
Bioinfo Publications 60

GENETIC ALGORITHM BASED SOFTWARE TESTING SPECIFICALLY STRUCTURAL TESTING
FOR SOFTWARE RELIABILITY ENHANCEMENT

International Journal of Computational Intelligence Techniques
ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 1, 2012, pp.-60-64.
Available online at http://www.bioinfo.in/contents.php?id=36

NIRPAL P.B. AND KALE K.V.

Department of CS & IT, Dr. B.A. Marathwada University, Aurangabad- 431004, MS, India.
*Corresponding Author: Email- premal.nirpal@gmail.com

Received: January 21, 2012; Accepted: April 18, 2012

Abstract- In this paper we focus on software reliability with testing coverage, which will increase the software efficiency. Testing costs often
account for up to 50% of the total expense of software development; hence any techniques leading to the automatic generation of test data
will have great potential to considerably reduce costs. Hence, software quality managers have been looking for solutions to reduce testing
costs and time. In our work, genetic algorithms that can automatically generate test cases to test selected path. This algorithm takes a se-
lected path as a target and executes sequences of operators iteratively for test cases to evolve. We describe the implementation of our GA-
based system and examine the effectiveness of this approach on a number of programs.
Key words- Software Testing, Test case generation, Path Coverage, Genetic Algorithms, Software Reliability.

International Journal of Computational Intelligence Techniques
ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 1, 2012

Introduction
The software testing is designed with the purpose of detecting
defects for a given set of inputs and estimating the operational
effectiveness and suitability of the program being developed.
Software program could be viewed as a function that describes
the relationship of an input to an output. The testing process is
used to ensure that the program realizes the function and its prob-
lem could be represented by the testing problem. The essential
components of a software program test are a description of the
functional input range, the program in executable form, a descrip-
tion of the expected behavior, a way of observing program behav-
ior and a method of determining whether the observed behavior
conforms to the expected behavior. Generally, software-testing
techniques are classified into two categories: static analysis and
dynamic testing.
This paper includes six sections, background of various software
testing techniques in section 2, a literature study of genetic algo-
rithm based approaches to test data generator in section 3, intro-
duction to genetic algorithms in section 4, experimental results
and discussion in section 5, this paper concludes in section 6

Software Testing Techniques
Software-testing techniques are classified into two categories:
static analysis and dynamic testing. In static analysis, a code
reviewer reads the source code of the program or software under
test, statement by statement and visually follows the program
logic flow by feeding an input. This type of testing is highly de-
pendent on the reviewer’s experience. Typical static analysis
methods are code inspections, code walkthroughs and code re-
views [1]. In contrast to static analysis, which uses the program
requirements and design documents for visual review, dynamic
testing techniques execute the program under test on test input
data and observe its output. Usually, the term testing refers to just
dynamic testing.
Dynamic testing can be classified into two categories: black-box
and white-box. White-box testing is concerned with the degree to
which test cases exercise or cover the logic flow of the program
[1,2]. Therefore, this type of testing is also known as logic-
coverage testing or structural testing, because it considers the
structure of the program. Black-box testing, a.k.a. functional or
specification-based testing, on the other hand, tests the function-

Citation: Nirpal P.B. and Kale K.V. (2012) Genetic Algorithm Based Software Testing Specifically Structural Testing for Software Reliability
Enhancement. International Journal of Computational Intelligence Techniques, ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 1,
pp.-60-64.

Copyright: Copyright©2012 Nirpal P.B. and Kale K.V. This is an open-access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are
credited.

Bioinfo Publications 61

alities of software irrespective of its structure. Functional testing is
interested only in verifying the output in response to given input
data.
This paper focuses on structural testing. Competence of logic-
coverage testing can be judged using different criteria: statement,
decision, condition and path coverage [1,2].

