
Bioinfo Publications 49

A COLLISION-FREE ALGORITHM OF A POINT-MASS ROBOT USING NEURAL NETWORKS

Journal of Artificial Intelligence
ISSN: 2229–3965 & E-ISSN: 2229–3973, Volume 3, Issue 1, 2012, pp.-49-55
Available online at http://www.bioinfo.in/contents.php?id=71

BIBHYA SHARMA*, AVINESH PRASAD AND JITO VANUALAILAI

School of Computing, Information & Mathematical Sciences, University of the South Pacific, Suva, Fiji
*Corresponding Author: email- sharma_b@usp.ac.fj

Received: September 05, 2011; Accepted: January 15, 2012

Abstract- In this paper an artificial neural network approach is proposed to solve the findpath problem of a mobile point-mass robot which is
required to move safely to a prescribed target in a priori known workspace. A novel velocity algorithm is designed to ensure that the robot
moves towards its goal at all times and remains there once reached. Our method in the construction of a collision-free path for the robot
amongst a randomized number of arbitrarily configured obstacles is based on learning via the multilayer perceptron. Two neural networks are
used to determine the direction and angle of turn of the robot so that it moves in the free space of the workspace while avoiding the obstacles
in its path. The training data for the neural network are obtained using computer simulations where the initial path is traced by the user. Final-
ly, simulations using point-mass robot and an anchored 2-link (RP) manipulator highlight the stabilizing controls of the neural network ap-
proach.
Keywords- Point-mass robot, neural network, motion planning and control, findpath, and multilayer perceptron.

Journal of Artificial Intelligence
ISSN: 2229–3965 & E-ISSN: 2229–3973, Volume 3, Issue 1, 2012

Introduction
Motivational Work
The recent past has witnessed numerous research on machine
learning and its applicability on improving the operational capabili-
ties of mobile robots [1–5]. Herein one of the areas that has gained
huge support and attention is the work on the findpath problem or
the piano mover’s problem, which is a geometric problem of finding
a collision-free path from an initial configuration to a predefined
final configuration, usually in a workspace cluttered with obstacles
[6, 7]. This can also be considered as a robot path planning prob-
lem when contextualized with mobile robots. In terms of the design
and development of autonomous robots, it is the ability of a mobile
robot to plan and execute collision free motions within in either fully
known or partially known environments [1, 8, 9]. The environments
may be very harsh, hazardous or even inaccessible to humans [10]

or could involve laborious repetitions. Ideally, robots must be able
to fully recognize and understand their workspace or environment
so that they can navigate to their goal configurations, satisfying the
safety, cost and time constraints tagged to the system. There are
many ways this can be realized. The literature has algorithms that
can be seen addressing the motion planning and control of mobile
robots. This includes the artificial potential field (APF) methods,
graph search techniques and road maps (voronoi diagrams, visibil-
ity and accessibility graphs) and neural network models [9–11].
The pioneer work on motion planning and control of robots via
artificial potential fields was carried out by Khatib in [12]. Since
then algorithms based on the artificial potential framework appear
abundantly in the literature [9, 13–16]. While this is due to easier
analytic representation of system singularities and inequalities,
better processing speed and its simplicity and elegance, the meth-

Citation: Bibhya Sharma, Avinesh Prasad and Jito Vanualailai. (2012) A Collision-free Algorithm of a Point-Mass Robot using Neural Net-
works. Journal of Artificial Intelligence, ISSN: 2229–3965 & E-ISSN: 2229–3973, Volume 3, Issue 1, 2012, pp.-49-55.

Copyright: Copyright©2012 Bibhya Sharma, Avinesh Prasad and Jito Vanualailai. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

Bioinfo Publications 50

od inherits the problem of traps or local minima. In addition, APF-
based smooth controllers of autonomous nonholonomic systems
have to prove stabilization (see Brockett’s Theorem in [6]). Work in
literature show merely a Lyapunov stable system [10, 17].
The graph search techniques and the road maps establish collision
-free trajectories by searching for graphs or maps formed out of
straight lines via vertices of obstacles or patches of free space
decomposed into geometrical primitives. Work using the technique
is been continuously carried out and cited from literature [18–21].
Although the algorithms are elegant, they are computationally in-
tensive and can suffer from the problem of closeness [22].
In more recent times, there has been a paradigm shift to using
neural networks-based approach for motion planning and control of
robots in obstacle-ridden environments. Some relevant results are
outlined in the next section.

