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Abstract -The survival rate estimates for the breast cancer censored data have been considered for the 254 patients. The data [10] was 
treated at the chemotherapy department, Bradford Royal Infirmary for ten years. Here in this paper Gumbel probability distribution (see [3], 
[4], [5]) model is used to obtain the survival rates of the patients. Maximum likelihood method [9] has been used through unconstrained opti-
mization method [12, 13] (DFP-Davidon-Fletcher-Powell) to find the parameter estimates and variance-covariance matrix for the Gumbel 
distribution model. Finally the survivor rate estimates for the parametric (Gumbel) probability model has been compared with the non-
parametric (Kaplan-Meier) [7] method. 
Keywords- Gumbel distribution model, Censoring, Breast Cancer Data sets, DFP-unconstrained optimization method, Maximum likelihood 
function and Kaplan-Meier survivor rate estimates. 
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Introduction 
Breast cancer is a systemic disease [1,10,15] until proved other-
wise. When the treatment is stopped the disease progresses with 
uniform ‘velocity’ v through a fixed ‘distance’d in the disease to 
recurrence point. In this paper, we find the parameter estimates, 
survival rate estimates, variance covariance matrix for the Gumbel 
probability distribution model using maximum likelihood function 
using breast cancer data [14]. For the survival of the patient with 
the breast cancer, a statistical approach is considered; wihich is 
based on two parameters refered as scale and shape parameters 
respectively of the said distributions. Further work on probabilistic 
approach has been done by Khan, K.H. [14]. using Inverse Guas-
sioan distribution model. The survivor rate estimates for the Gum-
bel probability distribution has also been compared with the non-
parametric model [7]. 
The Gumbell Model and Estimation of Parameters 
The data regarding survival analysis generally falls in two classes- 
(i) the failure time of items, which actually fail during the experi-
ment, (ii) the survival times of items which, actually survive with 
the experiment. 
These classes are generally separated statistically by the use of 

censoring, for detail see Cox, [11]. In parametric models the pdf of 
lifetime ‘T’ has form with survival function, where is a vector of 
parameters. The contribution to the likelihood of an item that fails 
at time t is and an item that survives beyond time is. Thus, ac-
cording to the Lawless [8], using the Gumbel distribution models, 
the likelihood function when the time is divided into intervals is 
given as  

 
  (2.1) 
 
 

where NG, , N and F are the number of recurrence groups, 
number of failures (recurrences) in the ith year, sample size 
and total number of recurrences in 10 years respectively. 
The maximum likelihood estimates can be obtained by taking the 
log-likelihood function. Since the probability of no failure until time 
t is defined by, then the log-likelihood function can be written as 

 
  
  (2.2) 
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To find the parameter estimates we used the unconstrained opti-
mization method ‘(DFP)’ developed by Davidon and amended by 
Fletcher and Powell (see. [12],[13]). The DFP method (Quasi-
Newton-Method) is an iterative method, which minimizes the ob-
jective function and requires only first partial derivatives in addition 
to the function values. So, the log-likelihood function to be maxim-
ized is equivalent to the minus times the log-likelihood function to 

be minimized. . Therefore the required form for the 
estimation parameters is . . The variance-covariance matrix of 
estimates  
  
 
 
 
 
 
 
is calculated automatically and numerically as a part of these opti-
mization procedures, and without any direct evaluation of the se-
cond derivatives of which would be very complicated. Since the 
article is concerned with the use of Gumbel distribution [6] so the 
pdf and are respectively as under. 

 (2.3)  

where a scale parameter and  is the location 
parameter. 

For reparameterization,we take  and  and 
so the above pdf becomes  

 
 (2.4) 
 

Now the survivor function is  

 .  (2.5) 

The hazard function or the failure rate is  

    (2.6) 
The hazard rate/failure rate is proportional to the scale parameter 
and time as it passes. 
Now the likelihood function can be written as  

 (2.6) 

 Where  as  and at 

(Max.) 
The maximum likelihood estimates for (scale and shape parame-

ters) , are the values of  which maxim-

ize , or, equivalently, which minimize .  
T h u s ,  w e  h a v e 

  (2.7) 

where  .The partial derivatives of 

 w.r.t.  and  are 

(2.8) 

 (2.9) 

where ,  

and  . 
Using eq.(2.7), eq.(2.8) and eq.(2.9) in the DFP optimization meth-
od, we can find the parameter estimates, survivor rate estimates, 
variance covariance matrices and maximum likelihood function.  
 