A literature study of Genetic algorithm based approaches to
test data generator
One of the major difficulties in software testing is the automatic
generation of test data that satisfy a given adequacy criterion. To
solve this difficult problem there were a lot of research works,
which have been done in the last 19 years. Perhaps the most
commonly encountered are random test-data generation, symbolic
(or path-oriented) test-data generation, dynamic test-data genera-
tion and recently, test-data generation based on genetic algo-
rithms (GAs).
Xanthakis et al. in [3] is presented the first work applying genetic
algorithms to generate test data. In this work GAs are employed to
generate test data for structures not covered by random search. A
path is chosen by the user and the relevant branch predicates are
extracted from the program. The GA is then used to find input data
that satisfies all branch predicates at once, with the fitness func-
tion summing branch distance values.
Alan Schultz et al [4] in 1993 propose a machine learning tech-
niques to evaluate autonomous vehicle software controller. A set
of simulated fault scenarios is applied to controller and a genetic
algorithm searches for significant combination of fault. This ap-
proach to find a minimum set of faults that produces degraded
vehicle performance and maximum set of faults that can be toler-
ated without significant performance loss.
Pei et al. [5] in 1994 observed that most of the test data genera-
tors, which were developed in their era, were using symbolic eval-
uation. They observed that both static and gradient-descent-based
dynamic testing was developed. However, they concluded that
static testing was not practical, while the dynamic one was not
effective. These drawbacks had inspired Pei et al. to develop a
single-path-coverage test data generator that employs GA.
Hunt J. et al. [6] 1995 presents a genetic algorithm designed to
search for significant input and output combinations to software
control system. By "significant" is meant those which produce an
output (or result) which is not in line with the original specification.
It is intended that such a tool should be used to support the hu-
man tester by focusing their attention on areas of concern which
they can investigate further.
Around the same time, Roper et al. [7] in 1995 developed a GA-
based test data generator that has an aim to traverse all the
branches within a target program. Their generator takes a pro-
gram and instruments it automatically with probes to provide feed-
back on the branch coverage achieved.
Alander, J. et al [8] in 1996 studying possibilities to test software
using genetic algorithm search. The idea is to produce test cases
in order to find problematic situation like processing time ex-
tremes. The proposed test method comes under the heading of
automated dynamic stress testing.
One year after, Jones et al. [9] in 1996 developed a similar GA-
based test data generator to achieve branch coverage. Their ma-
jor contributions are the use of a sequence of binary strings for

individual representation, which is converted to a decimal number
prior to the program execution and the use of unrolled control flow
graph (CFG) to represent one, two, or more iterations for each
loop, which makes the CFG acyclic. As each branch is executed,
the test data generator automatically traverses the CFG to the
next branch in a breadth-first manner.
Michael et al. [10] in 1997 implemented Korel’s function minimiza-
tion approach [21] in their GA-based test data generator. They
have built a test data generator called GADGET (Genetic Algo-
rithm Data Generation Tool), which has the ability to instrument a
program automatically with no limitation in the programming lan-
guage, but it has a restriction that it can only accept scalar inputs.
GADGET has the condition-decision coverage as its adequacy
criteria. GADGET uses simple GA as well as differential GA. The
difference between differential GA and the simple GA is in the
recombination process [21]. Michael et al.’s result shows that, in
general, the simple GA outperforms the differential one. GADGET
is considered to be the first test data generator to be tested
against a large real-world program named b737, which is part of
an autopilot system (real-world control software). Michael et al.
reported that the performance of random test generation deterio-
rates for larger programs.
Tracey N. et al. [11] in 1998 develop a generalized test-case data
generation framework based on optimization techniques. The
framework can incorporate a number of testing criteria, for both
functional and non-functional properties. Application of the optimi-
zation framework to testing specification failures and exception
conditions is illustrated. The results of a number of small case
studies are presented and show the efficiency and effectiveness of
this dynamic optimization-base approach to generating test-data.
The work done by Pargas et al. [12] in 1999 is an improvement to
Jones et al.’s work. The approach they presented also uses
branch information to evaluate the fitness function, except it uses
control dependency graph for the fitness evaluation, which they
claimed it can give more precise fitness evaluation than Jones et
al.’s and Michael et al.’s approaches. Pargas et al. parallelized GA
to make it faster and also claimed that the approach can provide
path coverage with minor modifications.
 Lin and Yeh [13] in 2000 extended the work done by Jones et al.
In their work, they used the path coverage criterion rather than
branch coverage. They also extended the ordinary (weighted)
hamming distance such that it can handle different ordering of the
target paths that have the same branch nodes. The rationale here
is that, in path testing, two different paths may contain the same
branches but in different sequences, where the simple hamming
distance is no longer suitable. They name the fitness function
SIMILARITY, since it calculates the similar items with respect to
their ordering within the two different paths, i.e. branches, between
the current executed path and the target path. The greater SIMI-
LARITY leads to the better fitness.
Bueno and Jino [14] in 2000 proposed an approach that utilizes
control and data flow dynamic information. The proposed ap-
proach is meant to fulfill path coverage testing. In addition, it also
tackles the identification of potentially infeasible program paths by
monitoring the progress of the search for required test data. The
approach considers a continual population’s best fitness improve-
ment as an indication that a feasible path is covered. On the other
hand, attempts to generate test data for infeasible paths result,

