

PHOTOLUMINESCENCE STUDIES OF NA₆(SO₄)₂CLF:RE (RE=Ce, Tb and Cu)

BHUSHAN KORE¹, DHOBLE N.S.² AND DHOBLE S.J.^{1*}

¹Department of Physics, RTM Nagpur University, Nagpur, MS, India ²Department of Chemistry, Sevadal Mahila Mahavidhyalaya, Nagpur, MS, India *Corresponding Author: Email- sjdhoble@rediffmail.com

Received: February 28, 2012; Accepted: March 06, 2012

Abstract- Luminescent materials based on lanthanide phosphors have made outstanding progress in revolutionizing the display and lighting industry. The optical properties of rare-earth ion (RE²⁺and RE³⁺) ions are valuable when these ions are doped into host lattices. The electronic transitions taking place within the partially filled 4f shell, or involving the 4f and 5d shells, gives rise to the luminescence. In preset study the preparation of Na₆(SO₄)₂CIF doped with rare earth ions Tb, Ce and transition metal ion Cu by wet chemical method was described. All the compounds were prepared by wet chemical method as it requires very less instrumentation and less electrical power too. Under UV excitation (250nm) of Na₆(SO₄)₂CIF:Ce³⁺ showed emission (359nm) in UV range. When Na₆(SO₄)₂CIF:Tb³⁺ phosphor was excited at 379 nm, the emission spectrum showed intense bands at 490 nm (blue) and 546 nm (green). The peaks at 490, 546, can be attributed to ⁵D4-⁷F₆ and ⁵D4-⁷F₅ transitions, respectively. In Cu activated Na₆(SO₄)₂CIF phosphor, the emission spectrum showed a dominant peak at 357 nm when excited at 252 nm.

Keywords- Phosphor, halosulphate, photoluminescence

Citation: Bhushan Kore, Dhoble N.S. and Dhoble S.J. (2012) Photoluminescence studies of Na₆(SO₄)₂CIF:RE (RE= Ce, Tb and Cu). International Journal of Knowledge Engineering, ISSN: 0976-5816 & E-ISSN: 0976-5824, Volume 3, Issue 1, pp.-132-134.

Copyright: Copyright©2012 Bhushan Kore, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Introduction

In the past centuries, once a new kind of light source with higher energy efficiency and lower power consumption was invented, like incandescent filament and fluorescent lamp, it would make a great difference in the human's life. In recent years, the studies on solid -state light sources, especially white light emitting diodes (w-LEDs), attracted increasing attention and became a hot issue in the energy saving, environment-friendly materials research [1]. The sulphates are an important mineral class and include some very interesting and attractive specimens. Although many minerals belong to this class only barite, gypsum, and anhydrite can be considered common. The basic chemical unit is the (AO₄) complex anion with a charge of negative two (2-) [2]. Thakre etal reported Na₆(SO₄)₂FCI:RE (RE=Dy, Ce or Eu) by solid state method [3]. Moharil and co-workers reported some suphate based materials such as KMgSO₄Cl:Eu; KMgSO₄Cl:Ce, Na₅(PO₄)SO₄:Ce, KZnSO₄Cl:Ce; NaMgSO₄F:Ce and Na₃SO₄F:Ce phosphors prepared by a wet chemical method have been studied for its photoluminescence (PL) and thermoluminescence (TL) characteristics [3,4].

Experimental

Na₆(SO₄)₂CIF (pure), Na₆(SO₄)₂CIF:Ce, Na₆(SO₄)₂CIF:Cu, and Na₆(SO₄)₂CIF:Tb phosphors were prepared by a wet chemical method. NaCl, Na₂SO₄ and NaF of analar grade were taken in a stoichiometric ratio and dissolved separately in single distilled deionized water, resulting in a solution of Na₆(SO₄)₂CIF (Eq. (1)). Water soluble sulphate salts of cerium, copper and terbium were then added to the solution to obtain Na₆(SO₄)₂CIF:Ce, Na₆(SO₄)₂CIF:Cu, and Na₆(SO₄)₂CIF:Tb. confirming that no undissolved constituents were left behind and all the salts had completely dissolved in water, and thus reacted:

2Na₂SO₄ + NaCl + NaF à Na₆(SO₄)₂ClF (1)

The compounds Na₆(SO₄)₂CIF (pure), Na₆(SO₄)₂CIF:Ce, Na₆(SO₄)₂CIF:Cu, and Na₆(SO₄)₂CIF:Tb in their powder form were obtained by evaporating at 80°C for 8 h. The dried samples were then slowly cooled to room temperature. The resultant polycrystalline mass was crushed to fine particles in a crucible. The powder was used in further study. Emission and excitation spectra were recorded using a spectral slit width of 1.5 nm.

