
Bioinfo Publications 153

FINDING FREQUENT ITEM SETS FROM DATA STREAMS WITH SUPPORTS ESTIMATED
USING TRENDS

Journal of Information and Operations Management
ISSN: 0976–7754 & E-ISSN: 0976–7762 , Volume 3, Issue 1, 2012, pp-153-157
Available online at http://www.bioinfo.in/contents.php?id=55

SHANKAR B. NAIK1 AND JYOTI D. PAWAR2

1Department of Computer Science & IT, Dhempe College, Panaji Goa, India.
2Department of Computer Science & Technology, Goa University, Goa, India.
*Corresponding Author: Email- xekhar@gmail.com, jdp@unigoa.ac.in

Received: December 12, 2011; Accepted: January 15, 2012

Abstract- Finding frequent itemsets in data streams is a challenging task. Traditional data mining algorithms mainly focus on finding frequent
itemsets in static datasets. Those which execute on data streams give importance to recent data or assume uniform distribution of data. Also,
supports of itemsets are estimated by assigning fixed values where assumptions are required. In this paper we propose an approach that
estimates the support of itemsets based on the trends of the itemsets seen in the data stream.
Keywords- Data Streams, Itemsets, Minimum Support, Sliding Window, Support

Journal of Information and Operations Management
ISSN: 0976–7754 & E-ISSN: 0976–7762 , Volume 3, Issue 1, 2012

Introduction
Nowadays, a growing number of applications generate data
streams [2] [8], such as telecom call records, web clickstreams,
data collected in sensor networks, etc,. As the notion suggests, a
data stream can roughly be thought of as an ordered sequence of
data items, where the input arrives more or less continuously as
time progresses [3][6].
Mining frequent itemsets in a data stream is a challenging task. In
order to obtain frequent itemsets from a set of data, entire data set
should be available at hand for processing. Such analysis can be
done on static data sets very easily and accurately. It is not true in
the case of a data stream. Data streams are large data sets that
cannot be entirely stored in memory for processing. Also, the rate
at which data is generated is very high [6]. Finding frequent item-
sets involves many passes over the entire data set. This is not

possible with a data stream as the entire data stream cannot be
stored in memory.
In this paper we discuss how to find frequent itemsets in data
streams. Data stream is divided into segments of pre-decided size,
input by user. These segments are stored in memory one at a time
and frequent itemsets are generated for each stored segment. The
frequent itemsets of each segment are stored for future computa-
tions and the stored segment is then removed from the memory.
These stored results are used in future to generate the frequent
itemsets for the entire or part of data stream.
An itemset may not be frequent in a segment. In this case, it is
discarded and is not stored for that segment. The same itemset
may appear to be frequent in other segments. While calculating the
support of the itemset for the entire data stream, it is important to
know the support of the itemset in segments, in which the itemset

Citation: Shankar B. Naik and Jyoti D. Pawar (2012) Finding Frequent Item sets from Data Streams With Supports Estimated Using Trends.
Journal of Information and Operations Management ISSN: 0976–7754 & E-ISSN: 0976–7762, Volume 3, Issue 1,pp-153-157.

Copyright: Copyright©2012 Shankar B. Naik and Jyoti D. Pawar. This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Bioinfo Publications 154

is not frequent. The support of the itemset in the segment, in which
it is not frequent, is estimated by analyzing the trends shown by the
itemset in other parts of the stream. This introduces an error in the
estimated results.
The frequent itemsets generated for segments are stored in parti-
tions. Each partition corresponds to a segment of the data stream.
As the data stream increases it is difficult to store results of all the
segments of the data stream. Moreover, the size of the data steam
is not known a priori. Thus the total number of segments of data
stream cannot be predicted in advance. If the data stream tends to
be never ending then number of segments simply grow and ex-
plode. It is required to store the frequent itemsets in such a way
that the amount of memory required should increase in large.
The method proposed in [7], uses a time tilted window in which
results of various segments are merged together as new segments
come in. It provides results in details for the latest data segments,
whereas the results of older data are merged together. Frequent
itemsets are generated for different levels of time granularities. It is
assumed that the older data results are less significant than the
recent data results. Hence as the data stream segment gets older
and older its details are lost. This assumption may not be true in all
the cases. In some cases data in every part of the data stream is
relevant. In such cases merging should be done in a non partial
manner such that every data segment is given equal importance.
When results of different segments of data stream are merged
together, many estimations, incase of non-frequent itemsets, are
involved. These estimations contribute to error in the end results.
As the data streams evolves all the partitions get occupied at a
point in time. When no more partition is found to store the frequent
itemsets of the next segment, then only, two adjacent partitions
could be merged together to leaving one partition free to accommo-
date the frequent itemsets of the new segment. At the end, even
though not in detail, results will be available for all segments, of
same size, of data streams. The level of details and accuracy de-
pends on the memory available to store the partitions.
The above stated requirements and constraints have formed the
motivating factors for our work.

