table.
Horizontal fragmentation of PROJ relation into
PROJ1: projects with budgets less than 200, 000
PROJ2: projects with budgets greater than or equal to 200, 000

Table 1- PROJ

Table 2- PROJ1

Table 3- PROJ2

Fig. 3.1- Horizontal Fragmentation

2. Vertical Fragmentation
Vertical fragmentation (VF) allows a relation or class to be parti-
tioned into disjoint sets of columns or attributes except the primary
key. Each partition must include the primary key attribute(s) of the
table. This arrangement can make sense when different sites are
responsible for processing different functions involving an entity.
Objective of vertical fragmentation is to partition a relation into a
set of smaller relations so that many of the applications will run on
only one fragment.

a. Vertical fragmentation of a relation R produces fragments R1,

R2, . . . , each of which contains a subset of R’s attributes.
b. Vertical fragmentation is defined using the projection operation

of the relational algebra: П _A1, A2,. .., An(R)

Vertical fragmentation of PROJ relation into
PROJ1: information about project budgets
PROJ2: information about project names and locations

Table 4- PROJ

Table 5- PROJ1

Table 6- PROJ2

Fig. 3.2- Vertical Fragmentation

3. Hybrid Fragmentation
Combination of horizontal and vertical fragmentations is mixed or
hybrid fragmentations (MF). In this type of fragmentation scheme,
the table is divided into arbitrary blocks, based on the needed
requirements. Each fragmentation can be allocated on to a specif-
ic site. This type of fragmentation is the most complex one, which
needs more management. In most cases simple horizontal or
vertical fragmentation of a DB schema will not be sufficient to
satisfy the requirements of the applications.
Mixed fragmentation (hybrid fragmentation) Consists of a horizon-
tal fragment followed by a vertical fragmentation, or a vertical
fragmentation followed by a horizontal fragmentation. Mixed Frag-
mentation is defined using the selection and projection operations
of relational algebra:
П_p(_A1,. .., An(R))
П _A1,. .., An(_p(R))
A fragment of a relation is a relation itself. Fragments can be fur-
ther fragmented
Projects1 = П _PNo, PName, Location(Projects)
Projects2 = П _PNo, Budget(Projects)
Projects1:1 = σ _Location='Saarbr.'(Projects1)
Projects2:1 = σ _Location='Munich'(Projects1)
Projects3:1 = σ _Location='Paris'(Projects1)
Projects =
(Projects1:1 [Projects1:2 [Projects1:3) on Projects2

Correctness Rules of Fragmentation
a. Completeness- Decomposition of relation R into fragments

R1, R2, . . . , Rn is complete iff each data item in R can also
be found in some Ri.

b. Reconstruction- If relation R is decomposed into fragments
R1, R2, . . . , Rn, then there should exist some relational oper-
ator ∇ that reconstructs R from its fragments, i.e., R=R∇.. .
∇Rn

i. Union to combine horizontal fragments

Bhuyar P.R. and Gawande A.D.

Journal of Data Mining and Knowledge Discovery
ISSN: 2229–6662 & ISSN: 2229–6670, Volume 3, Issue 1, 2012

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal
P2 Database Development 135000 New York
P3 CAD/CAM 250000 New York
P4 Maintenance 310000 Paris
P5 CAD/CAM 500000 Boston

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P2 Database Development 135000 New York

PNO PNAME BUDGET LOC

P3 CAD/CAM 250000 New York
P4 Maintenance 310000 Paris
P5 CAD/CAM 500000 Boston

PNO PNAME LOC

P1 Instrumentation Montreal
P2 Database Development New York
P3 CAD/CAM New York
P4 Maintenance Paris
P5 CAD/CAM Boston

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal
P2 Database Development 135000 New York
P3 CAD/CAM 250000 New York
P4 Maintenance 310000 Paris
P5 CAD/CAM 500000 Boston

PNO BUDGET

P1 150000
P2 135000
P3 250000
P4 310000
P5 500000

Bioinfo Publications 61

ii. Join to combine vertical fragments.
c. Disjointness- If relation R is decomposed into fragments R1,