Background on Neural Networks
The work of McCulloch and Pitts in 1943 [23] is considered a land-
mark result in the literature of artificial neural networks. They pre-
sented neurons as models of biological
neurons and as conceptual components for circuits that could per-
form computational tasks. The basic model of the neuron is found-
ed upon the functionality of a biological neuron. This has been
followed by the development of various types of ANN architectures
such as, single/multi-layer perceptron, Kohonen’s self-organising
map (SOM) and Hopfield-type network, etc. In the last two dec-
ades, the artificial neural networks have been applied in many are-
as of robotics, amongst which the steering, path-planning and con-
trol of autonomous robot vehicles garners monumental attention
[24]. This area is not only challenging but it inherently harbors real-
world practicabilities and possibilities.
The application of ANNs can be grouped into two classes: optimi-
zation and associative retrieval/classification. Therefore, most robot
problems can be formulated as one of the two classes. For exam-
ple, stereo vision for task planning, autonomous robot path plan-
ning, and position control can be formulated as optimization prob-
lems. Several models of ANNs such as: single-layer feedback neu-
ral networks, competitive learning neural networks, and multi-layer
feed-forward neural networks, etc. have been utilized to solve mo-
tion planning and control of different types of mobile robots [1–5,
24, 25].
In the interest of brevity, we present a few relevant work from litera-
ture. Bekey & Goldberg in [25] utilized competitive type of neural
networks for robot navigation. Moreno et al. in [2] utilized a Multi-
layer Static Neural Network to consider the inverse kinematics
problem of a two link planar robot arm. An iterative technique
known as
the Levenberg-Marquardt algorithm was used for the learning.
Chohra et al. in [5] used the supervised Gradient Backpropagation
for robot navigation in partially known environment. Yang & Meng
in [3] proposed a neural network for the real-time collision-free
motion planning of mobile robots in a dynamic environment of no
prior knowledge. Pham & Sahin in [4] designed an Internal Model
Control system for a planar two-degree-of-freedom robot. The sys-
tem consisted of a forward internal neural model of the robot, a
neural controller and a conventional feedback controller, wherein
training was by backpropagation. Janglova in [1] dealt with a path

planning
and intelligent control of an autonomous robot in partially structured
environment using two neural networks, one to determine the free
space and the other to find a safe direction.

Contributions
This paper provides five major contributions:
Velocity Algorithm. Design of a new velocity algorithm for the
point-mass robot. The velocity algorithm is significantly different
from the ones in literature. Normally constant velocities are used;
however, the robot needs to stop after it has achieved its aim. This
stop should not be sudden by a truncation of velocity, rather the
robot should slow down its motion and then come to rest. The ve-
locity algorithm and a target designed for the robot ensures a safe
stop at the target and also ensures that the robot remain there.
Obstacle Avoidance Scheme. For this, we only consider the ob-
stacle closest to the point-mass robot enroute to its target. There-
fore, our obstacle avoidance scheme is more simple compared to,
for example, the avoidance schemes utilized in the artificial poten-
tial methods where all the obstacles are considered in parallel [9,
10]..
Multilayer Perceptron (MLP). While the new velocity algorithm is
sufficient to control the motion of the robot, the inclusion of obsta-
cles garners the need to control the direction of motion. For this,
two MLPs have been used in this paper: (1) that indicates whether
the robot should turn or not, and (2) that determines the precise
angle of turning.
Training Data. The training data for the neural network are ob-
tained using computer simulations where the initial path is traced
by the user. The data are not obtained from real-life experiments,
such as physically driving or maneuvering a real robot. Suppose,
we obtain the data by driving a robot (or from using a remote),
there is a possibility that we can make a mistake and the robot can
collide with an obstacle. This will damage the robot. On the other
hand, the procedure in this research provides data in a more sim-
plified and controlled environment. Any slight deviations can be
easily and quickly readjusted.
Polar Form. The neural network operates using input variables (R,
θ, ϕ) in a polar form. This greatly implifies the algorithm which can
be made complex if one is using the positional variables. The train-
ing of the network becomes easy.