Background

 Data Streams
A data stream system may constantly produce huge amounts of
data [3]. Regarding, aspects of data storage, management and
processing, the continuous arrival of data items in multiple, rapid,
time-variant, and potentially unbounded streams raises new chal-
lenges and research problems. Indeed, it is usually not feasible to
simply store the arriving data in a traditional database management
system in order to perform operations on that data later on. Rather,
stream data must generally be processed in an online manner in
order to guarantee that results are up-to-date and that queries can
be answered with small time delay. The development of corre-
sponding stream processing system is a topic of active research [3]
[1].
The data stream model assumes that input data are not available
for random access from disk or memory, such as relations in stand-
ard relational databases, but rather differs from the standard rela-
tion model in the following ways [3][1] –
 1)The elements of a stream arrive incrementally in an “online”

manner. That is, the stream is “active” in the sense that the incom-
ing items trigger operations on the data rather than being sent on
request
2)The order in which elements of a stream arrive are not under the
control of the system
3) Data streams are of potentially unbounded size
4) Data stream elements that have been processed are either dis-
carded or archived. They cannot be retrieved easily unless being
stored in memory, which is typically small relative to the size of the
stream. Stored information about past data is often referred to as
synopsis
5) Due to limited resources (memory) and strict time constraints,
the computation of exact results will usually not be possible. There-
fore, the processing of stream data does commonly produce ap-
proximate results [4].

Frequent Itemset Mining
Data mining, also known as knowledge discovery in databases,
aims at the discovery of useful information from large collections of
data [1] [5] [9]. The discovered knowledge can be rules describing
the properties of the data, frequently occurring patterns, clustering
of objects in the database, and so on, which can be used to sup-
port various intelligent activities, such as decision making, plan-
ning, and problem solving.
The data mining model adopted in this paper for association rules
is based on the minimum support confidence framework estab-
lished by Agrawal et al [1]. The terminology used in the paper is
described in the following paragraph.
Let I={i1,i2,…,iN} be a set of N distinct literals called items, and D a
set of transactions over I. Each transaction contains a set of items
i1,i2,…,ik є I. Each transaction has an associated unique identifier
called Transaction IDentifier(TID).
A set of items is called an itemset. Each itemset X has an associat-
ed statistical measure called support. An itemset is a set consisting
of atleast one item.
Support of an itemset X, denoted as Supp(X), is the fraction of
transactions in D, that contain all the items in X, calculated as num-
ber(X)/ size(D), where number(X) is the number of transactions that
support the itemset and size(D) is the total number of transactions
in D.
Frequent itemset is any itemset whose support in D is no less than
user input minimum support threshold denoted by minsup.

Our Proposed Approach
Let D be a data stream of size n, having itemsets as its elements.
Ti is the ith transaction consisting of itemsets in D. The interval [i,j]
gives the range of data elements of D, for j>=i. S[i.j] is a segment of
D having elements belonging to [i,j]. Let SW be the sliding window,
of size w over D, which means, at a time w elements of D can be
stored in SW. Size of SW is never less than size of any segment of
the data stream. PW is the set of partitions P1,P2,…Pp, where p is
the size of PW. Every Pi is a collection of frequent itemsets for
some segment of D as shown in Fig.1. Pi[a,b] is the ith partition in
PW storing frequent itemsets of segment S[a,b]. |Pi| denotes the
size of segment associated with Pi, |Pi|=b-a+1.
Initially, the first w elements of D are stored in SW as they are gen-
erated. At this point in time, SW has the first w elements of D, i.e.