R2, . . . , Rn and data item di appears in fragment Rj , then di
should not appear in any other fragment Rk, k 6= j (exception:
primary key attribute for vertical fragmentation)

i. For horizontal fragmentation, data item is a tuple
ii. For vertical fragmentation, data item is an attribute

4. Fragement Allocation
The fragment allocation design is an essential issue that improves
the performance of the applications processing in the Distributed
Database systems (DDBs). The database queries access the
applications on the distributed database sites and should be per-
formed effectively. Therefore, the fragments that accessed by
queries are needed to be allocated to the DDBs sites so as to
reduce the communication cost during the applications execution
and handle their operational processing.
We present a method for grouping the sites of the DDBs accord-
ing to their communication cost in order to determine the fragment
allocation to a group of sites instead of allocating the fragments to
site by site. Optimizing the cost of the fragment allocation func-
tions to reduce the queries processing time and determining the
fragments to be allocated in the DDBs sites are also main objec-
tives in our research

A. Grouping sites
Grouping sites (clustering) is a method of grouping sites according
to a certain criteria to increase the system I/O performance and
reduce storage overheads. Grouping sites into clusters helps in
reducing the communication costs between the sites during the
process of data allocation. We proposed a method for clustering
sites according to their communication cost, which determines
whether or not a set of sites is assigned to a certain cluster, and it
considered as a fast way to determine the data allocation to a set
of sites rather than site by site.
Two sites (Si, Sj) are grouped in one cluster if the communication
cost between them is less than or equal to a Communication Cost
Range (CCR); the number of communication units which is al-
lowed for the maximum difference of the communication cost
between the sites to be grouped in the same cluster, this number
is determined by the network of the DDBs (Hababeh I. et al. [12]).
Following is the definition of our clustering algorithm:
Input: Sites communication cost matrix
CCR value
The sites of DDBs
Output: the set of clusters and their respective sites
Begin
Repeat
For I = 1 to the number of sites in the database
 For J = 1 to the number of sites in the database

then
 Sites I and J are grouped together in the same cluster; set 1 to
the cluster entry
 Else
 Sites I and J are grouped in different clusters; set 0 to the cluster
entry
 End if

 End for
End for
Until all sites in the database have been processed
End.

B. Data (fragment) allocation
To determine the fragment allocation at the DDBs clusters, we
propose a new method developed from our approach (Hababeh I.
et al. [13]) and based on the data allocation and query processing
cost functions that find out precisely whether the fragment is allo-
cated to or omitted from the cluster. This method attempts to mini-
mize the communication costs by distributing the global database
over the sites and increasing availability and reliability where mul-
tiple copies of the same data are allocated. Initially, fragments are
allocated to all clusters having applications using that fragments,
and the decision value (D) of allocating a fragment to a cluster is
computed as a logical value for the difference bet ween the cost of
not allocating the fragment to the cluster and the cost of allocating
the fragment to the cluster. If the Cost of Not Allocating the frag-
ment to the cluster (the fragment handled remotely) is greater
than or equal to the Cost of Allocating the fragment to the cluster
then the decision value is True and the fragment is allocated to
the cluster, and If the cost of not allocating the fragment to the
cluster is less than the cost of allocating the fragment to the clus-
ter then the decision value is False and the fragment is cancelled
from the cluster.

i. Cost of Allocating a Fragment to a Cluster
The cost of allocating the fragment Fi to the cluster Cj is computed
as the sum of the following:

 The average cost of local retrievals at cluster Cj times the
average number of frequency of retrieval issued by the trans-
action T k to the ragment Fi at cluster Cj.

