
Bioinfo Publications 265

UART WITH AUTOMATIC BAUD RATE GENERATOR AND FREQUENCY DIVIDER

Journal of Information Systems and Communication
ISSN: 0976-8742 & E-ISSN: 0976-8750, Volume 3, Issue 1, 2012, pp.- 265-268.
Available online at http://www.bioinfo.in/contents.php?id=45

BHAVNA MAHURE1*AND RAHUL TANWAR2

1Department of Electronics & Communication, JNU, Jaipur, Raj., India
2Department of Computer Science & Information Technology, JNIT, Jaipur, Raj., India
*Corresponding Author: Email- bhavnamahure@gmail.com, rahul123tanwar@gmail.com

Received: January 12, 2012; Accepted: February 15, 2012

Abstract- This paper concentrates on developing a serial communication protocol including bus automatic baud rate detection with selection
and bit synchronization, frequency division according to the input clock. All modules are designed using Verilog programming language and
implemented on Xilinx Spartan-3 FPGA development board.
 In the result and simulation part, this paper will focus on baud rate generation at different frequencies and check the receive data with error
free. Besides, in the Baud Rate Generator part, the Baud Rate Generator is incorporated into the UART design before the overall design is
synthesized. The role of frequency divider here we can use this at those places where we require lower frequency to operate the functionality.
This frequency divider will automatically adjusted according to requirements. The simulated waveforms at different frequencies between 150
to 38400 at 50 MHz clock cycle. The simulated waveforms in this paper have proven the reliability of the HDL implementation to describe the
characteristics and the architecture of the design UART with baud rate generator.
Keywords- UART, Oversampling, Frequency Divider, Baud Rate, Baud Clock, Super Sampling, Baud Rate Generator

Journal of Information Systems and Communication
ISSN: 0976-8742 & E-ISSN: 0976-8750, Volume 3, Issue 1, 2012

Introduction
In several control systems, UART a kind of serial communication
circuit is used widely. A universal asynchronous receive/transmit
(UART) is an integrated circuit which plays the most important role
in serial communication. It handles the conversion between serial
and parallel data. Serial communication reduces the distortion of a
signal, therefore makes data transfer between two systems sepa-
rated in great distance possible [2]. A Universal Asynchronous
Receiver Transmitter includes a transmitter and a receiver. The
transmitter is essentially a special shift register that loads data in
parallel and then shifts it out bit by bit at a specific rate. The re-
ceiver, on the other hand, shifts in data bit by bit and then reas-
sembles the data. UART transmitter controls transmission by
fetching a data word in parallel format and directing the UART to
transmit it in a serial format. Likewise, the Receiver must detect
transmission, receive the data in serial format, strip of the start
and stop bits, and store the data word in a parallel format.
Since the UART is asynchronous in working, the receiver does not
know when the data will come, so receiver generate local clock in

order to synchronize to transmitter whenever start bit is received.
Asynchronous transmission allows data to be transmitted without
the sender having to send a clock signal to the receiver. The
transmitter and receiver agree on timing parameters in advance
and special bits are added to each word which is used to synchro-
nize the sending and receiving units [7].
When a word is given to the UART for Asynchronous transmis-
sion, a bit called the “Start Bit” is added to the beginning of each
word that is to be transmitted. The Star Bit is used to alert the
receiver that a word of data is about to be sent, and to force the
clock in the receiver into synchronization with the clock in the
transmitter. After the Start Bit, the individual bits of the word of
data are sent, with the Least Significant Bit (LSB) being sent first.
Each bit in the transmission is transmitted for exactly the same
amount of time as all of the other bits, and the receiver “looks” at
the wire at approximately halfway through the period assigned to
each bit to determine if the bit is a 1 or a 0. For example, if it takes
two seconds to send each bit, the receiver will examine the signal
to determine if it is a 1 or a 0 after one second has passed, then it

Citation: Bhavna Mahure and Rahul Tanwar (2012) UART with Automatic Baud Rate Generator and Frequency Divider. Journal of Infor-
mation Systems and Communication, ISSN: 0976-8742 & E-ISSN: 0976-8750, Volume 3, Issue 1, pp.- 265-268.

