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Abstract - In this paper, we have introduced the concepts of a Genetic Algorithm and we described a Genetic Algorithm –based heuristic for 
solving the flowshop scheduling problems. The flowshop scheduling problem is a production problem where a set of n jobs have to be pro-
cessed with identical flow patterns on m machines. Heuristics play a major role in solving NP –hard combinatorial optimization problems. This 
paper describes a Genetic Algorithm –based heuristic to make-span minimization on flowshop scheduling. We have compared our heuristic 
with the NEH (Nawaz, Enscore, Ham) Algorithm which is the most popular heuristic in the literature. The computational experience shows that 
the Genetic Algorithm approach provides competitive results for flowshop scheduling problems. 
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Introduction 
In this paper we have introduced the model to study a Genetic 
Algorithm. All models are mathematical abstractions of the real 
physical world. The more assumptions one needs to make to get 
the model into a form where known mathematical structures can be 
used to address the real problem, the more uncertainty has crept 
into the modeling process. To ignore this uncertainty is to ignore 
the real world, and our understanding of it. But, we can make the 
models robust and credible by addressing the fact that complexity 
and uncertainty are inextricably related. The flowshop scheduling 
has been a very active and prolific research area since the seminal 
paper of Johnson[27]. The flowshop scheduling problem is a pro-
duction problem where a set of n jobs have to be processed with 
identical flow patterns on m machines. When the sequence of jobs 
processing on all machines is the same we have the permutation 
flowshop sequencing production environment. We study the flow-
shop problems considering the following assumptions:  

 The operation processing times on the machines are known, 
fixed and some of them may be zero if some job is not pro-
cessed on a machine. 

 Set-up times are included in the processing times and they are 
independent of the job position in the sequence of jobs. 

 At a time, every job is processed on only one machine, and 
every machine processes only one job. 

 The job operations on the machines may not be preempted. 
Several heuristic approaches for the flowshop scheduling problem 
have been developed. In recent years, meta-heuristic approaches, 
such as Simulated Annealing, Tabu Search, and Genetic Algo-
rithms, have become very desirable in solving combinatorial optimi-
zation problems because of their computational performance. 
 
Literature Review 
A significant research effort has been devoted for sequencing jobs 
in a flowshop with the objective of finding a sequence that minimiz-
es the make-span. For problems with 2 machines, or 3 machines 
under specific constraints on job processing times, the efficient 
Johnson’s Algorithm 27 obtains an optimal solution for the prob-
lem. The famous “Johnson’s rule” is a fast O(nlogn) method for 
obtaining the optimal solution for the F2/prmu/Cmax (two machines) 
and for some special cases with three machines. Later, Palmer 7 
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presented a heuristic to solve the more general m -machine PFSP. 
Campbell, Dudek and Smith 16 developed another heuristic which 
was basically an extension of Johnson’s Algorithm to the m ma-
chine case. The list of heuristics is almost endless. Ruiz and Maro-
to 25 provided a comprehensive evaluation of heuristic methods 
and concluded that the famous NEH heuristic of Nawaz, Enscore 
and Ham 21 provides the best performance for the F/prmu/Cmax 
problem.  
Regarding Metaheuristics, there is also a vast literature of different 
proposals for the PFSP under different criteria. Within these types 
of techniques we noticed Genetic Algorithms (GAs), Simulated 
Annealing (SA), Tabu Search (TS) and other procedures are con-
sidered as hybrid methods. The first Metaheuristics permutation 
flowshop scheduling problem (PFSP) for Simulated Annealing Al-
gorithms was proposed by Osman & Potts 17 and Ogbu & Smith 
13 Genetic Algorithms are presented in Reeves 2 and  Ruiz, Maro-
to and Alcaraz 24. Recently, other Metaheuristics like Ant Colony 
Optimization, a very fast Tabu Search (TS) approach, Scatter 
Search, an updated and comprehensive review of flowshop heuris-
tics and Metaheuristics, Discrete Differential Evolution, Particle 
Swarm Optimization or Iterated Greedy are presented in Rajendran 
and Ziegler 3 Ruiz and Maroto 25, Onwubolu and Davendra 14, 
Tasgetiren et al 20. and Ruiz and Stützle 26, respectively. Recent 
and high performing approaches include parallel computing meth-
odologies, like the one presented in Vallada and Ruiz 12. Apart 
from make-span minimization, the PFSP has been studied under 
many other criteria. For example, Vallada, Ruiz 12 and Minella 15  
reviewed 40 heuristics and Metaheuristics for tardiness-related 
criteria. 
 