 CLRsum(T k, Fi, Cj) = CLR(T k, Fi, Cj) *
FREQLR(Tk, Fi, Cj) (1)

 The average cost of local updates at cluster Cj times the aver-
age number of frequency of update issued by the transaction
T k to the fragment Fi at the cluster Cj.
CLUsum(T k, Fi, Cj) = CLU(T k, Fi, Cj) *
FREQLU(T k, Fi, Cj) (2)

 The cost of space occupied by the fragment Fi in the cluster
Cj times the size of the fragment Fi (in bytes).
CSPsum(T k, Fi, Cj) = Csp(Tk, Fi, Cj) *
Fsize(T k, Fi) (3)

 Remote updates sent from other clusters Cx; the average cost
of local updates at cluster Cj times the average number of
frequency of update issued by the transaction Tk to the frag-
ment Fi for each cluster other than the current one.
CRUsum(Tk, Fi, Cj) = CLU(T k, Fi, Cj) *
FREQRU(Tk, Fi, Cj) (4)

 Remote communications from other clusters Cx; the update
ratio (Unit Update/Unit Communication) times the average
number of frequency of update issued by the transaction Tk to

Distributed database: Fragmentation and allocation

Journal of Data Mining and Knowledge Discovery
ISSN: 2229–6662 & ISSN: 2229–6670, Volume 3, Issue 1, 2012

Bioinfo Publications 62

the fragment Fi at the cluster Cj times the average cost of
comm unication between clusters other than the current one.
CRCsum(T k, Fi, Cj) = Uratio * FREQLU(T k, Fi, Cj) *
CRC(T k, Fi, Cj) (5)

According to the previous formulas the Cost of Allocation CA(T k,
Fi, Cj) is defined as the sum of the following costs: local retrievals,
local updates, space, remote update, and remote communication.
CA(Tk, Fi, Cj) = CLRsum(T k, Fi, Cj) + CLUsum(Tk, Fi, Cj) +
CSPsum(T k, Fi, Cj) + CRUsum(Tk, Fi, Cj) +CRCsum(T k, Fi, Cj)
 (6)

ii. cost of Cost of Not Allocating a Fragment to a Cluster
The cost of not allocating the fragment Fi to the cluster C j is com-
puted as the sum of the following:
The average cost of local retrievals at cluster Cj times the average
number of frequency of retrieval issued by the transaction Tk to
the fragment Fi at the cluster Cj. It is the same as defined in previ-
ous section 4.1.
Remote retrievals from other clusters Cx; the retrieval ratio (Unit
Retrieval/UnitCommunication) times the average number of fre-
quency of retrieval issued by the transaction Tk to the fragment Fi
at the cluster Cj for each cluster other than the current one times
the average cost of communication between clusters.
CRRsum(T k, Fi, Cj) = Rratio * FREQRR(T k, Fi, Cj) * CCC (7)

According to the previous formulas the Cost of Not Allocation CN
(Tk, Fi, Cj) is defined as the sum of cost of local retrievals and
sum of cost of remote retrievals.
CN(T k, Fi, Cj) = CLRsum(T k, Fi, Cj) + CRRsum(T k, Fi, Cj) (8)

iii. The Decision Value of Allocating a Fragment to a Cluster
The decision value of allocating the fragment Fi to the cluster Cj is
a logical value and computed as follows:
D(T k, Fi, Cj) = (CN(Tk, Fi, Cj) >= CA(T k, Fi, Cj)) (9)
We define our fragment allocation algorithm as follows:
Input: Number of transactions issued in the database
Number of fragments used for allocation in the database
Number of clusters used for allocation in the database
Output: The fragments that are allocated to the clusters
Begin
For k = 1 to the number of transactions do
For i = 1 to the number of fragments do
For j = 1 to the number of clusters at fragment I do
CRUsum(T k, Fi, Cj) = 0;
CRCsum(T k, Fi, Cj) = 0;
CRRsum(T k, Fi, Cj) = 0;
For x = 1 to the number of clusters at fragment I do
If x ? j Then
CRUsum(T k, Fi, Cj) = CRUsum(T k, Fi, Cj) + CLU(Tk, Fi, Cx) *
FREQRU(T k, Fi, Cx)
CRCsum(T k, Fi, Cj) = CRCsum(Tk, Fi, Cj) + Uratio * FREQLU (T
k, Fi, Cx) *
CRC(Tk, Fi, Cx)
CRRsum(T k, Fi, Cj) = CRRsum(Tk, Fi, Cj) + Rratio * FREQRR
(Tk, Fi, Cx) * CCC
End if;
End for;
CA(Tk, Fi, Cj) = CLRsum(Tk, Fi, Cj) + CLUsum(Tk, Fi, Cj) +