Application 
We considered the data of 254 patients surviving with breast can-
cer. These patients were initially treated at the department of 
chemotherapy department, Bradford Royal Infirmary, [15], Eng-
land, thirty five years ago. Each patient was treated for a period of 
ten years or until death. The patients surviving with breast cancer 
were between 23 and 82 years old (Hancock et al. [10]). The pa-
tients were classified into four diffrenet stages using TNM (Tumor 
Nodes Metastases) system and clinically staged accordingly. 
Out of 254 patients, 100 patients were premenopausal and 154 
were postmenopausal. A woman was considered to be postmeno-
pausal when 2 years had elapsed since her last menstrual period. 
The two main categories are premenopausal and postmenopau-
sal. Note that Stages I & II for premenopausal and postmenopau-
sal were each combined together. In the light of Table-1 and Table
-2 the survival related to the clinical stage (%age) over ten years is 
given in Table-3.  

 
Table 1- Age Distribution Related to Clinical Stage and Menopasal 
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Patient Stage I Stage II Stage III Stage IV 

Age Pre- Post- Pre- Post- Pre- Post- Pre- Post- 
21-30 - - - - 2 - 1 - 

31-40 6 - 1 - 12 - 11 - 

41-50 16 4 8 2 17 3 16 7 

51-60 1 13 - 3 5 29 4 16 

61-70 - 12 - 1 - 27 - 24 

71-80 - 3 - 1 - 4 - 4 

81-90 - - - 1 - - - - 
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Table 2- Survivals and Failures Related to Clinical Stage and 
Menopausal Status 

Table 3- Survival Related to Clinical Stage (%age) over ten years 

Table 5-Estimates of Parameters amd ML-Function for Gumbel 
Distribution Model 

Table 6- Estimates of Variance-Covariance Matrix and Gradient 
vector for the Gumbel Model 

 Table 7-Survival Proportion for Pre-menopausal Stages 

Table 8- Survival Proportion for Post-menopausal Stages 

 
Graphical Representation of Survivor Rate Estimates for Dif-
ferent Stages of Breast Cancer Using Gumbel Distribution 
Model 
The Graphical comparisons of Gumbel model (parametric) survi-
vor-rate with Kaplan-Meier (non- parametric) model survivor-rate 
estimates given in the following figures. 

 
Conclusions 
Analysis shows that the Gumbel distribution is a reasonable model 
to describe the progression of breast cancer and finding survivor 
rates for 254 patients. Using Maximum likelihood method through 
unconstrained optimization method (DFP-Davidon-Fletcher-
Powell) the parameter estimates and variance-covariance matrix 
for the Gumbel distribution model were found.  
However unlike a number of two-parameter distributions which are 
used in survivor studies it does have some beaming on the physi-
cal process being described.  
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Satges 

Pre-menopausial Post-menopausal 

Survival (%
age) 

Failure (%
age) 

Survival (%
age) 

Failure (%
age) 

I & II 81.25 18.75 35 65 
III 22.22 77.78 14.29 85.71 
IV 0% 100 3.92 96.08 

Stage 
Meno-
pausal 
Status 

Surviv-
ing with 
Cancer 

Surviving 
with Re-
currence 

Dying 
without 
Cancer 

Dying with 
Recur-
rence 

Dying 
with 
Cancer 

Patients 
in each 
Stage 

Stage I 
Pre- 
Post- 

16 
8 

4 
5 

1 
4 

0 
1 

2 
14 

23 
32 

Stage II 
Pre- 
Post- 

5 
1 

1 
0 

0 
1 

0 
1 

3 
5 

9 
8 

Stage III 
Pre- 
Post- 

6 
5 

2 
4 

1 
2 

1 
7 

26 
45 

36 
63 

Stage IV 
Pre- 
Post- 

0 
1 

0 
1 

0 
0 

0 
3 

32 
46 

32 
51 

Time 
(Years) 