Copyright: Copyright©2012 Bhavna Mahure and Rahul Tanwar. This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Bioinfo Publications 266

will wait two seconds and then examine the value of the next bit,
and so on. Then at least one Stop Bit is sent by the transmitter.
Because asynchronous data is “self synchronous”, if there is no
data to transmit, the transmission line can be idle [7].
 The UART performs serial-to-parallel conversions on data re-
ceived from a peripheral device and parallel-to-serial conversion
on data received from the CPU. The CPU can read the UART
status at any time. The UART includes control capability and a
processor interrupt system that can be tailored to minimize soft-
ware management of the communications link. The UART in-
cludes a programmable baud generator capable of dividing the
UART input clock by divisors from 1 to 65535 and producing a 16
reference clock for the internal transmitter and receiver logic [3].

Implementation Process
UART (Universal Asynchronous Receiver/Transmitter) is the mi-
crochip with programming that controls a computer's interface to
its attached serial devices. Specifically, it provides the computer
with the RS-232C Data Terminal Equipment (DTE) interface so
that it can "talk" to and exchange data with modems and other
serial devices [1].

Oversampling Procedure
The most commonly used sampling rate is 16 times the baud rate,
which means that each serial bit is sampled 16 times. Assume that
the communication uses N data bits and M stop bits. The over-
sampling scheme works as follows:

 Wait until the incoming signal becomes 0, the beginning of the
start bit, and then start the sampling tick counter.

 When the counter reaches 7, the incoming signal reaches the
middle point of the start bit. Clear the counter to 0 and restart.

 When the counter reaches 15, the incoming signal progresses
for one bit and reaches the middle of the first data bit. Retrieve
its value, shift it into a register, and restart the counter.

 Repeat step 3 N-1 more times to retrieve the remaining data
bits.

 If the optional parity bit is used, repeat step 3 one time to ob-
tain the parity bit.

 Repeat step 3 M more times to obtain the stop bits.
The oversampling scheme basically performs the function of a
clock signal. Instead of using the rising edge to indicate when the
input signal is valid, it utilizes sampling ticks to estimate the middle
point of each bit. While the receiver has no information about the
exact onset time of the start bit, the estimation can be off by at
most the subsequent data bit retrievals are off by at most & from
the middle point as well. Because of the oversampling, the baud
rate can be only a small fraction of the system clock rate, and thus
this scheme is not appropriate for a high data rate [6].

Role of Automatic Baud Rate Detection
The most commonly used number of data bits of a serial connec-
tion is eight, which corresponds to a byte. When a regular ASCII
code is used in communication, only seven LSBs are used and the
MSB is 0. If the UART is configured as 8 data bits, 1 stop bit, and
no parity bit, the received word is in the form of 0-dddd-ddd-0-1, in
which d is a data bit and can be 0 or 1. Assume that there is suffi-
cient time between the first word and subsequent transmissions.
In this scheme, the transmitting system first sends an ASCII code

for rate detection and then resumes normal operation afterward.
The receiving subsystem uses the first word to determine a baud
rate and then uses this rate for the baud rate generator for the
remaining transmission. Assume that the UART configuration is 8
data bits, 1 stop bit, and no parity bit, and the baud rate can be
4800, 9600, or 19,200 baud. The revised UART receiver should
have two operation modes. It is initially in the "detection mode"
and waits for the first word. After the word is received and the
baud rate is determined, the receiver enters "normal mode" and
the UART operates in a regular fashion.
The approach we use is to set the receive baud rate to 9600 baud
and wait for a character to be received from the terminal. The time
taken to transmit each bit, T, depends on the baud rate. Thus, in
the time taken to transmit a single bit at 9600 baud, two bits could
be transmitted at 19200 baud. Similarly, if two bits are transmitted
at 9600 baud, only a single bit can be transmitted in the same time
at 4800 baud. In the detection mode a carriage return character
(0x0D) is transmitted by the transmitter and this is received at
9600 baud rate. A transmitted character 0x0D will be received
differently from the receiver, if the transmitter transmitting the
character other then 9600 baud rate. According to the received
data the receiver manipulates the transmitter baud rate and set
itself to that baud rate [6].

Role of Frequency Divider in UART
The circuit produces Frequency Division as it now divides the
input frequency by a factor of two (an octave). A frequency divider
is designed using D Flip Flop. D-type Flip-Flop is as a binary divid-
er, for Frequency Division or as a "divide-by-2" counter. Frequen-
cy Divider is dividing the frequency according to system require-
ment. So we can use this UART with frequency divider, no need to
attach another device in that system to divide the frequency.