CSPsum(T k, Fi, Cj) +
CRUsum(T k, Fi, Cj) + CRCsum(T k, Fi, Cj)
CN(Tk, Fi, Cj) = CLRsum(Tk, Fi, Cj) + CRRsum(Tk, Fi, Cj)
D(T k, Fi, Cj) = (CN(T k, Fi, Cj) >= CA(T k, Fi, Cj))
If D(Tk, Fi, Cj) = True Then
Allocate the fragment to the current cluster
Else
Cancel the fragment from the current cluster
End if;
End for;
End for;
End for;
End.

We illustrate our fragment allocation method in the following ex-
ample, in which we propose the fragments and their number of
frequencies of retrieval and update requested from each cluster
and its res pective sites (table 4), the costs of space, retrieval, and
update (table 2), and the following number of bytes which required
for the computation of the update and retrieval ratios according to
their use in the DDBs: 2 bytes in each unit of retrieval, 3 bytes in
each unit of update, and 5 bytes in each unit of communication.

Table 1- Fragments and their frequencies of retrievals and up-
dates in the clusters and their respective

Bhuyar P.R. and Gawande A.D.

International Journal of Knowledge Engineering
ISSN: 0976-5816 & E-ISSN: 0976-5824, Volume 3, Issue 1, 2012

Fragment

Cluster

Site

Retrieval
Frequency

Update Fre-
quency

F1

F2

C1

C2

C3

C1

C2

S1
S2
S3
S4
S5
S6
S3
S4
S5
S6

80
60
60
0
35
25
20
20
5
105

10
26
16
0
5
5
4
6
30
20

F3

C1

C2

C3

S1
S2
S3
S4
S5
S6

0
0
30
0
40
30

20
10
0
0
30
10

F4
C1

C2

S1
S2
S3
S4

10
10
65
5

20
20
12
12

F5

C1

C2

C3

S1
S2
S3
S4
S5
S6

70
6
20
20
35
45

20
10
10
10
10
20

F6
C1

C3

S1
S2
S5
S6

0
0
25
5

10
0
5
5

F7
C2

C3

S3
S4
S5
S6

25
35
10
30

5
10
0
0

F8

C1

C2

C4

S1
S2
S3
S4
S5
S6

10
80
20
60
0
20

20
20
0
10
20
0

Bioinfo Publications 63

Table 2- Cost of space, retrieval, and update

After applying the formulas described in 4.1, 4.2 and 4.3 on the
given data, we determine the allocated and cancelled fragments
in all clusters. Table 3 describes the allocated and cancelled frag-
ments in all clusters.

Table 3- Allocated and cancelled fragments in all clusters

Fig. 4.1- shows the distribution of the fragments over the clusters.

iv. Performance Evaluation
Grouping sites into clusters minimizes the communication costs
bet ween the sites and improves the system performance. The
average communication cost between clusters and sites, and the
average number of retrievals and updates are considered in the
computations of our fragment allocation method because the
processing time needed for average computations is less than the
processing time when other techniques are used which depend
on sorting sites according to specific fields. The system perfor-

mance is enhanced by removing (cancel) the redundant frag-
ments from the database clusters and by increasing availability
and reliability where multiple copies of the same fragment are
allocated, this will reduce the communication costs where the
fragments are needed frequently. Table 7 shows the performance
of allocating fragments to the DDBs clusters before and after ap-
plying our method.

Table 7- Performance evaluation of fragment allocation

Before applying our clustering method, allocating fragments to all
clusters having applications requesting those fragments gener-
ates 20 allocations, while 11 allocations are generated after apply-
ing our clustering algorithm, which improves the system perfor-
mance by 45.00 %. Figure 4 shows the improvement of the sys-
tem performance achieved by our clustering and allocating meth-
ods on clusters.