Journal of Information and Operations Management
ISSN: 0976–7754 & E-ISSN: 0976–7762 , Volume 3, Issue 1, 2012

Finding Frequent Item sets from Data Streams With Supports Estimated Using Trends

Bioinfo Publications 155

elements of segment S[1,w]. A simple apriori algorithm is executed
on SW. The frequent itemsets generated are stored in P1 of PW. In
the mean time SW is loaded with the next w elements of the data
stream. Frequent itemsets are generated for the second segment,
S[w+1,2w], elements present in SW and are stored in partition P2 of
PW. This is repeated until D is over, or all w partitions of PW are
filled in, whichever is earlier.

Fig.1- Data stream, sliding window and partition window

If all the partitions of PW are full then, the process of merging
(section 3.1) is executed on PW to accommodate the frequent
itemsets of the subsequent segments of the data stream D.
At any point of time, frequent itemsets, for the entire data stream or
a part of a stream can be generated from the data available in the
partition window PW using the technique given in section III.D.

Merging
Merging of partitions in PW is done when all p partitions of PW are
filled in and there is no empty partition available in PW to store the
frequent itemsets of the next w elements of D, i.e.of the segment S
[p*w+1,w*(p+1)], which are present in SW.
Merging begins by selecting two adjacent partitions, Pi and Pi+1,
from partition window. The resultant partition, P, has all the item-
sets that are present in either or both of the selected partitions. P
has two kinds of itemsets, those which are present in both, and
those which are present in only one of the partitions, i.e. Pi or Pi+1.
The support of each itemset in P is calculated in one of the follow-
ing two ways.

Itemset present in both partitions
Let XєPi,Pi+1 be an itemset that is present in both partitions. Let
Supp_Pi(X) be the support of X in Pi. The support of X in P,
Supp_P(X), is calculated as
(|Pi| * Supp_Pi(X) + |Pi+1| * Supp_Pi+1(X)) / (|Pi|+ |Pi+1|)
 (1)
Itemset present in only one partition
Let X be an itemset that is present in only one of the selected parti-
tions. Let Pj be the partition not containing X. In such a case, j is
either, i or i+1. Support of X in Pj is not known, which means it is
less than minsup. Let Supp_Pj(X) be the support of X in Pj, which is
not known and is to be estimated.\

Support Estimation
We calculate value of Supp_Pj(X) by seeing the trends of X in the
neighboring partitions using the following expression -
Supp_Pj(X)=minsup*trend (2)
The term trend describes the average support of X in the neigh-
bouring partitions. The value of trend is calculated as
trend=(|Pj-1|*Supp_Pj-1(X) +|Pj+1|*Supp_Pj+1(X))/(|Pj-1|+|Pj+1|)
 (3)
The neighbouring partitions, Pj-1 or Pj+1 may support X. In this case,
support of X in the partitions not supporting X is taken as minsup/2.

Final Support Calculation
Supp_P(X) is calculated using the method mentioned in III.A.1.

Update Partition Window
After merging partitions Pi and Pi+1 to obtain P as the new partition,
Pi and Pi+1 are removed from PW and are replaced by P. All the
partitions followed by Pi+1 in PW are shifted one partition left result-
ing in empty partition Pp. The frequent itemsets of the new segment
are stored in partition Pp of PW.

Selection of partitions for merging
Two adjacent partitions are selected for merging. Selection of parti-
tion is done in the following way.
The oldest pair of adjacent partitions that has not been merged is
selected for merging, i.e. partitions at same level are selected. Two
partitions Pi and Pj are said to be at the same level if |Pi|=|Pj|. In
this method merging begins first for the oldest partitions and contin-
ues for every pair of partitions that has not been considered for
merging for that level until the last partition in PW. After the last
partition, merging begins with the old partitions and continues till
the end. This process is repeated until the data stream gets over.
Sometimes, the last partition may have to be merged directly with
the newly generated results of the latest itemsets in SW. This is
done until the level of last partition becomes the same as the level
of all the other partitions in PW.
In this kind of merging, the older partitions in PW will have interval
twice that of the later partitions, except the last one, in PW. Merg-
ing done is uniform and gives equal importance to the partitions of
PW.

