
Bioinfo Publications 289

THE IMPACT OF MULTIPLE GRANULARITY ON CONCURRENCY CONTROL IN MULTI USER
ENVIRONMENT

Journal of Information and Operations Management
ISSN: 0976–7754 & E-ISSN: 0976–7762 , Volume 3, Issue 1, 2012, pp-289-292
Available online at http://www.bioinfo.in/contents.php?id=55

UDAI BHAN TRIVEDI AND RAMESH CHANDRA BHARTI

IMS Dehradun, India.
*Corresponding Author: Email- udaibhantrivedi@gmail.com

Received: December 12, 2011; Accepted: January 15, 2012

Abstract- In a single-user database, the user can modify data in the database without concern for other users modifying the same data at the
same time. However, in a multi-user database, the statements within multiple simultaneous transactions can update the same data. Transac-
tions executing at the same time need to produce meaningful and consistent results. Therefore, control of data concurrency and data con-
sistency is vital in a multi-user database environment.
Data concurrency means that many users can access data at the same time.
Data consistency means that each user sees a consistent view of the data, including visible changes made by the user's own transactions
and transactions of other users.To describe consistent transaction behavior when transactions execute at the same time, database research-
ers have defined a transaction isolation model called serializability. The serializable mode of transaction behavior tries to ensure that transac-
tions execute in such a way that they appear to be executed one at a time, or serially, rather than concurrently. Data concurrency is very im-
portant in multi user environment and locking protocol tries to answers this problem. There are three factors affecting the performance of dif-
ferent lock granularities (unit of database, which can be locked by a scheduler, as a granule.). They are the lock overhead, data contention
and resource contention. According to [Bern87], the finer the lock granularity adopted, the more the lock overhead involved and the higher is
the degree of both the data contention and the resource contention. However, the multiprogramming level will also increase. It should be ben-
eficial to short transactions. For long transactions, fine granularity does not help much since the portion of database to be locked will remain
almost the same. [3]n [Ries77] and [Ries79], the authors concluded that coarse granularity is generally preferred except when transactions
access a small part of the database randomly, in which case fine granularity is desired .
Keywords- Database sharing, Data Consistency concurrency control, locking, Multiple Granularity, Serializability, Access modes, Lock table,

Journal of Information and Operations Management
ISSN: 0976–7754 & E-ISSN: 0976–7762 , Volume 3, Issue 1, 2012

 Introduction
Concurrency control in database systems has been a major focus
of research. There are hundreds of schedulers available for con-
currency control in database systems. The design of most of the
schedulers are based on locking [5, 8] or timestamp ordering1 [2,
16]. When an enormous amount of data is to be managed, it is
sometimes advantageous to organize the data in a hierarchical
tree-like structure, especially when the hierarchy of the data is to
be preserved. This helps easy management of data. For example
consider a database of an educational institution. The database
may be partitioned into divisions, a division into departments, a

department into areas, an area into files, a file into records, and so
on (Figure 3). A database is called a tree database if the data
items are organized as nodes of a tree. In reality, a data granule
could be a block of disk, a file, a record of a file, a field of a record,
etc. A data granule is referred to as coarser if the granule contains
relatively more ingredients than a finer granule. For example, the
granularity of a file is coarser, and the granularity of a record in that
file is finer. The granularity of a data item is not an important issue
as far as correctness is concerned (therefore the correctness of the
proposed protocol is not given here), but it is an important issue for
the performance and concurrency of the system

Citation: Udai Bhan Trivedi and Ramesh Chandra Bharti (2012) The Impact of Multiple Granularity on Concurrency Control In Multi User
Environment. Journal of Information and Operations Management ISSN: 0976–7754 & E-ISSN: 0976–7762, Volume 3, Issue 1, pp-289-292.

Copyright: Copyright©2012 Udai Bhan Trivedi and Ramesh Chandra Bharti. This is an open-access article distributed under the terms of
the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the origi-
nal author and source are credited.

Bioinfo Publications 290

Assumptions
1) A few assumptions were in the article. The database can be
broken into some fashion of a hierarchical form, whether that is a
straight hierarchy or a Directed Acyclic Graph, it uses a hierarchical
form.
2) The basic principles of this locking mechanism would be possi-
ble, as long as a hierarchical structure was imposed. If a structure
cannot be imposed, such as in more complex queries, this locking
mechanism may lose its advantages.
This paper focus on Multiple Granularity lock based protocol and its
impacts on concurrency control. This protocol has been used by
major database in sharing environment for concurrency control.
Before we move to the concept of multiple granularity lock base
protocol the discussion of the functioning of lock manager and
Transaction Spooler is very important