Genetic Algorithm 
Genetic Algorithms were developed by Holland in 1975. The Ge-
netic Algorithm (GA) is a search technique based on the mechanics 
of natural Genetics and survival of the fittest (Goldberg 9. GA simu-
lates the biological processes that allow the consecutive genera-
tions in a population to adapt to their environment. The Genetic 
Algorithm object determines which individuals should survive, 
which should reproduce, and which should die.  Since Genetic 
Algorithms (GAs) are adaptive and flexible, the GAs were shown to 
be successfully applied to several optimization problems. For ex-
ample, they have been applied to routing, scheduling, adaptive 
control, game playing, cognitive modeling, transportation problem, 
traveling salesman problems, optimal control problems, database 
query optimization, etc. 
 
Methodology 
The general procedures of the GA are as follows: 

 Initialize a population of binary or non-binary chromosomes. 

 Evaluate each chromosome in the population using the fitness 
function. 

 Select chromosome to mate (reproduction). 

 Apply Genetic operators (crossover and mutation) on chromo-
some selected. 

 Put chromosomes produced in a temporary population. 

 If the temporary population is full, then go to step 7. Otherwise; 
go to step 3. 

 Replace the current population with the temporary population. 

 If termination criterion is satisfied, then quit with the best chro-
mosome as the solution for the problem. Otherwise, go to step 
2. 

 GAs are different from more normal   optimization and search 
procedures in four ways. 

 GAs work with a coding of the parameter set, not the parame-
ters themselves. 

 GAs search from a population of points, not a single point.  

 GAs do not use derivatives or other auxiliary knowledge. 

 GAs use probabilistic transition rules, not deterministic rules. 
 
Elements of Genetic Algorithms 
Population initialization and population size 
The first element of the GAs is the size of population and how to 
generate the initial population. The initial population of chromo-
somes can be generated randomly or by using some heuristics that 
are suitable for the problem considered. The determination of the 
population size is a crucial element in the GAs. Selecting a very 
small population size increases the risk of prematurely converging 
to a local optimal. Large population size increases the probability of 
converging to a global optimal, but it will take more time to con-
verge. In most of the GA applications, the population size was 
maintained at a constant. Reeves' used the NEH Algorithm to gen-
erate the initial population. He obtained one solution from this heu-
ristic and generated others at random. Chen et al. [5] used the 
CDS Algorithm (a heuristic developed by Campbell, Dudek and 
Smith[3]) to construct the initial population. Chen et al. [5] also 
stated that the initial population for their GA would be generated 
using other well known heuristics (for example, Dannenbring's 
method [6] or a job insertion-based method). We use the m-1 
schedules produced by the CDS method and one schedule pro-
duced by using the Dannenbring’s method to generate an initial 
population. This operator selects a member at random and swaps 
two randomly selected positions of the member to generate a new 
member for the initial population. This procedure will be repeated 
until the number of the members is equal to population size. Chen 
et al. [5] generated some trial examples and run their heuristics 
with different population sizes for each example. They found that 
the population with the size more than 60 cannot guarantee better 
results than the population with the size equal to 60. Therefore, we 
decided to use 60 as a population size for our heuristic. 
 