Organization
This paper is organized as follows. In section 2.0, we give the defi-
nition of a point mass robot and derive its kinematic model. The
main objective of this paper is given in section 3.0. The motion
planning and control problem of the point mass in obstacle free
workspace is described in section 4.0, together with introducing a
new velocity algorithm and its associated claims. In section 5.0, we
have utilized the neural technique to control the motion of the robot
in a workspace cluttered with obstacles of arbitrary sizes. In section
6.0, training of the neural network is described with details of the
updating rules. We use a supervised multilayer perceptron to mod-
el the turning angle of the robot. Stability analysis is carried out in
section 7.0 followed by some examples in section 8.0. In section
9.0, we apply this idea of target convergence and obstacle avoid-
ance to control the motion of a planar robot (RP) arm. Finally, in

Journal of Artificial Intelligence
ISSN: 2229–3965 & E-ISSN: 2229–3973, Volume 3, Issue 1, 2012

A Collision-free Algorithm of a Point-Mass Robot using Neural Networks.

Bioinfo Publications 51

Section 10.0 the paper closes with a concluding remark on its con-
tributions and lists the future work.

Modelling the Point-Mass Robot
We start with the following definition of a workspace:
Definition 1: The workspace is a fixed, closed and bounded rec-
tangular region for some η1 > 0 and η2 > 0. Precisely, the work-
space is the set WS = {(z1, z2) ∈: R2 : 0 ≤ z1 ≤ η1, 0 ≤ z2 ≤ η2}.
The boundaries of the region are defined as follows: (a) Left
Boundary: B1 = {(z1, z2) ∈: R2 : z1 = 0}; (b) Lower Boundary: B2
= {(z1, z2) ∈: R2 :z2 = 0}; (c) Right Boundary: B3 = {(z1, z2) :
R2 : z1 = η1}; (d) Upper Boundary:B4 = {(z1, z2) ∈ R2 : z2 = η2}.

Definition 2: Let A be a point-mass robot in the z1-z2 plane, posi-
tioned at (x,y) with a circular protective region of radius of rt, and
moving with a velocity of v in the direction

θ at time t ≥ 0. Precisely, it is a set A = {(z1, z2) : R2: (z1 − x)2 +

(z2 − y)2 ≤ rt2}

Fig.1- Schematic representation of a point-mass robot A in the z1-
z2 plane.

With reference to Fig. (1), one can easily derive the following dif-
ferential (kinematic) equations, assuming the initial condition at t =
t0 ≥ 0:

 (1)
In the following sections, we will explore the concept of artificial
neural network in the algorithm of the robot motion planning and
control problem.
Main Objective: Problem Statement
A point-mass robot moving in WS is represented by A. Let FO1,
FO2, …, FOm be stationary obstacles randomly distributed in WS.
Assume that both the geometry and the location of A and FO1,
FO2, …, FOm is a prior known. The problem statement is:
Given an initial position and orientation of A in WS, generate a path
specifying a contiguous sequence of positions and orientations of A
avoiding collision with FOi for i = 1, 2, …, m, starting at the initial
position and orientation, and terminating at the goal position.
Motion Planning and Control (MPC)
In our MPC problem, we want the point-mass robot A to start from
an initial position, move towards a target and finally converge at the
center of the target as shown in Fig. (1). We therefore, require for A
a predefined target:

Definition 3: The target for the point-mass robot A is a disk of
center (p1, p2) and radius rT . Precisely, it is a set

T = {(x, y) : R2 : (x − p1)2 + (y − p2)2 ≤ rT2 }.

Velocity algorithms in literature include mostly constant (either
maximum or optimal) velocities which truncate at the goal configu-
ration. However, a sudden switch or truncation of the velocity to
force the robot to stop will require infinite accelerations and in turn
infinite torques and can also cause physical damage to the robot.
Thus we develop a more practical velocity algorithm which is de-
pendent on the initial and final positions of the robot.
The new velocity algorithm proposed is

 (2)
where v0 is the initial velocity of the robot A at t = 0.
With the new velocity algorithm, we have the following Lemma.
Lemma 1. In the absence of obstacles in the workspace, there is a
linear movement of the point mass robot from the initial position to
the target position.

Proof. The linear movement can be proved by showing that =
0. To see this, note that

θ = atan2(p2 − y(t), p1 − x(t)).