Deducing Frequent Itemsets from Partition Window PW
At any instance, each partition Pi in PW has frequent itemsets for
some part of D.
At this moment the number of partitions in the partition window PW,
are either p or less than p where p is the size of partition window
PW. The partitions in PW provide frequent itemsets along with their
supports for their corresponding segments. Each partition Pi[a,b] in
PW provides frequent itemsets for the segment S[a,b] of D.
Besides this, frequent itemsets can also be generated for the entire
or a part of D. Let Interval[a,b] denote the range of data elements
of D for which frequent itemsets are to be generated. This is done
from the data stored in partitions corresponding to the segments of
the data stream which fall in the Interval[a,b]. If a=1 and b=n, then
the frequent itemsets are generated for the entire data stream D.
Let the partition window PW have p partitions where each partition
has frequent itemsets generated for their corresponding segments.
Let Interval[i,j] be the range for which the frequent itemsets are to

Shankar B. Naik and Jyoti D. Pawar

Journal of Information and Operations Management
ISSN: 0976–7754 & E-ISSN: 0976–7762 , Volume 3, Issue 1, 2012

Bioinfo Publications 156

be generated. Let Global Frequent Itemset(GF) be the set of item-
sets present in atleast one of the partitions, for the Interval[i,j], of
the partition window PW. Thus GF has the itemsets that were
frequent for atleast 1 stream segment S[a,b], where i<=a<=b<=j.
GF has the potential frequent itemsets for Interval[i,j] of the data
stream D.
For every itemset I in GF, its support for Interval[i,j] is calculated in
either of the following ways.

Itemset Present in all Partitions
If the itemset I is present in all the partitions in the Interval[i,j] then
its support is the average of all its supports in the partitions for
Interval[i,j]. It is calculated using the formula
Suppt(I)=∑SupptPi(I) / Np (4)
for all Pi for Interval[i,j]. Where SuppPi(I) is the support of itemset I
in the partition Pi and Np is the number of partitions for the Interval
[i,j] .

temset present in not all Partitions
If the itemset is absent in atleast one partition it means that the
itemset I is not frequent for that partition. Hence we have no idea
about the support of the itemset for that partition that does not
contain the itemset I. In order to calculate the support of the item-
set I for the Inteval[i,j] it is required to know the support of the item-
set I even in the partitions that do not contain I, which is not known
as I was not frequent in the segment corresponding to those parti-
tion. Thus it is necessary to estimate the support of I in non-
supporting partitions. The support of itemset I in the non-
supporting partitions can be estimated to be less than the mini-
mum support threshold minsup. But the exact and precise support
of itemset I in non supporting partitions cannot be known. In order
to estimate the support of itemset I in such partitions we use the
trends that are shown by the itemset in other partitions containing
the itemset I. The support of itemset I in non supporting partitions
is calculated as the product of minsup and the average of all the
supports of itemset I in the partitions, containing I, using the follow-
ing formula.
Supp(I)=minsup*∑SuppPi(I)/Np (5)
for all Pi, in PW, containing the itemset I. Where SuppPi(I) is the
support of itemset I in the partition Pi and Np is the number of parti-
tions, in PW, containing I.
The partition window PW now has supports in every partition for all
the itemsets of GF. The over all supports for itemsets for the entire
stream can be calculated from the values in the partition window
PW using the method specified above in III.D.1.

Expermental Results
In this section, we show preliminary experimental results to test
the effectiveness of our proposed approach. We show some pre-
liminary experiments on synthetic dataset D1 and real dataset D2.
Dataset D2 has its itemsets as subject combinations opted by
students of an institution. Each item is the subject opted by the
student. Because our experiment goal is to demonstrate the effec-
tiveness of our approach, all datasets are treated as static.
The characteristics of these datasets is given in table 1 -

Table 1- Characteristics of Datasets

Error Calculation
In our experiment, we set size of sliding window w=10, number of
partitions in PW, p= 10, minsup=0.4. The results are summarized
in table 2. Error for each itemset was calculated as the difference
between the support of itemset calculated by our approach and
the actual support of the itemset calculated by applying apriori
algorithm to the entire data as whole.