International Journal of Knowledge Engineering ISSN: 0976-5816 & E-ISSN: 0976-5824, Volume 3, Issue 1, 2012

Results

I] Na_6(SO_4)_2CIF:Ce Figure 1.1 shows the excitation and 1.2 shows emission spectra of Ce doped Na_6(SO_4)_2CIF .

Fig. 1.1- Excitation spectra of Na₆(SO₄)₂CIF:Ce monitored at 357nm emission wavelength.

Fig. 1.2- Emission spectra of Na₆(SO₄)₂CIF:Ce at 250nm excitation wavelength.

PL excitation spectra of Na₆(SO₄)₂CIF:Ce³⁺ phosphor shows broadband is observed at 250 nm with λ_{em} =359 nm. Fig. 1.2 show the PL emission spectra of Ce ³⁺ ions in Na₆(SO₄)₂CIF phosphors with different concentrations under excitation at 250 nm wavelength of light. Single peak is observed at 359nm, which are assigned to the 5d-4f transition of Ce³⁺ ions. With increasing concentration of Ce³⁺ ions, the peak intensity of 359 nm peak decreases and maximum intensity is observed for 0.1mol% of Ce³⁺ ions. This indicates that the Na₆(SO₄)₂CIF lattice is more suitable for lower concentrations of Ce³⁺ ions.

II] Na₆(SO₄)₂CIF:Cu

Fig. 2.1- Excitation spectra of Na₆(SO₄)₂CIF:Cu monitored at 357nm emission wavelength.

Fig. 2.2- Emission spectra of Na₆(SO₄)₂CIF:Cu at 252nm excitation wavelength.

Emission and excitation spectra of Cu doped Na₆(SO₄)₂CIF are shown in Fig.2.1& Fig.2.2 .The excitation wavelength 252nm was used for recording spectra of the samples. The presence of intense emission at 357nm, which is a characteristic of Cu⁺ ions, suggests the presence of Cu⁺ emission centers in the phosphor [5].

Fig. 3.1- Excitation spectra of Na₆(SO₄)₂CIF:Tb monitored at 546nm emission wavelength.

Fig. 3.2- Emission spectra of Na₆(SO₄)₂CIF:Tb at 379nm excitation wavelength.

On exciting the phosphor with 379nm light, emission bands at 490nm, 546nm & 587nm were observed, Fig. 3.1 on exciting the Tb³⁺ doped Na₆(SO₄)₂CIF phosphor at 379nm emission bands at 490nm and 546nm &587nm have been observed. The emission is stronger under 379nm excitation than 254 nm excitation. Among these the intensity of 546nm emission band dominates over 490nm and 587nm. When Na₆(SO₄)₂CIF:Tb³⁺ phosphor was excit-

International Journal of Knowledge Engineering ISSN: 0976-5816 & E-ISSN: 0976-5824, Volume 3, Issue 1, 2012 ed at 379 nm, the emission spectrum showed intense bands at 490 nm (blue) and 546 nm (green). The peaks at 490, 546, can be attributed to ${}^{5}D_{4}{}^{-7}F_{6}$ and ${}^{5}D_{4}{}^{-7}F_{5}$ transitions, respectively [6].

Acknowledgement

Authors are grateful to Board Of Research in Nuclear Sciences (BRNS), Department of atomic Energy, Govt. Of India, for providing financial assistance to carry out this work under research project (sanctioned letter no 2011/37P/10/BRNS/144).

References

- [1] Zhiguo Xia, Jiaqing Zhuang, Haikun Liu and Libing Liao, *IOP*, (in press).
- [2] Gedam S.C., Dhoble S.J., Moharil S.V. (2007) Journal of Luminescence, 124, 120-126.
- [3] Thakre P.S., Gedam S.C., Dhoble S.J., Atram R.G. (2011) Journal of Luminescence, 131, 2683-2689.
- [4] Gedam S.C., Dhoble S.J., Moharil S.V. (2007) Journal of Luminescence, 126, 121-129.
- [5] Kulkarni M.S., etal Journal of Luminescence (in press).
- [6] Zhilong Liu, Lianxiang Yu, Qin Wang, Yanchun Tao, Hua Yang, (2011) *Journal of Luminescence*, 131, 12-16.