
Bioinfo Publications 54

THE USE OF HINTS IN SQL-NESTED QUERY OPTIMIZATION

Journal of Data Mining and Knowledge Discovery
ISSN: 2229–6662 & ISSN: 2229–6670, Volume 3, Issue 1, 2012, pp.-54-57.
Available online at http://www. bioinfo. in/contents. php?id=42

LOKHANDE A.D. AND SHETE R.M.

M. E Computer Science and Engineering Dept., Sipna C. O. E. T. Amravati, MS, India.
*Corresponding Author: Email- abhilokhande11@gmail.com and shete_rushikesh@yahoo.com

Received: February 21, 2012; Accepted: March 15, 2012

Abstract- The query optimization phase in query processing plays a crucial role in choosing the most efficient strategy for executing a que-
ry. In this paper, we study an optimization technique for SQL-Nested queries using Hints. Hints are additional comments that are inserted
into an SQL statement for the purpose of instructing the optimizer to perform the specified operations. We utilize various Hints including
Optimizer Hints, Table join and anti-join Hints, and Access method Hints. We analyse the performance of various nested queries using the
TRACE and TKPROF utilities which provide query execution statistics and execution plan.
Keywords- Hint, query optimization, parsing.

Journal of Data Mining and Knowledge Discovery
ISSN: 2229–6662 & ISSN: 2229–6670, Volume 3, Issue 1, 2012

Introduction
Query optimization is the most important stage in query pro-
cessing where the database optimizer has to choose a query-
evaluation plan with minimized cost and maximized performance
[4,6]. The functionality of query optimization in deciding the best
query execution plan is a significant task since there are a lot of
possible queries in terms of the canonically equivalent algebraic
expression for one given SQL query [4,7,8]. Moreover, the re-
sponse time for those algebraic representations can vary one
from another. Nonetheless, the efficiency of the chosen plan could
make a great difference to the system’s performance and hence
this step should not be neglected. This is especially the case
when the query being optimized consumes a considerable
amount of resources such as physical disk reads and memory
buffer. Thus, reasons such as these have made the task for query
optimization critically important. There are three essential compo-
nents of a query optimizer [4,9]: (1) search space, (2) cost model-
ing, and (3) search strategy. In the search space, there are sever-
al possible canonical equivalent query expressions who secriteria
of each nested query type. The first condition is that the inner
query block Q has a join predicate that references the outer query

block. The second condition is that the SELECT clause of Q in-
cludes an aggregate function. The final condition is that the inner
query block Q contains a division predicate. There are two com-
monly used query optimization techniques which are: the Heuris-
tics and the Cost estimation technique. A Heuristics method trans-
forms the initial query presentation into an efficient query tree
equivalent based on the order of operation for executing a query
[6,8]. Based on these classifications, Kim [4] proposed sets of
algorithms to transform the initial nested queries to their canonical
equivalent non-nested form. This allows the query optimizer to
choose a merge join algorithm when implementing nested queries
rather than applying the high cost nested-iteration method. Due to
the estimation nature of this technique, the need for Hints has
emerged. The introduction of Hints for nested query optimization
has indicated the inability of those commonly used optimization
techniques to produce the best strategy for every nested query.
By applying Hints as an optimization technique, the search strate-
gy is directed to choose the optimize execution plan based on the
specified knowledge which is stated in Hints [2,]. There are two
main goals of Hints optimization: a faster response time, and low-
er resource consumption. Moreover, the Hints approach is easy to

Citation: Lokhande A.D. and Shete R.M. (2012) The use of Hints in SQL-Nested query optimization. Journal of Data Mining and Knowledge
Discovery, ISSN: 2229–6662 & ISSN: 2229–6670, Volume 3, Issue 1, pp.-54-57.

Copyright: Copyright©2012 Lokhande A.D. and Shete R.M. This is an open-access article distributed under the terms of the Creative Com-
mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Bioinfo Publications 55

understand in terms of human language and its process is simple
to follow 3.

