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Introduction 
Symmetric duality in nonlinear programming was first introduced by 
Dorn [1]. He introduced the concept of symmetric duality for quad-
ratic problems. Later on Dantzig et al.[2] formulated a pair of sym-
metric dual nonlinear programs involving convex/concave func-
tions. Mangasarian [3] introduced the concept of second-order 
duality for nonlinear problems. Mond and Schechter [4] constructed 
two new symmetric dual pairs in which the objectives contain a 
support function and are therefore 
nondifferentiable. Second order symmetric duality for Mond-Weir 
type duals involving nondifferentiable function has been discussed 
by Hou and Yang [5]. 
The symmetric dual problems in the above papers involve only one 
kernel function. In this paper, we present nondifferentiable sym-
metric dual multiobjective problems involving two kernel functions.           
 
Prerequisites 
We consider the following multiobjective programming problem: 
(P) Minimize 

 

Subject to :,  

Where and  

For a function , let denote the 

 matrix of first order derivatives and  denote 

the  matrix of second order derivatives. 

For  

 

 

 
Definition 1 

A point  is said to be an efficient solution of (P) if there ex-

ists no  such that  

 
 
Definition 2 [6] 

The function F is -invex at if there exists a vector val-

1 2 kF(x)={  (x), F  (x),..,F  (x) }F

  n
jx X={ x R | G (x)  0, j=1, 2,.., m }

n mG : R R n kF :R R .

n m kf : R R R   x yf ( f) 

 n k ( m k ) xy if

n m

 na,b R ,

i ia b a b ,i 1,2,...,n,   

a b a b and a b,   

i ia b a b , i 1,2,...,n.   

x X

x X

F(x) F( x ).
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ued function   such that 

 
 
Definition 3 [4] 

Let S be a compact convex set in . The support function 

of  S is defined by 

                          
 

The subdifferential of  is given by 

                      

For any convex set , the normal cone to S at a point  

is defined by 
                 

 
It is readily verified that for a compact convex set S, y is in  

if and only if   
 
Wolfe Type Symmetric Duality  
We now consider the following pair of Wolfe type second- order 
nondifferentiable multiobjective programming problems.  
 
Primal (WP) 
Minimize 

 
Subject to  

                    (1) 

                                                                          (2) 

                                                      (3) 
 
Dual (WD) 
Maximize  

 
Subject to  

                         (4) 

                                                                           (5) 

                                                       (6) 
 

where 

(i)   is a twice differentiable function of x  and y, 

(ii)  is a thrice differentiable function of x  and 
y, 

(iii) and 

(iv) D and E are compact convex sets in and respective-
ly. 
 

Any problem, say (WD), in which  is fixed to be will be de-

noted by . 
 
Theorem 1 (Weak duality)  

Let  be feasible for (WP) and   be 
feasible for (WD). Let 
 

(i)  be  invex at u for fixed v and z, 

(ii)  be  invex at y for fixed x and w, 

(iii)   

(iv)  
 
Then  

 
Proof 
Suppose, to the contrary, that 

 

Since  and  the above vector inequality implies 

(7) 

From  invexity of , we have 

 

  n n n: R R R

     T nF(x) F(u) (x,u) K(u) 0, x R .

nR

s(x | S)

 Ts(x | S) max{ x y :y S}.

s(x | S)

   Ts(x | S) { z S:z x s(x | S)}

 nS R

x S

n T
SN (x)={y R :y (z x)  0 for all z S}.   

SN (x)  Ts(y | S) x y.

     T T T T
y yyf (x,y) s(x|D)e (y ( f (x,y)))e (y ( (h g(x,y))p))e

    T T T
y yyy ( f (x,y)) w (h g(x,y))p 0,

Te=1,

m0,x  0,w R .   

     T T T T
x xxf (u,v) s(u|E)e (u ( f (u,v)))e (u ( (h g(u,v))q))e

    T T
x xx( f (u,v)) z (h g(u,v))q 0,

Te=1,

n0,v  0, z R ,   

 n m kf : R R R

 n m rg : R R R

   m n T kp R ,q R ,e (1,...,1) R ,

nR
mR ,

 


(WD)

(x,y, , h,w,p) (u,v, , h, z, q)

 Tf(.,v) ((.) z)e  1

 Tf(x, .) ((.) w)e  2

     1 2(x,u) u 0, (v,y) y 0 and

T T
1 xx

T T
2 yy

(x,u)( (h g(u,v)q 0,

(v,y) (h g(x,y)p 0.