Then (upon suppressing t)
We can make the following claims from the new velocity algorithm
and Lemma 1:

Claim 1. Given an initial position (x(0), y(0)) ≠ (p1, p2) of the robot
in WS, if the velocity governed by (2) is applied, the robot A will
move straight towards its target T.

Proof. Let be the Euclidi-
an distance between the target T and the point-mass robot A at any
time t ≥ 0. Then the time derivative of d is

which means that as the point-mass robot A moves, d decreases,
thus A is moving towards its target T. Lemma 1 shows that it is
doing so in a straight line.
Claim 2. As the point-mass robot moves towards its target T, the

0 0 0 0

cos

sin

(), ()

x v

y v

x x t y y t









 







2 2

1 2

0 2 2

1 2

(()) (())
() | |

((0)) ((0))

p x t p y t
v t v

p x p y

  


  



Bibhya Sharma, Avinesh Prasad and Jito Vanualailai

Journal of Artificial Intelligence
ISSN: 2229–3965 & E-ISSN: 2229–3973, Volume 3, Issue 1, 2012

2

2

2

1

1 2

2()

1
()

1 2

2 2

1 2

2 2

1 2

() ()1

()1

() ()

() ()

cos sin sin cos

() ()

0

p y

p x

p x y p y x

p x

p x y p y x

p x p y

d d

p x p y



   





   
 



   


  

 


  



Bioinfo Publications 52

velocity, v will decrease, as (x(t), y(t)) → (p1, p2).
Proof.
This shows that v decreases as the point-mass robot A moves
towards its target T.
Claim 3. At the center of the target T, the point-mass robot A will
stop and remain there as t → +∞.

Proof. At the center of the target T,

Injection of Stationary Obstacles
Let us fix i > 0 stationary obstacle within workspace WS.
Definition 4. The mth stationary obstacle is a disk-shaped obsta-
cle with center (ol1, ol2)and radius rol. Precisely, the lth stationary
obstacle is the set

FOl = {(z1, z2) ∈: R2 : (z1 − ol1)2 + (z2 − ol2)2 ≤ roj
2 },

for l = 1, 2, . . . , q.

Fig.2- Schematic representation of the obstacle avoidance of A in
the z1-z2 plane.

In order for the point-mass robot A to avoid the stationary obsta-
cles, we need to make the following adjustment to the ODE in
system (1):

 (3)
where ε determines the direction in which the point-mass robot A
will turn to avoid the obstacles. The inclusion of ε is explained in
Fig (2). If ε > 0, the point mass will turn left; if ε < 0, it will turn right;
and if ε = 0, it will move straight towards target. Thus controlling

the value of will enable the robot to avoid obstacles and reach
its target safely.
We will use a neural networks-based approach to control the mo-

tion of the point-mass robot A amongst a prior known stationary
obstacles in a structured and bounded workspace WS. Our ap-
proach basically deploys two neural networks in order to solve the
findpath problem. The first neural network will be used to find the
direction (left or right) that the robot must turn to avoid collision
with the nearest obstacle, while a second one will be used to de-
termine the angle by which the robot should turn.

Artificial Neural Network (ANN) Technique
Our method in the construction of a collision-free path for a point-
mass robot amongst stationary obstacles is based on a standard
multilayer perceptron (see Fig. (3)).

Fig.3- Architecture of a multilayer perceptron with inputs (x1, x2, . .
. , xn) and outputs (y1, y2, . . . , yq).

ANNs are made up an input layer, hidden layer(s) and an output
layer. The input layer receives data from outside the network, the
output layer sends data out of the network, while for the hidden
layer, the input and output signals remain within the network. In
this research, we shall use only one hidden layer in the network
while the number of neurons in that hidden layer will be deter-
mined from the training of the network. Fig. (4) shows a summary
of our proposed methodology for the collision-free algorithm,
where R, ϕ and θ are shown in Fig. 5.

Fig.4- of the proposed methodology for the collision-free algo-
rithm.

Fig.5- Schematic representation of the collision avoidance with
reference to new parameters R and dmax

2 2

1 1 2 2

0 2 2

1 2

() ()
| |

((0)) ((0))
0

p p p p
v v

p x p y

  


  


 

 

0 0 0 0

cos

sin

(), ()

x v

y v

x x t y y t

 

 





 

 


 



A Collision-free Algorithm of a Point-Mass Robot using Neural Networks.