Implementation Language
We use here Verilog Hardware Description Language to imple-
ment the UART general functionality. The use of hardware de-
scription languages (HDLs) is becoming Increasingly common for
designing and verifying FPGA designs. The Register Transfer
Level (RTL) model of the UART protocol is developed using HDL
and the functional simulation of the model is obtained. The trans-
mission and reception of the various data frames are tested and
verified with the modelling of a UART protocol controllers.
Using a hardware description language allows us to describe the
function of the transmitter in a more behavioural manner, rather
than focus on its actual implementation at the gate level. The Veri-
log language provides functions and tasks as constructs, analo-
gous to software functions and procedures. A Verilog function and
task are used as the equivalent to multiple lines of Verilog code,
where certain inputs or signals affect certain outputs or variables
[5].

Simulation Results and Discussion
The UART consists of two independent HDL modules. One mod-
ule implements the transmitter, while the other module implements
the receiver. The transmitter and receiver modules can be com-
bined at the top level of the design, for any combination of trans-
mitter and receiver channels required. Data can be written to the
transmitter and read out from the receiver, all through a single 8

Journal of Information Systems and Communication
ISSN: 0976-8742 & E-ISSN: 0976-8750, Volume 3, Issue 1, 2012

UART with Automatic Baud Rate Generator and Frequency Divider.

Bioinfo Publications 267

bit Bi-directional CPU interface. Address mapping for the transmit-
ter and receiver channels can easily be built into the interface at
the top level of the design. Both modules share a common master
clock called clk. Within each module, clk is divided down to inde-
pendent baud rate clocks.

UART Main Module

Fig. 1- UART main block

Fig. 2- RTL of UART main module

UART Pin Description

Table 1 - shows the UART functional Pin description

This paper describes the software implementation of baud rate
detection of an incoming data. It is used to demonstrate the detec-
tion of 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200 and
38400bps. This automatic detection is useful for establishing com-
munication link between two devices. The receiver device will be
able to detect the baud rate of the transmitter side and adjust
accordingly.
This protocol can be implemented on any microcontroller or any
microprocessor or UART enable devices that carry an asynchro-
nous serial port with a baud rate generator. If a data is sent based
on 9600 Baud, the receiver will receive the same data if it is set at
the same Baud rate. This is because the incoming data is sam-
pled correctly, upon the activation of the start bit. The Serial bus is
normally in the mark state (high level). When a space (low level) is
detected, identify as a Start bit, the incoming serial data will be
sampled. In which, the data is sampled on the 8th pulse of a clock
with a frequency, 16 times the bit rate (Data latched at the center
of bit). So I can say that when the receiver is set to 9600 Baud
rate. It will receive (sample) different patterns of data from the
transmitter when the transmitter is set to different baud rates that
are shown in simulation results.
Here we set the clk at 50MHz frequency. In Figure 3 we have
shown the waveform Baud Rate Generate at Transmitter side
38400bps according to clk frequency=50MHz. we can verify it by
counts its Divisor value is 81.

Fig. 3- Simulation waveform of transmitter baud rate generator

In Figure 4 we show the simulate waveform at baud rate=9600.
First we set the clk frequency is 50 MHz. then we set the Reset
input signal =’1’ for loading 8 bit data “00001101” using din[7:0]
pin but we want to send this data at 9600 Baud Rate to transmitter
so first we have to set Reset=’0’ to read the data by transmitter.
Then tx_baud_generator send the data at 9600bps Baud Rate to
receiver. we have already set the Receiver Baudclk at 9600bps.
So Receiver receives the 8 bit data “00001101” as “00001101”
using dout[7:0] pin at 9600 baud rate. This 8 bit data transmit to
Automatic Baud Detection Block, in which both baudclk are
matched and we will receive the same data ”00001101” at rx_out
[7:0] and rx_done_tick signal is set to low which Indicates that new
data has been received, and is ready to be read out.
Similarly In Figure 5 we are loading 8 bit data “00001101” using
din[7:0] pin but we want to send this data at 2400 Baud Rate to
transmitter so first we have to set Reset pin at ’0’ to read the data
by transmitter. Then tx_baud_generator send the data at 2400
Baud Rate to receiver. we have already set the Receiver Baudclk
at 9600bps. So Receiver receives the 8 bit data “00001101” as

Bhavna Mahure and Rahul Tanwar

Journal of Information Systems and Communication
ISSN: 0976-8742 & E-ISSN: 0976-8750, Volume 3, Issue 1, 2012

Symbol Type Description

Clk Input Input clock used for internal baud rate generation.