Hints: a background and classifications
we use USE_HASH Hint to optimize the nested query between
cust_order and staff tables. Oracle provides an extensive list of
Hints that can be used to tune various aspects of a query perfor-
mance [1]. We categorize Hints for nested query optimization into
three parts: (1) optimizer Hints, (2) table join and anti-join Hints,
(3) access method Hints.

Fig. 1- Using a hint in an SQL statement

Optimizer Hints
Optimizer Hints apply a different optimizer to a query, which in turn
redirects the overall processing goal The all_rows Hint explicitly
chooses the cost estimation technique to optimize a statement
block with a goal of best throughput [1] Oracle offers four kinds of
optimizer Hints, which are all_rows, first_rows, rule, and choose
The choose Hint causes the optimizer to choose between the
Heuristics optimization and cost estimation techniques for an SQL
statement. The optimizer bases its selection on the presence of
statistics for the tables accessed by the statement.

Table join and anti-join Hints
There are several Hints in the table join and anti-join Hints provid-
ed by Oracle as shown in Fig. 3, which are: use_nl Hint,
use_merge Hint and use_hash Hint. The use_nl Hint causes Ora-
cle to join each specified table to other row sources with a nested
loop join that uses the specified table as the inner table. In gen-
eral, the default join method in Oracle is the nested loop join [24].
Therefore, use_nl Hint is not used in the performance evaluation.
There are six Hints which can be used for join nested query opti-
mization:

The use_hash Hint. The Hint invokes a hash join algorithm to
merge the rows of the specified tables. In many circumstances, it
changes the access path to a table in addition to the change in
join method [12].

The use_merge Hint. Alternatively, the Hint forces the optimizer
to join tables using the sort-merge operation [2].

Fig . 2- The effect of adding an optimizer hint

Fig. 3- Table joins and anti-joins hints

Fig. 4- Optimizer hints

The hash_sj Hint. This is a semi-join Hint that is added to the inner
block of a correlated nested query using the EXISTS clause for
the purpose of transforming the query into a hash semi-join to
access the specified table.

The merge_sj Hint. Similarly, the Hint also transforms a correlat-
ed EXISTS nested query into a semi-join except that it invokes a
merge semi-join.

The hash_aj Hint. The Hint is placed in the inner loop of a NOT
IN nested query to invoke a hash anti-join operation.

The merge_aj Hint. The Hint joins the tables in a NOT IN nested
query using the merge anti-join operation.

Experimental Results
For the purpose of experimentation in the paper, a Sales database
has been created as a sample database. We perform the experi-
ments on Pentium IV 1. 8 GHz CPU with 256MB. We use Oracle9i
Database to perform our SQL queries. The Exception is given to
table Cust and table Staff; in our experimental results the terms
Cust and Customer are interchangeable to identify table Cust; also
in our experimental results we use name Staff_S and Staff inter-
changeably to identify table Staff.
In the next section, we use an experimental Hints optimization
technique and also an optimization technique without using Hints.
For the No-Hint approach, the optimizer system will choose the
commonly used optimization techniques which are: the Heuristics
and Cost estimation techniques. We also compare those optimiza-
tion techniques results based on the join nested query framework

Fig. 5- Sales order systems

Journal of Data Mining and Knowledge Discovery
ISSN: 2229–6662 & ISSN: 2229–6670, Volume 3, Issue 1, 2012

The use of Hints in SQL-Nested query optimization

Bioinfo Publications 56

Access method Hints
The access method Hints can be classified into Hints without in-
dex and Hints with index. Rowid Hint is one of Hints without index
with syntax: /*+ Hint(table) */. Hints with index consist of index
Hint, index_ join Hint and index_ffs Hint with syntax: /*+ Hint
(table, index) */. As shown on Fig. 6, there is a SELECT statement
with index Hint consist of two parameters which are V as the alias
of table Inventory and Inventory_invid_pk as the table index of
table Inventory.