Journal of Artificial Intelligence
ISSN: 2229–3965 & E-ISSN: 2229–3973, Volume 3, Issue 1, 2012

Bioinfo Publications 53

Modelling using ANN
Let R be the distance from the robot to the circumference of the
nearest stationary obstacle and ϕ be the angular position of this
obstacle center relative to the robot position (see Fig. (5)). To
model the motion of the robot with ANN we assume that our colli-
sion avoidance scheme depends entirely on R, ϕ and θ.
We enact the following rules:

 Rule 1: R > 0.

 To avoid collision with the nearest stationary obstacle.

 Rule 2: If robot is approaching the nearest obstacle, it should

change direction if R < dmax, where dmax is the maximum
distance from the nearest obstacle at which the robot should
turn to avoid collision.

 Rule 3: If R < dmax, the robot should turn right if θ ≥ ϕ, other-

wise turn left.

 This is to ensure that it follows the shortest path.

 Rule 4: If |θ − ϕ | is small, the magnitude of the turning angle

is large but small if |θ − ϕ | is large.

We use two multi-layer perceptron ANNs. For both ANN’s the
input are x1 = R, x2 = ϕ and x3 = θ, and the outputs:

 For ANN1: The output is y1 which determines the direction

the point-mass should turn. -1 = turn right, 1 = turn left and 0
= no turning.

 For ANN2: The output is y2 which determines the angle the

point-mass should turn.

 It follows that ε = y1 y2.

Training the Network
Learning takes place when the network is trained by establishing
the weighted connections between the input neurons and output
neurons via the hidden neurons. Weights are continuously modi-
fied until the neural network is able to predict the outputs from the
given set of inputs within an acceptable user-defined error level.

Let be the weight from the ith input neuron to the jth

hidden neuron and b be the weight from the jth hidden
neuron to the kth output neuron at iteration p. We use the stand-
ard backpropagation training algorithm which was first described
by Rumelhart and McClelland in 1986 [26]. The weights are up-
dated as follows:

where

Here n is the number of inputs (n = 3 in our case), m is the num-
ber of neurons in the hidden layer, η is the learning rate and Ф(.)

is the activation function. For ANN1, we
use the hyperbolic tangent activation functions

and for the ANN2, we use the sigmoid activation functions

Fig.6- The Training environment.

The network is trained in the Matlab environment shown in Fig. (6)
where the point-mass is driven manually and ε is controlled manu-
ally using the slider. This training is done at a low speed so that
we can control the motion efficiently. Ten sets of data are ob-
tained, in each case the size and position of obstacles and the
initial and target positions are chosen randomly. These data are
then fed into the networks which are trained using backpropaga-
tion.
We use the slider (bottom right of Figure 6) to control the motion
of the point-mass robot and guide it to its target. The goal of the
training process is to find the set of weight values that match the
output of the neural network with the actual target values as
closely as possible.
When the slider is kept at the center, the value of ε is zero so the
robot moves straight (without turning) to the target. Moving the
slider to the right will increase the value of ε and thus turning the
robot to the right and moving the slider to the left will decrease the
value of ε so that robot turns to the left.

Analysis: Asymptotic Stability
Stability analysis of our dynamic model is carried out via the Lya-
punov’s Second Method. The method provides one of the most
powerful means of analyzing nonlinear systems
because of the qualitative information it is able to provide con-
cerning the stability of an equilibrium state of a nonlinear dynam-
ical system.
Theorem 1. Let xe = (p1, p2) ≠ (x(0), y(0)) be the equilibrium point
of system (3). Then xe is a global asymptotic stable equilibrium
point of system (3).
Proof. Consider the Lyapunov function

 2 2 2

(,) / 2 / 2,L x y x y v  

Bibhya Sharma, Avinesh Prasad and Jito Vanualailai

Journal of Artificial Intelligence
ISSN: 2229–3965 & E-ISSN: 2229–3973, Volume 3, Issue 1, 2012

Bioinfo Publications 54

which has the following properties:
L(x, y) is continuous and has first partial derivatives in the neigh-

borhood of the equilibrium point (p1, p2) of system (3);
L(p1, p2) = 0 since v = 0 at the target;
L(x, y) > 0 for all (x, y) ≠ (p1, p2);

 for all (x,
y) ≠ (p1, p2) and (x(0), y(0)) ≠ (p1, p2);

 since v = 0 at the target.
Hence, it can be concluded that (p1, p2) is an equilibrium point of
system (3), and L(x, y) is a Lyapunov function that intrinsically
guarantees its asymptotic stability.