  

  

T T T T
y yy

T T T T
x xx

f (x,y) s(x|D)e (y ( f (x,y)))e (y ( (h g(x,y))p))e

f (u,v) s(u|E)e (u ( f (u,v)))e (u ( (h g(u,v))q))e.

     

      

     

      

T T T T
x xx

T T T T
y yy

f (u,v) s(u|E)e (u ( f (u,v)))e (u ( (h g(u,v))q))e

f (x,y) s(x|D)e (y ( f (x,y)))e (y ( (h g(x,y))p))e.

  0 Te=1,

     

      

T T T T
x xx

T T T T
y yy

f (u,v) s(u|E)e (u ( f (u,v)))e (u ( (h g(u,v))q))e

f (x,y) s(x|D)e (y ( f (x,y)))e (y ( (h g(x,y))p))e.

 1  Tf(.,v) ((.) z)e

  

   

T T

T T T
x 1

f (x,v) (x z)e  f (u,v) (u z)e

( f (u,v) z e) (x,u) .
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Using , we obtain 

                           (8) 
From the dual constraint (4) and hypothesis (iii), it follows that 

                 (9)  
Now inequalities (8), (9) along with hypothesis (iv), yield 

                      (10) 

Similarly by -invexity of , the primal con-
straints (1) and hypotheses (iii) and (iv), we obtain 

                 (11)                           
Adding inequalities (10) and (11), we get 

 

Finally, since , we obtain 

 
 
which contradicts inequality (7). Thus the result holds. 
Theorem  2 (Strong duality) 

Let  be an efficient solution for 
(WP). Suppose that 
 

(i) is nonsingular, 

(ii) the set  is linearly inde-
pendent, and 

(iii)  

Then  is feasible for and the objective 

function values of (WP) and  are equal. Also, if the hy-
potheses of Theorem 1 are satisfied for all feasible solutions of 

and , then  is an efficient solu-

tion for . 
 
Proof 

Since is an efficient solution for ,by the Fritz 
John necessary optimality conditions [7], there exist 

such that the fol-

lowing necessary conditions are satisfied at : 

                                                                                      
(12) 

 (13)   
                                                                               

                       (14) 

                    (15) 

                              (16) 

                                                                   (17) 

                                                             (18) 

                                                                      (19) 

                                                                      (20) 

            (21) 

                                                   (22) 

                                                          (23) 

                                                      (24) 

As  from (19) we conclude that . By hypothesis (i), 
equation (16) implies 

                                                                 (25) 

  0

T T T T

T
1 x

( f)(x,v) (x z)  ( f) (u,v) (u z)

(x,u)( ( f) (u,v) z).

    

    

T T
1 x xx

T TT
x xx

(x,u)( ( f (u,v)) z (h g(u,v))q)

( ( f (u,v)) z (h g(u,v))q).u

    

    

T T T

T T T
x xx

( f)(x,y) (x z) ( f)(u,v)

u ( ( f)(u,v) (h g(u,v))q).

   

   

2
Tf(x,.) ((.) w)e

T T T

T T T
y yy

( f)(x,y) ( f)(x,v) (v w)

y ( ( f(x,y))) (h g(x,y))p).

   

   

T T T T
y

T T T T
yy

T T T T
x xx

( f)(x,y) (x z) (y ( f(x,y)))

(y (h g(x,y))p) ( f)(u,v) (v w)

(u ( f(u,v))) ((u (h g(u,v))q).

    

    

    

T Tx z s(x |D), v w s(v |E) 

T T T
y

T T T
yy

T T T T
x xx

( f)(x,y) s(x |D) (y ( f(x,y)))

(y (h g(x,y))p) ( f)(u,v) s(v |E)

(u ( f(u,v))) (u (h g(u,v))q),

    

    

    

(x,y, , h, w, p)

T
yy (h g)(x,y)

y 1 y 2 y k{ f (x,y), f (x,y),...... f (x,y)}  

T
yy y 1 y 2

y k

(h g)(x,y)p span{ f (x,y), f (x,y),......