Fitness function 
The second element of the GAs is the fitness function, which is 
very important of the GAs process of evolution. The GA without 
fitness function is blind because the GA directs its search using 
historical data which are the fitness values of the chromosomes. 
The GA will use the fitness values of each chromosome to deter-
mine if the chromosome can survive and produce offspring, or 
die.There are different criteria used as fitness values of a structure. 
The most popular of these are make-span (maximum completion 
time) and total flow time. We use the make-span criterion in our 
heuristic. For a maximization problem, the measure of performance 
generally constitutes the fitness function. However, our objective is 
to minimize the make-span. For minimization problems, the method 
to determine the fitness function differs from the maximization prob-
lems. Fitness function of the strings can be calculated as follows:  
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f(Si(t))=max{C(Si(t)}-C(Sit)         (1.1)                                                    
where Si(t) is the ith string in tth generation, C(Si(t)) is the make-
span of Si(t) and f(Si(t)) is the fitness function of Si(t). Therefore, 
the probability of selection for a schedule P(Si(t)) with lower make-
span is high (Equation 1.2).  

 P(Si(t)) = f(Si(t))  / Σf                              (1.2) 
This is also the criterion used for the selection of parents for the 

reproduction of children. 
Reproduction (or Selection)of chromosomes 
The selection of chromosomes to reproduce is the third element of 
the GA. Reproduction (or selection) is an operator that makes more 
copies of better strings in a new population. Reproduction is usually 
the first operator applied on a population. Reproduction selects 
good strings in a population and forms a mating pool. This is one of 
the reasons for the reproduction operation to be sometimes known 
as the selection operator. Several selection methods have been 
employed by several researchers to select among the best per-
formers. Some of these methods are: the proportional selection 
scheme; the roulette wheel selection; deterministic selection; rank-
ing selection; tournament selection, etc.   
Roulette wheel selection - Roulette wheel selection is chosen, 
where the average fitness of each chromosome is calculated de-
pending on the total fitness of the whole population. The chromo-
somes are randomly selected proportional to their average fitness. 
Crossover 
Crossover is used as the main Genetic operator and the perfor-
mance of a GA is heavily dependent on it. It’s a fourth element of 
GA. A crossover operator is used to recombine two strings to get a 
better string. It is important to note that no new strings are formed 
in the reproduction phase.  
In the crossover operator, new strings are created by exchanging 
information among strings of the mating pool. A crossover operator 
is mainly responsible for the search of new strings even though 
mutation operator is also used for this purpose sparingly. This heu-
ristic uses the LOX operator that is developed by Falkenauer and 
Bouffouix [11]. 
Mutation  
Mutation is nearly always regarded as an integral part of a GA. 
Mutation generates an offspring solution by randomly modifying the 
parent’s feature. It helps to preserve a reasonable level of popula-
tion diversity, and provides a mechanism to escape from local opti-
ma. For each child obtained from crossover, the mutation operator 
is applied independently with a probability pm (Mutation Probability).   
Generations (iteration)                                         
Now that there is no practicable rule to set suitable stopping condi-
tion and it is also impossible for GA to evolve with too long time in 
real application, the usual way is to set a limit to a number of gen-
erations. These three operators are simple and straightforward. 
The reproduction operator selects good strings and the crossover 
operator recombines good sub-strings from good strings together, 
hopefully, to create a better sub-string. The mutation operator al-
ters a string locally expecting a better string. Even though none of 
these claims are guaranteed and/or tested while creating a string, it 
is expected that if bad strings are created they will be eliminated by 
the reproduction operator in the next generation and if good strings 
are created, they will be increasingly emphasized. Further insight 
into these operators, different ways of implementations and some 
mathematical foundations of Genetic Algorithms can be obtained 

from GA literature.  
We used the number of generations (iterations) as the termination 
criterion. If the number of generations is low the probability of find-
ing the best result is low. Otherwise if the number of generations is 
too high, the iteration time is too long.  
 