Computer Simulations
In this section, we demonstrate the simulation results for the point
-mass robot navigating from an initial to a final configuration in a
constrained workspace cluttered with randomly fixed obstacles.
The nonlinear controllers v, ε are simulated to generate feasible
robot trajectories, as seen in Fig. (7). With the initial conditions
and final positions selected randomly, the control laws ensured a
collision-free trajectories and nice convergence of the system
state to the equilibrium state, whilst satisfying all the underlying
constraints. For the numerical integration of system (3), a fourth
order Runge-Kutta method is utilized.

Fig.7- The time evolution of the trajectories of the point-mass
robots in two different scenarios.

Application: A Planar Robot Arm
We apply the approach to a simple planar robot arm. The robot
arm has a translational joint and a rotational joint in the z1-z2
plane as shown in the Fig. (8). The arm consists
of two links made up of uniform slender rods; the revolute first link
with fixed length and the prismatic second link which caries the
payload at the gripper.

Fig.8- A Planar (RP) Manipulator in the z1-z2 plane.

With the help of Figure 8, we assume:

 the planar robot arm is anchored at the origin;

 the coordinate of the gripper is (x, y);

 the first link has a fixed length r1;

 the second link has length r(t) at time t; and

 the manipulator has angular position ψ(t) at time t.

We now look for the kinematic model of this planar robot arm. We

need to model r(t) and ψ(t). Note that so

we get . Similarly,

 so we get
where v, θ and ε are as per the earlier definitions. Thus the kine-
matic equations for the planar (RP) arm is

 (4)
Convergence to the Target and Obstacle Avoidance
For the convergence of the end effector to the target position
(p1,p2), we will use the velocity algorithm described in section 4.0

Assumption 1. To avoid collisions between the fixed obstacles
and the end-effector, we treat the end-effector as a point mass.
Remark 1. The assumption facilitates the use of the multilayer
perceptron algorithm described in section 6.0 for potential colli-
sion avoidances.

Mechanical Singularities
The circular region with the origin (0, 0) as its center that enclos-
es the first link is treated as an artificial obstacle for the end-
effector (see Fig. 9(a)). This mechanical singularity can be avoid-
ed using the collision avoidance scheme described above.

2 2 2

0 1 2

2 2

1 2

2 | | () ()
(,)

((0)) ((0))
0

v v p x p y
L x y

p x p y

   


  


1 2(,) 0L p p 

2 2

1
()r t x y r  

2 2

cos() sin()
()

xv yv

x y
r t

     




()
tan ()

()

y t
t

x t
 

2 2

sin() cos()
()

xv yv

x y
t

   


  




2 2

2 2

cos() sin()
()

sin() cos()
()

xv yv
r t

x y

xv yv
t

x y

   

   


  




  











2 2

1 2

0 2 2

1 2

0

(()) (())
() | |

((0)) ((0))
, : (0).

p x t p y t
v t v

p x p y
v v

  


  


A Collision-free Algorithm of a Point-Mass Robot using Neural Networks.

Journal of Artificial Intelligence
ISSN: 2229–3965 & E-ISSN: 2229–3973, Volume 3, Issue 1, 2012

Bioinfo Publications 55

Simulations
To demonstrate the effectiveness of our method, we show comput-
er simulations of four different scenarios. Each shows the evolution
of the trajectory of the end-effector in a workspace fixed with sta-
tionary obstacles of random numbers and sizes. These are shown
in Fig. 9(a) - (c).