Nested query optimization framework
In this section, we explain the nested query and the optimizer
modes used in our experimentations.

Nested queries
Basically, a nested query is a query within another query in a nest-
ed form and can be classified into four groups [6,7,13], which are:

Standard nested queries (IN),

Non-equality nested queries (ANY/ALL with conditional opera-
tors),

Semi-join nested queries (EXIST),

Anti-join nested queries (NOT EXIST and NOT IN).

Optimizer modes
There are two kinds of optimizer modes in Oracle: the Heuristics
optimizer and the Cost estimation optimizer [6]. The Heuristics
optimizer’s main function is to reduce the size of the intermediate
result. In general, the SELECT and PROJECT operations, which
reduce the number of records and the number of attributes re-
spectively, are found to be the most restrictive operations [6].
Apparently, the re-ordering of the leaf nodes on the query tree can
have a significant impact on the system’s performance and,
hence, good Heuristics should be applied whenever possible.
However, as shown in the performance evaluation section, this
optimizer mode is less effective on many join nested queries opti-
mizations when compared with using Hints on CBO optimizer
mode. The Cost estimation optimizer determines which execution
plan is the most efficient by considering available access paths
and by factoring in information based on statistics for the schema
objects (tables or indexes) accessed by the SQL statement [11].
For instance, the decision to choose between an index scan and a
full-table scan for a table with skewed (disproportional) data will
not always be obvious, and hence cannot be concluded without
first examining the statistics. A Cost estimation optimizer will favor
an index scan over a full-table scan if a given query retrieves less
than 40% of the data in a table. On the other hand, a full-table
scan will be preferred if the retrieved data will be over 60%. As
can be seen, the Cost estimation optimizer is more flexible and
intelligent in choosing the SQL operations. Therefore, it should
make a better execution plan than the Heuristics optimizer does if
it has all the statistical information it needs. Moreover, Cost esti-
mation has two main optimization goals: the fastest response time
with minimum resource usage, and the best throughput with mini-
mum total resource consumption.

Performance evaluation
In this section, we present our performance evaluation result in-
corporating Hints using TKPROF utility in Oracle.

5. 1. Execution plan (query tree) and TKPROF utilities
In general, an execution plan is the strategy produced and used
by the optimizer to process a query in order to get the desired
result [12]. It is also known as the query tree due to its tree-like
structure. It is essential to understand the functioning of the exe-
cution plan, as it provides a useful indication of the performance of
the query processing. For instance, as shown in the following
illustration (Fig. 10), an indexed nested loop join is used to join the
tables in the given query. The join method may indicate an effi-
cient processing, as the previous section explained that the pres-
ence of an index in the inner table may dramatically improve the
performance of the nested loop join. However, the operations
used in the execution plan are only an indicator, not an absolute
answer. Moreover, its main function is to explain the steps in-
volved in the processing and the sequence of execution. As can
be seen, there are four steps involved in the processing of the
given query:
Step 1: Nested loops;
Step 2: Full-table access to Orderline table;
Step 3: Table access to Inventory table by index ROWID;
Step 4: Index unique scan on the primary key of the Inventory
table.
The operations below the nested loops are indented indicating
that they are executed prior to the join operation. Hence, the first
execution is Step 2, which will retrieve a row from the Orderline
table and return it to