Genetic Algorithm Based Heuristic 

Now, we describe GA-based heuristic for the flowshop problems.  
Step 1: Determine the initial population S(0) as described in an 
earlier section. The size of the    population is 60.  t = 0,   NG= 0 
Step 2: Calculate the fitness value, f(Si(t)), of each string for popu-
lation. (See Equation (1.1))  
Step 3: Calculate the selection probability, P(Si(t)), of each string 
for population. (See Equation 1.2) 
Step 4: Select a pair of strings (parents) according to selection 
probabilities of the members of S(t) (using random numbers).                                                                             
Step 5: Constitute the new strings (children) by applying the LOX 
operator to the parents. 
Step 6: Apply the shift mutation to the children with probability 0.05 
(Pm = 0.05).  
Step 7: Put the new strings in S(t+l). If the size of population  
S(t +1) = 60  then NG = NG + 1 and go to Step 8, else go to Step 4  
Step 8: If NG = 20 then stop, else go to Step2  

 
A Model Representation [4] Of Genetic Algorithms 

Fig.1- The fundamental cycle and operations of basic Gas (Gen 
and Cheng, 2000) 

Neh Heuristic 
The NEH heuristic was proposed by Nawaz et al 21 to solve the m-
machine flowshop problem of minimizing make-span. The heuristic 
is based on the assumption that a job with more processing time on 
all machines will be given higher priority while a job with less pro-
cessing time on all machines will receive lower priority. According-
ly, the two jobs with highest processing times are determined from 
the n-jobs problem. The best partial sequence for these two jobs is 
found by considering the two possible partial schedules. The rela-
tive positions of these two jobs with respect to each other are fixed 
in the remaining steps of the heuristic. Next, the job with the third 
highest processing time is determined and three partial sequences 
are tested in which this job is placed at the beginning, middle, and 
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end of the partial sequence found before. The best partial se-
quence fixes the relative positions of these three jobs in the re-
maining steps of the heuristic. This procedure is repeated until all 
jobs are fixed and scheduled. 
 
Computational Result 
In order to examine the effectiveness of the GA-based heuristic, 
one comparison was made over a wide range of jobs and ma-
chines. We compared our heuristic with the NEH processing time 
is determined and three partial sequences are tested in which this 
job is placed at the beginning, middle, and end of the partial se-
quence found before. The best partial sequence fixes the relative 
positions of these three jobs in the remaining steps of the heuris-
tic. This procedure is repeated until all jobs are fixed and sched-
uled. 

Table 1- Relative Performance of Goa  

Algorithm which is the most popular heuristic in the literature. NEH 
is about three decades old heuristic but most 

 
Table 2- Comparison of GA with the New 

 
Researchers still compare their heuristic with NEH or they include 
NEH in their Algorithms. Armentano et al 28. showed the improve-
ment percentage of Tabu Search with diversification and intensifi-
cation compared to NEH Algorithm. Koulamas 1 proposed a new 
heuristic called HFC (Heuristic Flowshop Scheduling with Cmax 
objective) and compared HFC with NEH Algorithm. Ronconi 10 

also compared his MM (Min/Max) Algorithm with NEH. Framinan 
et al 18. showed the excellent performance of the NEH in their 
Algorithm. They proposed a heuristic for mean/total flow time mini-
mization in permutation flow shops. The heuristic exploits the idea 
of 'optimizing' partial schedules, already present in the NEH heu-
ristic with respect to make-span minimization.The processing 
times were randomly sampled from a uniform distribution ranging 
from 1-20. In all, 230 problems were generated for 23 different 
combinations of job size and number of machines. It was not pos-
sible to solve problems larger than 40 x 40 because of software 
and machine limitations. This is caused by the built up computer 
memory requirements from the sizable GA population and the 
operations being carried out on it. The result of the two compari-
sons are presented in the following tables. In Table 1 the relative 
performance of the GA-based heuristic to the NEH was computed 
by CGA/CNEH where the C refers to the average make-span of 
the problems in the combination. Problems, used for calculation 
are the same as in Table 2 (200 runs were performed).In Table 2, 
the first column is the pairing of the number of jobs, n, and the 
number of machines, m. The second column is the number of 
generated problems for the pairing. The third column and fifth 
column illustrate the number of times the best solution was ob-
tained by the heuristic used, respectively. The fourth column 
shows the number of times that two heuristics in a comparison 
give the same make-span. The last two columns show the per-
centage of success of each heuristic, the total number of times 
that the heuristic gives the best solution (number of advantage + 
number of even) divided by the number of generated problems. 
(the method of Widmer and Hertz22. According to the results in 
Table-1 the GA-based heuristic obviously yields better average 
make-span than the NEH. Table 2 shows that in the 230 generat-
ed examples, the NEH gets better results than the GA-based heu-
ristic only 56 times out of 230, while the GA-based heuristic is 
better 139 times out of 230. The NEH and the GA-based heuristic
[23] give the same results 35 times out of 230. 
 