(x(0),y(0)) = (-7.4,4.1); (p1,p2) = (8.1,-0.1)

(x(0),y(0)) = (6.9,0.6); (p1,p2) = (4,5.7)

(x(0),y(0)) = (6.8,-4); (p1,p2) = (-1.8,8.8)
Fig.9- The time evolution of the trajectories of the end-effectors in

various scenarios.
Concluding Remarks
The paper presents a new neural network approach for the motion
planning and control of a point-mass robot. Our method in the con-
struction of a collision-free path in an environment fixed with ran-
domized multiple obstacles, of arbitrary sizes, is based on learning
via the multilayer perceptron. The architecture utilizes two neural
systems: the first neural network indicates whether the robot should
turn or not, while the second determines the precise angle of turn-
ing. A unique velocity algorithm is designed to ensure that the robot
moves towards its goal and remains there once reached.
The training data for the neural networks are obtained using com-
puter simulations where the initial paths are traced by the user. The
user plays the role of the supervisor and trains the robot to make its
way intelligently toward its target and to avoid obstacles enroute its
target. Ten sets of data were obtained, in each case the size and
position of obstacles and the initial and target positions were cho-
sen randomly. These data were then feeded into the networks

which were trained using backpropagation. After the networks were
trained, it was then used to control the motion in the workspace
with obstacles, target and initial position placed randomly. It worked
to perfection.G
Finally, simulations using point-mass robot and an anchored 2-link
(RP) manipulator highlight an asymptotic stabilization of the system
controlled by this neural network approach.

References
[1] Janglova D. (2004) International Journal of Advanced Robotic

Systems, 1(1), 15–22a.
[2] Moreno P.O., Ruiz S.I. and Valenzuela J.C. (2007) Electronics,

Robotics and Automotive Mechanics Conference.
[3] Yang S.X. and Meng M. (2000) Neural Networks, 13 (2), 143-

148.
[4] Pham D.T. and Sahin Y. (2000) Robotica, 8 (5), 505–512.
[5] Chohra A.D., Sif F. and Talaoubrid S. (1995) IAV’95, 238–243 .
[6] Latombe J.C. (1991) Robot Motion Planning.
[7] Sharma B. (2008) New Directions in the Applications of the

Lyapunov-based Control Scheme to the Findpath Problem.
PhD thesis, University of the South Pacific, Suva, Fiji Islands.

[8] Fuller J.L. (1998) Introduction, Programming, and Projects.
Prentice Hall.

[9] Sharma B., Vanualailai J. and Chand U. (2009) European Jour-
nal of Pure and Applied Mathematics, 2 (3), 401–425.

[10] Sharma B., Vanualailai J. and Prasad A. (2011) Journal of
Mathematics, 41(3), 900–940.

[11] Skowronski J.M. (1990) Nonlinear Lyapunov dynamics.
[12] Khatib O. (1986) International Journal of Robotics Research, 7

(1), 90–98.
[13] Lee L.F. and Krovi K. (2006) Metrics for Intelligent Systems

Workshop.
[14] Nam Y.S., Lee B.H. and Ko N.Y. (1995) IEEE/RSJ Internation-

al Conference on Intelligent Robots and Systems, 2, 482-487.
[15] Rimon E. (1992) IEEE Transactions on Robotics and Automa-

tion, 8(5), 501–517.
[16] Song P. and Kumar V. (2002) IEEE International Conference

on Robotics & Automation.
[17] Vanualailai J., Sharma B. and Ali A. (2007) Journal of Pure and

Applied Mathematics, 3(2), 175–190.
[18] Fujimura K. and Samet H. (1989) IEEE Transactions on Robot-

ics and Automation, 5(1):61–69.
[19] Jarvis R.A. (1983) Australian Computer Journal, 15(3), 103-

111.
[20] Zeghloul S., Helguera C. and Ramirez G. (2006) Robotica, 24

(5), 539–548.
[21] Roy D. (2005) Journal of Intelligent & Robotic Systems, 43 (2-

4), 111–145.
[22] Edelstein-Keshet L. (2001) International Symposium on Nonlin-

ear Theory and its Applications, 1-7.
[23] McCulloch W.S. and Pitts W.H. (1943) Bulletin of Mathematical

Biophysics, 5, 115–133.
[24] Kung S and Hwang J. (1989) IEEE Transactions on Robotics

and Automation, 5 (5), 641–657.
[25] Bekey G.A. and Goldberg K.Y. (1993) Neural Networks in Ro-

botics.
[26] Rumelhart D. and McClelland J. (1986) MIT Press, Cambridge.

Journal of Artificial Intelligence
ISSN: 2229–3965 & E-ISSN: 2229–3973, Volume 3, Issue 1, 2012

Bibhya Sharma, Avinesh Prasad and Jito Vanualailai