Conclusion
We presented an introduction to distributed database design
through a study that targeted two main parts: Fragmentation and
allocation. Distributed design decides on the placement of (parts
of the) data and programs across the sites of a computer network.
We also described architecture Fragmentation, allocation also in
order to make readers completely aware about the topic
being described here. Fragment allocation method is designed to
meet the requirements of clustering sites and determining frag-
ment allocation in distributed database system, minimizing the
communication cost between sites, and enhancing the perfor-
mance in a heterogeneous network environment system.
Clustering method is developed to group the sites into clusters,
which helps in reducing the communication costs between the
sites during allocation process. Fragment allocation method is
developed to enhance system performance by increasing availa-
bility and reliability where multiple copies of the same fragments
are allocated.

References
[1] Ramez Elmasri and Navathe S.B. (1999) Fundamentals of

Database Systems.
[2] Tamer Özsu and Patrick Valduriez (1998) Distributed Data-

base Management Systems.
[3] Ozsu M.T. and Valduriez P. (1999) Principles of Distributed

Database Systems.
[4] Ceri S. and Pelagatti G. (1984) Distributed Databases Princi-

ples and System.
[5] Navathe S., Karlapalem K. and Ra M. (1995) Journal of Com-

puter and Software Engineering, 3(4), 395-426.
[6] Ezeife C.I. and Ken Barker (1998) International Journal of

Distributed and Parallel Databases, 6(4), 327-360.
[7] Kamalaakar Karlapalem, Shamkant Navathe and Magdi Morsi

(1994) Distribut ed Object Management.
[8] Jin Hyun Son and Myoung Ho Kim (2003) The Journal of

Distributed database: Fragmentation and allocation

Journal of Data Mining and Knowledge Discovery
ISSN: 2229–6662 & ISSN: 2229–6670, Volume 3, Issue 1, 2012

Fragment

Cluster

Cost of
Allocation

Cost of
not
Alloca-
tion

Deci-
sion
value

Allocation
status

F1 C1 59.45 177.24 1 Allocated
 C2 74.83 74.76 0 Cancelled
 C3 85.5 74.16 0 Cancelled
F2 C2 74.26 49.84 0 Cancelled
 C3 30.01 135.96 1 Allocated
F3 C1 60.32 0 0 Cancelled
 C2 103.23 37.38 0 Cancelled
 C3 54.72 86.52 1 Allocated
F4 C1 47.13 25.32 0 Cancelled
 C2 68.73 87.22 1 Allocated
F5 C1 86.56 96.21 1 Allocated
 C2 92.66 49.84 0 Cancelled
 C3 86.80 98.88 1 Allocated
F6 C1 15.46 0 0 Cancelled
 C3 18.31 37.08 1 Allocated
F7 C2 7.41 74.76 1 Allocated
 C3 34.71 37.08 1 Allocated
F8 C1 59.22 113.94 1 Allocated
 C2 95.63 99.68 1 Allocated
 C3 80.12 24.72 0 Cancelled

Cluster

Initial # of
alloc. frag.

Final # of alloc.
frag.

Improvement %

C1 6 3 50%
C2 7 3 57.14%
C3 7 5 28.57%

Cluster

Site

Cost of
space

Cost of
Retrieval

Cost of
Update

C1 S1 0.004 0.15 0.25
 S2 0.006 0.25 0.35
C2 S3 0.005 0.15 0.25
 S4 0.007 0.17 0.27
C3 S5 0.003 0.13 0.23
 S6 0.005 0.15 0.25

Bioinfo Publications 64

Systems and Software.
[9] Wai Wai Gen Yee, Donahoo M.J. and Navathe S.B. (2000)

CIKM.

Bhuyar P.R. and Gawande A.D.

Journal of Data Mining and Knowledge Discovery
ISSN: 2229–6662 & ISSN: 2229–6670, Volume 3, Issue 1, 2012