Step 1. Then, Step 1 will send the invid (inventory number) to Step
4 for every row obtained from Step 2.
Step 4, the optimizer will perform an index unique scan on the
invid to gather the ROWID. If no ROWID is found, Step 3 will in-
struct Step 1 to discard the row. Otherwise, Step 3 will use the
ROWID to access the Inventory table to retrieve the correspond-
ing row. Finally, Step 3 will return the row to Step 1, where the row
will be joined with that from Step 2 if the current price is equal to
the order price. If the two prices are not the same, Step 3 will not
return a row, and Step 1 will eliminate the row from the result set.
The steps will be carried out recursively until all the rows have
been processed. The TRACE utility is also known as the SQL
trace facility, which can be activated only by setting the relevant
parameters. There are two types of parameters that need to be
carefully set [2]: a file size and location parameters (eq. Us-
er_dump_dest=c:norahomentracefile) b function enabling parame-
ters (e. g. time_statistics and sql_trace). However, the report pro-
duced is difficult to understand. Therefore, it must be used in con-
junction with the TKPROF utility, whose task is to translate the
traced result into a readable format [2]. When the Oracle database
is installed, TKPROF is automatically installed in the directory
norahomenbin. Firstly, we add norahomenbin to the current path.
Then, the utility is invoked by using the following command:

Tkprof<TraceFile><outputFile>[explain=<username><password>]

The trace file has an extension of . trc, while the output file that is
in the readable format will have an extension of . prf. It is essential
to specify the location in both the hTraceFile iand the hOutputFile
i, otherwise, TKPROF would not be able to perform its task due to
the missing file. The following shows the command line we use to

Lokhande A.D. and Shete R.M.

Journal of Data Mining and Knowledge Discovery
ISSN: 2229–6662 & ISSN: 2229–6670, Volume 3, Issue 1, 2012

Bioinfo Publications 57

invoke TKPROF: Tkprof d:\ora0001. trc d:\trace. prf explain =
system/manager. As shown in Fig. 11, the TKPROF result is divid-
ed into three parts which are: sql statement, statistic information
and execution plan. The statistics section contains seven statistics
measurements and one call column (the first column) indicating
the phases of query execution. The following will provide a de-
scription of the phases and the statistics measurements.

Phases
• Parse. The parser checks the syntax and the semantics of the
SQL statement, which will be decomposed into relational algebra
expressions for execution.
• Execute. After the parsing and validation stage, the optimizer will
execute the decomposed SQL statement using the execution plan
operations shown in Fig. 11.
• Fetch. Finally, in the fetching phase, the optimizer will retrieve
the final output from the corresponding tables based on the in-
struction passed from the query execution phase.

Conclusions
The need for a query optimization technique for providing the best
response time and the best throughput in query processing is very
important. Considering that nested queries are the most complex
and expensive operators, this paper has focused on providing an
effective optimization technique by using Hints. The chosen tech-
nique is precisely a manual tuning that requires users to insert
additional comments into an SQL statement.

Acknowledgement
I express my sincere gratitude to Resp. Dr. A. D. Gawande Head
of the Department, Computer Science & Engineering & Resp. Prof
S . Dhande for providing their valuable guidance and necessary
facilities needed for the successful completion of this seminar
throughout. I am also obliged to our principal, Resp. Dr. S. A.
Ladhake who has been a constant source of inspiration through-
out.
Lastly, but not least, I thank all my friends and well-wishers who
were a constant source of inspiration.

References
[1] Andrei M. and Valduriez P. (2001) User-optimizer communica-

tion using abstract plans in Sybase ASE, 29-38.
[2] Burleson D. K. (2001) Oracle High-Performance SQL Tuning.
[3] Chaudhuri S. and Shim K. (2003) An overview of cost-based

optimization of queries with aggregates, IEEE, 18(3) 3-9.
[4] Chaudhuri S. (2006) An overview of query optimization in

relational systems, 34-43.
[5] Chaudhuri S. and Shim K. (2009) Optimization of queries with

user-defined predicates, 24(2), 177-228.
[6] Elmasri R. and Navathe S. B. (2004) Fundamentals of Data-

base Systems.
[7] Ganski R. A. and Wong H. K. T. (2005) Optimization of nested

SQL queries revisited, 23-33.

The use of Hints in SQL-Nested query optimization

Journal of Data Mining and Knowledge Discovery
ISSN: 2229–6662 & ISSN: 2229–6670, Volume 3, Issue 1, 2012