.................. f ( x,y)} \ {0}

   



(x,y, ,h,p 0)  (WD)


(WD)


(WP)


(WD)
 (x,y, ,h,p 0) 

(WD)


(x,y, ,h,p) (WP)

k m k nR , R , R, R and ,z R     

(x,y, ,h,w,p)

T T
x yx

T T
x yy

( f( x,y) e ) [( ( f)(x,y)

(( (h g)(x,y)p]( ( e)y) 0,

     

    

T T
y yy

T T T T
y yy yy ,

f(x,y)( ( e) ) [( ( f)(x,y)

(( (h g)(x,y)p]( ( e)y) ( e) (h g)(x,y)p 0

       

       

T T T
y( ( e)y) f(x,y) e 0,       

T T T
h yy( ( e)y) ( (h g)(x,y)p) 0,    

T T T
yy( ( e)y) (h g)(x,y) 0,   

EN (w),

T( e 1) 0,   

T 0,  

Tx 0,

T T T
y yy[ ( f)(x,y) w (h g)(x,y)p] 0     

TD, x s(x |D),  

( , , , , ) 0,     

( , , , , , ) 0,      

0,  0 

T( e)y.  
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Therefore (14 ) yields . 
 

Now suppose . Then equation (25) implies . Also, 

equation (12) implies that . Hence, , 

which contradicts (24). Hence, So or 

                                                                      (26) 
   
Therefore equations (25) and (26) yield 

                            
Now, from (13) and (25), we have 

      (27) 
Using the hypothesis (iii), the above relation implies 

 which by hypothesis (i) and (26) yield 

= 0.                                                                           (28) 
Therefore equation (27) gives 

 

Since the set is linearly 
independent, the above equation implies 

.                                                               (29) 
 
Using (25), (26) and (29) in (12), we get 

                                       (30) 
 

Thus  is a feasible solution for the problem

. 
Now from equation (30), 

 
or using (22) 

                     (31) 

Also, as E is a compact convex set in ,  
 
Further, from (21), (25), (26) and (28), we obtain 

                             (32) 
 

Thus, the two objective function values are equal. Using weak 

duality it can be easily shown is an efficient 

solution of . 
 
Theorem 3 (Converse duality) 

Let be an efficient solution for  Suppose 
that 
 

(i) be nonsingular, 

(ii) the set is linearly inde-
pendent, and 

(iii)  

Then is feasible for and the objective 

function values of and are equal. Furthermore, if 
the hypotheses of Theorem 1 are satisfied for all feasible solutions 

of and then is an efficient 

solution for . 
 
Proof 
Follows on the lines of Theorem 2. 
 
Acknowledgement 
The second author is thankful to the MHRD, Government of India 
for providing financial support. 
 
References 
[1] Dorn W.S. (1960) Journal of Operations Research Society of 

Japan, 2, 93-97.    
[2] Dantzig G.B., Eisenberg E., Cottle  R.W. (1965) Pacific Jour-

nal of Mathematics, 15, 809-812. 
[3] Mangasarian O.L. (1975) Journal of Mathematical Analysis 

and Applications, 51, 607-620. 
[4] Mond B., Schechter M. (1996) Bulletin of Australian Mathemat-

ical Society, 53, 177-188. 
[5] Hou S.H., Yang X.M. (2001) Journal of Mathematical Analysis 

and Applications, 255, 491-498. 
[6] Gulati T.R., Geeta (2010) Applied Mathematics letters, 23, 466

-471.  
[7] Schechter M. (1979) Journal of Mathematical Analysis and 

Applications, 71, 251-261. 

0 

0  0 

0 ( , , , , , ) 0      

0,  0, 

Te 0. 

T
y 0.

e


 


T T T
y yyf(x,y)( ( e) ) ( e) (h g)(x,y)p.      

T T
yy( e) (h g)(x,y)p 0  

p

T
y( f)(x,y)( ( e) ) 0.    

y 1 y 2 y k{ f (x,y), f (x,y),...... f (x,y)}  

T( e)   

T
x( ( f)(x,y) ) 0.    

(x,y,h,z ,q 0)  

(WD)


T T T
xx ( (( f)(x,y) z) x 0    

T T T
xx ( (( f)(x,y)) x z s(x |D).     

mR
Ty w s(y |E).

T T T
yy ( f)(x,y) y w s(y |E).   

(x,y,h,z,q 0)
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T
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xx x x1 2

x k
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