Reset Input Reset input signal

Din(7:0) Input Data input pins for transmitting 8 bit data.

Dout(7:0) Output Data out pins for receiving 8 bit data.

Rx_done_tick Output It indicates receive completed.

Tx_done_tick Output Indicates that transmit completed.

Baudclk22 Input
Baud Rate Clock that generates according to input clk for
receiver operation.

Rx Input
Receives serial data. rx should be held high (pulled-up),
when no transmission are taking place.

Baud_lo Output
Active low read strobe signal, used for reading out data from
the receiver.

Baud_load Output Its 8 bit binary values, to identify transmitter baud rate value.

Thr Reg[7:0]
8 bit transmit hold register, Used to hold the contents of data
bus, when new data is written to the module.

Tsr Reg[7:0]
8 bit transmit shift register used for shifting out the contents
of Tsr.

Baudclk2 Reg
Baud rate clock used to shift the contents of the tsr register
to the Tx output.

Txdatardy Reg
txdatardy is true when transmit hold register holds new data
that is ready to be transmitted.

Bioinfo Publications 268

“01111000” using dout[7:0] pin at 9600 baud rate. This 8 bit data
transmit to Automatic Baud Detection Block, in which both
baudclk is adjusted and we will receive the same data ”00001101”
at rx_out[7:0] and rx_done_tick signal is set to low which Indi-
cates that new data has been received, and is ready to be read
out.

Fig. 4- Simulation waveform of transmitter baud rate at 9600 bps

Fig. 5- Simulation waveform of transmitter baud rate at 2400 bps

In the Figure 6 we have designed frequency divider using D Flip
Flop. In the above figure ‘clk’ is used as an input clock, when we
apply any input using this clk pin then this frequency divider di

Fig. 6- Simulation waveform of frequency divider

vides the particular frequency according to an integer ‘n’.In which
we tested input clock 50Hz and we got output according to it in
these four baud clocks as baud_clk1:f/2(25Hz) and baud_clk2:f/4
(12.5Hz) and baud_clk3:f/8(6.75Hz) and baud_clk4:f/3(16.6Hz).
We can use our UART specially those microcontrollers or proces-
sors where system frequency is lower. That places we don’t need
to attach other lower frequency device separately.

Conclusion and Future Work
We concluded the UART Protocol as per specification has been
designed in Verilog and implemented on the Spartan3 xc3s200-
4ft256 device later. The UART is running absolutely fine at a
clock frequency of 50 MHz. The simulation results of UART and
its sub-blocks are properly working mode.

Super Sampling in UART receiver
In UART receiver a sampling is done to read the transmitted data
by the middle of the received bit. The sampling ensures that a
valid bit would be received. This sampling is done at the 8th Sam-
ple of the bit. If at the 8th sample, if a glitch or spike is appeared
that is not a valid signal would be considered as a valid signal that
is not the correct bit.
To overcome this issue we can apply a super sampling technique.
In super sampling we will sample the bit at 7, 8 and at 9th sample.

References
[1] Zhichao Zhang, Wuchen Wu (2010) 2nd International Confer-

ence on Computer Engineering and Technology. 2(7), 331 –
334.

[2] Shouqian Yu Lili Yi Weihai Chen Zhaojin Wen (2007) IEEE
Conference on Industrial Electronics and Applications.

[3] Norhuzaimin J. and Maimun H.H. (2005) The Design of High
Speed UART,

[4] Raffaele Gallo, Martin Delvai, Wilfried Elmenreich, Andreas
Steininger (2004) Revision and Verification of an Enhanced
UART IEEE.

[5] Samir Palnitkar (2003) Verilog HDL: A Guide to Digital Design
and Synthesis, Second Edition.

[6] Pong P. Chu, FPGA, 215-233.
[7] TMS320DM644x DMSoC Universal Asynchronous Receiver/

Transmitter (UART) (2008) Literature Number: SPRUE33A.
[8] Greg Goodhue (1993) A software duplex UART for the Philips

Semiconductors, 751-752.
[9] Mohd Yamani Idna ldris and Mashkuri Yaacob (2003) IEEE

1451-1454.
[10] Donald E. Thomas & Philip R. Moorby (2002) The Verilog

Hardware Description Language, Fifth Edition.

UART with Automatic Baud Rate Generator and Frequency Divider.

Journal of Information Systems and Communication
ISSN: 0976-8742 & E-ISSN: 0976-8750, Volume 3, Issue 1, 2012