Table 2- Experiment Results for minsup=0.4

Average Error versus minimum support
Experiment was performed to check the variation in average error
in support of all itemsets with respect to the change in minimum
support (Fig. 2) for the same values of other parameters as in
section IV.1.
Initially for small values of minimum support the average error is
small. As the value of minimum support increases the average
error in supports of itemsets also increases. We see an overall
increase in error but average error is seen to be decreasing for
small range of minimum support. In all the cases the average error
is less than the minimum support. The trends shown need not to
be always true, as the error entirely depends upon the actual val-
ues in the data stream. But always the error will be less than the
minimum support

Fig. 2- Change in average error with change in minimum support

Error versus number of partitions
Experiment was done to calculate the variation in error in support
of an itemset with respect to the change in the number of partitions
(Fig. 3) for the same values of other parameters as in section
IV.1.

Finding Frequent Item sets from Data Streams With Supports Estimated Using Trends

Journal of Information and Operations Management
ISSN: 0976–7754 & E-ISSN: 0976–7762 , Volume 3, Issue 1, 2012

Dataset # of items # of records

D1 5 1.5K

D2 5 1.0K

Dataset # of frequent itemsets Average error

D1 6 0.05648

D2 5 0.01

Average Error v/s Minimum Support

0

0.05

0.1

0.15

0.2

0.25

0.3

0.
05 0.

2
0.

35 0.
5

0.
65 0.

8

Minimum Support

A
v
e
ra

g
e
 E

rr
o

r

Dataset D1

Dataset D2

Bioinfo Publications 157

Fig. 3- Change in average error with change in number of parti-
tions

The above curve shows the changes in average error caused by
the change in the number of partitions in the partition window. For
small number of partitions the average error in support is high.
This is the result of large number of estimates done due to more
merging of partitions. It is because of the smaller number of parti-
tions, that merging operation is more frequently done. As the
number of partitions increases, the number of estimates reduces
which results in smaller values of average error.

Conclusion
Most research efforts on dealing with large database in data min-
ing have concentrated on static databases. The approach pre-
sented in this paper is suitable for data streams.
To find out frequent itemsets in data streams we have proposed
the method by dividing the data stream into segments of record
that can be stored in the memory for analysis. Only the frequent
itemsets generated for every segment of the stream are stored for
further analysis. The method uses information about the itemset
from those segments (partitions) of data stream that have the
itemset as frequent and estimate its probability in the segments
that have not generated the itemset as frequent. Due to these
estimations some error is introduced in the final results.

References
[1] Agrawal R. Imielinski T. and Swami A. (1993) ACM SIGMOD
Conf. Management of Data, pp. 207-216.
[2] Babcock B., Babu S., Datar M., Motwani R. and Widom J.
(2002) PODS, pp. 1–16.
[3] Beringer J. and Hullermeier E. Data & Knowledge Engineering.
[4] Considine J. Li F., Kollios G. and Byers J.W. (2004) 20th IEEE
Int’l Conference on Data Engineering.
[5] Chen M., Han J. and Yu P. IEEE Trans Knowledge and Data
Eng., vol. 8, no. 6, pp. 866-881.
[6] Das A., Gehrke J. and Riedewald M. (2003) ACM SIGMOD
International Conference on Management of Data, pp. 40–51.
[7] Giannella C., Han J., Pei J., Yan X., Yu P.S., Mining frequent
patterns in data streams at multiple time granularities.
[8]Golab L. and Ozsu M.T. (2003) SIGMOD., 32(2):5–14.
[9]Srikant R. and Aggrawal R. (1997) Future Generation Comput-
er Systems, vol. 13, pp. 160-180.

Shankar B. Naik and Jyoti D. Pawar

Journal of Information and Operations Management
ISSN: 0976–7754 & E-ISSN: 0976–7762 , Volume 3, Issue 1, 2012

error in support of {I1} vs number of partitions

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60

number of partitions

e
rr

o
r error in support of

{I1}