Stage I & II Stage III Stage - IV 

Kaplan-
Mier 

Gumbel 
Kaplan-
Mier 

Gumbel 
Kaplan-
Mier 

Gumbel 

1 1.00000 0.975314 0.833333 0.750310 0.71875 0.552928 

2 0.96875 0.968825 0.666666 0.705287 0.40625 0.441051 

3 0.96875 0.960665 0.611111 0.654188 0.12500 0.322739 

4 0.93750 0.950423 0.499999 0.597039 0.06250 0.209634 

5 0.90625 0.937604 0.416666 0.534258 0.06250 0.115499 

6 0.90625 0.921609 0.388888 0.466772 0.03125 0.050690 

7 0.87500 0.901733 0.333333 0.396120 0.03125 0.016248 

8 0.84375 0.877164 0.333333 0.324484 0.03125 0.003374 

9 0.84375 0.846992 0.249999 0.254624 0.03125 0.000385 

10 0.81250 0.810247 0.222222 0.189637 0.00000 0.000019 

E s t i -
mates 

Pre-menopausal Post-menopausal 

  
S a t g e -
I&II 

Satge-III Stage-IV 
S a t g e -
I&II 

Satge-III 
S t a g e -
IV 

 

â 0.24132 0.27192 0.251214 0.26447 
0.19508
3 

0.32319
22 

 
b̂ 0.01305 0.039898 

0.011651
4 

0.02049 
0.04610
88 

0.13861
43 

MLF 
30.3748
498 

84.64368
85 

105.9951
4 

87.3541
861 

156.286
883 

63.3680
32 

Pre-Menopausal Stages 

Variance Covar-
iance Matrix 

Stage-I & II Stage-III Stage-IV 
0.0088010 -
0.0002268 
-0.0002268 
0.0000095 

0.0011877 -
0.0001362 
-0.0001362 
0.0000905 

0.0019266 -
0.0003123 
-0.0003123 
0.0006691 

Gradient Vector -0.6894E-07 -
0.1612E-05 

-0.31356E-07 -
0.13696E-05 

-0.7231E-09 -
0.9972E-08  

Post-Menopausal Stages 
Variance Covar-
iance Matrix 

Stage-I&II Stage-III Stage-IV 
0.0022478 -
0.00023554 
-0.00023554 
0.00004086 

 0.0009655 -
0.0001578 
 -0.0001578 
0.0000554 

0.0009237 -
0.000091 
-0.000091 
0.0002653 

Gradient Vector 0.26865E-08 
0.40733E-07 

-0.26702E-07 -
0.67640E-07 

0.61286E-06 -
0.54996E-05 

Year 

Stage I & II Stage III Stage - IV 

Kaplan-
Mier 

Gumbel 
Kaplan-
Mier 

Gumbel 
Kaplan
-Mier 

Gumbel 

1 0.9500 0.904015 0.9206 0.824830 0.6862 0.550869 

2 0.8750 0.876816 0.8412 0.776657 0.4313 0.464617 

3 0.8750 0.842607 0.6825 0.717675 0.2156 0.373270 

4 0.8000 0.800035 0.5714 0.647005 0.1372 0.281708 

5 0.6750 0.747785 0.4761 0.564702 0.0784 0.196187 

6 0.6250 0.684801 0.3492 0.472353 0.0784 0.123216 

7 0.5500 0.610639 0.3015 0.373664 0.0784 0.067761 

8 0.5000 0.525937 0.2698 0.274718 0.0391 0.031414 

9 0.4500 0.432963 0.2063 0.183463 0.0391 0.011693 
10 0.3500 0.336041 0.1428 0.107999 0.0391 0.003282 
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Time 
(Years) 

Stage-I &II Pre- menopausal 
Stage-I & II Post-
menopausal 

Stage-III Pre-menopausal Stage-III Post-menopausal Stage-IV Pre-menopausal Stage-IV Post-menopausal 

Survivers Failures Survivers Failures Survivers Failures Survivers Failures Survivers Failures Survivers Failures 

0 32 0 40 0 36 0 63 0 32 0 51 0 

1 32 0 38 2 30 6 58 5 23 9 35 16 

2 31 1 35 3 24 6 53 5 13 10 22 13 

3 31 0 35 0 22 2 43 10 4 9 11 11 

4 30 1 32 3 18 4 36 7 2 2 7 4 

5 29 1 27 5 15 3 30 6 2 0 4 3 

6 29 0 25 2 14 1 22 8 1 1 4 0 

7 28 1 22 3 12 2 19 3 1 0 4 0 

8 27 1 20 2 12 0 17 2 1 0 2 2 

9 27 0 18 2 9 3 13 4 1 0 2 0 

10 26 1 14 4 8 1 9 4 0 1 2 0 

Table 4-Data for Stages I to IV over the ten years 
 
 
 