The Lock Manager
A global data lock tree is designed to support multigranularity lock-
ing. Each tree node is a data granule which may further represent a
number of finer granules. The major components of each tree node
are execution queue, wait queue and next granular level pointer.
The execution queue registers those granted transaction lock ac-
cesses which are held by some not- yet-finished transactions. The
wait queue is to register those not yet granted transaction lock
request. For the next granular level pointer, it points to a sub tree
and is null for the finest level of granule. The sub tree consists of
descendant nodes of the granule. Lock compatibility table and con-
version table are also designed to support multiple modes of lock
and lock escalation, as shown in Table 1. The lock types supported
by this prototype are intention read, intention write, read- intention-
write, read and write. Figure 1 and Figure 2 describe the of Locking
Process Object Diagram and Sequence Diagram

Fig.1 -Object Diagram (Indicative)

The Transaction Spooler
For transaction spooler, maintains a constant multiprogramming
level by ensuring that a new transaction enters the system only

after another transaction of the same class has left the system.

Fig. 2- Sequence Diagram (Indicative)
Hierarchical locks
We will first assume that the set of resources to be locked is orga-
nized in a hierarchy. Note that this hierarchy is used in the context
of a collection of resources and has nothing to do with the data
model used in a data base system. The hierarchy of Figure 3 is
suggestive. We adopt the notations that each level of the hierarchy
is given a node type which is a generic name for all the node in-
stances of that type. For example, the data base has nodes of type
area as its immediate descendants, each area in turn has nodes of
type file as its immediate descendants and each file has nodes of
type record as its immediate descendants in the hierarchy. Since it
is a hierarchy, each node has a unique parent. [2]

 Fig. 3- A sample locks hierarchy.

Each node of the hierarchy can be locked. If one requests exclu-
sive access (X) to a particular node, then when the request is
granted, the requestor has exclusive access to that node and im-
plicitly to each of its descendants. If one requests shared access
(S) to a particular node, then when the request is granted, the re-
questor has shared access to that node and implicitly to each de-

Journal of Information and Operations Management
ISSN: 0976–7754 & E-ISSN: 0976–7762 , Volume 3, Issue 1, 2012

The Impact of Multiple Granularity on Concurrency Control In Multi User Environment

Bioinfo Publications 291

scendant of that node. These two access modes lock an entire sub
tree rooted at the requested node.
Our goal is to find some technique for implicitly locking an entire
sub tree. In order to lock a sub tree rooted at node R in share or
exclusive mode it is important to prevent share or exclusive locks
on the ancestors of R which would implicitly lock R and its de-
scendants. Hence a new access mode, intention mode (I), is intro-
duced. Intention mode is used to "tag" (lock) all ancestors of a
node to be locked in share or exclusive mode. These tags signal
the fact that locking is being done at a "finer" level and thereby
prevents implicit or explicit exclusive or share locks on the ances-
tors. The protocol to lock a sub tree rooted at node R in exclusive
or share mode is to first lock all ancestors of R in intention mode
and then to lock node R in exclusive or share mode. For example,
using Table 1, to lock a particular file one should obtain intention
access to the data base, to the area containing the file and then
request exclusive (or share) access to the file itself. This implicitly
locks all records of the file in exclusive (or share) mode [4]

Multiple Granularity locking protocol
All the concurrency control protocols operate on individual data
items to achieve synchronization of transactions. It is sometimes
desirable, however, to able to access a set of data items as a sin-
gle unit, e.g., to effectively lock each item in the set in one opera-
tion rather than having to lock each item individually. J.N Gray
presented a multiple granularity locking protocol, which aims to
minimize the number of locks used while accessing sets of objects
in a database [Gray et al. 75]. In their model, Gray et al. organize
data items in a tree where items of small granularity are nested
within larger ones. Each non-leaf item represents the data associ-
ated with its descendants. This is different from the tree protocol
presented above in that the nodes of the tree (or graph) do not
represent the order of access of individual data items but rather the
organization of data objects. The root of the tree represents the
whole database. Transactions can lock nodes explicitly, which in
turn locks descendants implicitly. Two modes of locks were de-
fined: exclusive and shared. An exclusive (X) lock excludes any
other transaction from accessing (reading or writing) the node; a
shared (S) lock permits other transaction to read the same node
concurrently, but prevents any updating of the node.
To determine whether to grant a transaction a lock on a node
(given these two modes), the transaction manager would have to
follow the path from the root to the node to find out if any other
transaction has explicitly locked any of the ancestors of the node.
This is clearly inefficient. To solve this problem, a third kind of lock
mode called intention lock mode was introduced [Gray 78]. All the
ancestors of a node must be locked in intention mode before an
explicit lock can be put on the node. In particular, nodes can be
locked in five different modes. A non-leaf node is locked in intention
-shared (IS) mode to specify that descendant nodes will be explicit-
ly locked in shared (S) mode. Similarly, an intention-exclusive (IX)
lock implies that explicit locking is being done at a lower level in an
exclusive (X) mode. A shared and intention exclusive (SIX) lock on
a non-leaf node implies that the whole sub tree rooted at the node
is being locked in shared mode, and that explicit locking will be
done at a lower level with exclusive-mode locks. A compatibility
matrix for the five kinds of locks is defined as shown in Table 1.
The matrix is used to determine when to grant lock requests and
when to deny them.