Conclusions and Directions for Future Reserch 
In this paper, we have introduced the fundamental model and 
described a GA-based heuristic for solving the flowshop schedul-
ing problems. The Algorithm is easily implementable and performs 
quite effectively. Genetic Algorithms are easy to apply to a wide 
range of problems, from optimization problems like the traveling 
saleman problem, to inductive concept learning,scheduling, and 
layout problems. The results can be very good on some problems, 
and rather poor on others. Many scheduling problems are NP-hard 
problems. For such NP-hard combinatorial optimization problems, 
heuristics play a major role in searching for near-optimal solu-
tions.. If only mutation is used, the Algorithm is very slow. Crosso-
ver makes the Algorithm significantly faster. In this GA-based heu-
ristic, we generate a different parameter set for the Genetic opera-
tors. We protect the best schedule which has the minimum make-
span, at each generation. Then we transfer this schedule to the 
next population with no change. This operation enables us to 
choose the higher crossover and mutation probability pc  = 1 
(crossover probability) and  pm =  0.05 (mutation probability). So 
we increase the diversity of the population to get a better solution. 
We also show the excellent performance of the LOX operator. 
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n x m 
Generated  
Problems 

Advantage 
GA 

Even 
Advantage 
NEH 

%  
GA 

%  
NEH 

8 x 5 10 8 2 0 100 20 

8 x 10 10 4 6 0 100 60 

8 x 15 10 8 2 0 100 20 

8 x 20 10 8 1 1 90 20 

10 x 5 10 4 4 2 80 60 

10 x 10 10 7 2 1 90 30 

10 x 15 10 6 2 2 80 40 

10 x 20 10 7 3 0 100 30 

15 x 5 10 9 0 1 90 10 

15 x 10 10 7 3 0 100 30 

15 x 15 10 5 1 4 60 50 

15 x 20 10 7 0 3 70 30 

20 x 5 10 3 2 5 50 70 

20 x 10 10 6 1 3 70 40 

20 x 15 10 6 1 3 70 40 

20 x 20 10 5 0 5 50 50 

30 x 5 10 1 3 6 40 90 

30 x 10 10 5 0 5 50 50 

30 x 15 10 4 0 6 40 60 

30 x 20 10 2 2 6 40 80 

30 x 30 10 8 0 2 80 20 

35 x 35 10 9 0 1 90 10 

40 x 40 10 10 0 0 100 0 

Total 230 139 35 56 76 40 

M         

 n 5 10 15 20 

8 0.981 0.988 0.984 0.989 

10 0.991 0.983 0.991 0.989 

15 0.988 0.972 0.996 0.987 

20 1.001 0.995 0.994 0.999 

30 1.007 0.998 1.001 1.005 
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Most researchers use 0.01 mutation probability in their heuristic. 
This heuristic uses 0.05 value of mutation probability and achieve 
good results. Using a mutation probability higher than 0.05 may 
reduce the convergence. Investigation of this would lead to a fur-
ther study of GAs. According to the computational results, the GA-
based heuristic success rate is 76% (in Table 2). Therefore, this 
heuristic is quite effective for flowshop scheduling problems. Also, 
the GA-based heuristic can be easily extended to solve flowshop 
problems with other criteria, such as total flow time, maximum 
tardiness, total tardiness, etc.  
Future research directions [19] suggested here are intended to 
bridge the gap between the development of theory and practical 
applications of theory. Three areas of research are identified: 

 Theoretical,  

 Computational, 

 Empirical research  
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