Access modes and compatibility:
Two lock requests for the same node by two different transactions
are compatible if they can be granted concurrently. The mode of
the request determines its compatibility with requests made by
other transactions. The three modes X, S and I are incompatible
with one another but distinct S requests may be granted together
and distinct I requests may be granted together.
 Table1. Compatibilities among access modes

To summarize, we recognize five modes of access to a resource:
IS: Gives intention share access to the requested node and allows
the requestor to lock descendant nodes in S or IS mode. (It does
no implicit locking.)
IX: Gives intention exclusive access to the requested node and
allows the requestor to explicitly lock descendants in X, S, SIX, IX
or IS mode. (It does no implicit locking.)
S: Gives share access to the requested node and to all descend-
ants of the requested node without setting further locks. (It implicitly
sets S locks on all descendants of the requested node.)
SIX: Gives share and intention exclusive access to the requested
node. (In particular it implicitly locks all descendants of the node in
share mode and allows the requestor to explicitly lock descendant
nodes in X, SIX or IX mode.)
X: Gives exclusive access to the requested node and to all de-
scendants of the requested node without setting further locks. (It
implicitly sets X locks on all descendants. Locking lower nodes in S
or IS mode would give no increased access.)
The multiple granularity locking protocol increases concurrency and
decreases overhead especially when there is a combination of
short transactions with a few accesses and transactions that last
for a long time accessing a large number of objects such as audit
transactions that access every item in the database. The Orion
object-oriented database system provides a concurrency control
mechanism based on the multi-granularity mechanism described
above [Kim et al. 88; Garza and Kim 88].

Concluding Remarks
A dynamic granularity locking protocol for tree structured data-
bases shares the advantages exhibited by both fine and coarse
granularity locking protocols, and retains the power of multi-
granularity locking protocol. The protocol dynamically changes the
granule size of the data items to be locked depending on the trans-
action-requirements, the current system load condition and the
conflict status of the transactions. The strategy of the protocol is to
follow the principles of coarse granularity locking protocol at light
system load or when conflicts are less, and to follow the principal of
fine granularity locking
Protocol at heavy system load or when conflicts are more

References
[1] Gray J.N., Lorie R.A., Putzolu G.R., Traiger I.L. IBM research

Laboratory San Jose, California.
[2] Fundamental of Data base Systems by Korth

Udai Bhan Trivedi and Ramesh Chandra Bharti

Journal of Information and Operations Management
ISSN: 0976–7754 & E-ISSN: 0976–7762 , Volume 3, Issue 1, 2012

 IS IX S SIX X

IS Y Y Y Y N
IX Y Y N N N
S Y N Y N N
SIX Y N N N N
X N N N N N

Bioinfo Publications 292

[3] lmasri Ramez and Navathe Shamkant B., Fundamental of
Data base Systems.

[4] Tamer M. OZSU and Valduriez Patric, Principal of Distributed
Database Systems.

[5] DATE C.J. (1981) An Introduction to Database Systems Addi-
son-Wesley, Reading, Mass.

[6] Gray J.N., Lorie R.A. and Putzolu G.R. (1975) Very Large
Database, Vol. 1, pp. 428-451.

[7] Gray J.N. et al. (1976) IFIP Modeling of Database Manage-
ment System, pp. 695-723.

[8] Korth H.F. (1981) Distributed Datamanagement and Compu-
ting Networks.

[9] Korth H.F. (1983) Journal of the ACM, Vol. 30, No. 1.
[10] Lehamn T.J. et al.(1986) ACM SIGMOD.
[11] Lehmn T.J. and Caray M.J.(1987) ACM SIGMOD, pp.104-

117, 7.
[12] Ries D.R. and Stonebraker M. (1977) ACM Tran. on Database

Systems, Vol. 2, pp. 233-246, 1977.

The Impact of Multiple Granularity on Concurrency Control In Multi User Environment

Journal of Information and Operations Management
ISSN: 0976–7754 & E-ISSN: 0976–7762 , Volume 3, Issue 1, 2012