International Journal of Computational Intelligence Techniques
ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 1, 2012

Genetic Algorithm Based Software Testing Specifically Structural Testing for Software Reliability Enhancement

Bioinfo Publications 62

invariably, in a persistent lack of progress.
Wegener et al. [15] in 2002 developed a fully automatic GA-based
test data generator for structural software testing, specifically
statement and branch coverage, of real-world embedded software
systems. Their fitness function consists of two major building
blocks: approximation level and normalized predicate local dis-
tance. The approximation level indicates the number of continu-
ously matched branching nodes between the traversed branches
by an individual and a target branches (they call it “partial aim”).
The local distance is calculated for the individual by means of the
branching conditions in the branching node in which the target
node is missed. Unfortunately, the report does not describe the
normalization scheme of the local distance value. Overall fitness
value is the summation of the approximation level value and the
local distance value. Although their tool works on only one partial
aim after the other, it takes into consideration the execution of a
test datum that usually leads to passing several partial aims.
Thus, the test soon focuses on those partial aims that are difficult
to reach. The stopping criteria used is full statement/branch cover-
age and number of generations; whichever is satisfied first.
Wegener et al.’s paper does not discuss as whether multiple tar-
gets can be covered in first attempt. However, the approach, or
more precisely “the test control”, evaluates all individuals generat-
ed with respect to all unachieved targets. Thus, other targets
found by chance are identified and individuals with good fitness
values for one or more targets are noted and stored for seeding
the next subsequent testing of uncovered targets. Furthermore,
they reported that full coverage of some programs is achieved, but
not for all programs though. According to their research work, they
are investigating whether infeasible statements/branches or the
number of generations are some of the reasons for not being able
to achieve full coverage in some programs.
Daz E., et al. [16] in 2003 in this paper, author explain how to
created an efficient testing technique that combines Tabu Search
with Korel’s chaining approach. This technique automatically gen-
erates test data in order to obtain branch coverage in software
testing.
Berndt D., et al. [17] in 2003 in this paper focuses on breeding
software test cases using genetic algorithms as part of a software
testing cycle. An evolving fitness function that relies on a fossil
record of organisms results in interesting search behaviors, based
on the concepts of novelty, proximity and severity. A case study
that uses a simple, but widely studied program is used to illustrate
the approach.
Tonella P., et al. [18] in 2004 in this paper, a genetic algorithm is
exploited to automatically produce test cases for the unit testing of
classes in a generic usage scenario. Test cases are described by
chromosomes, which include information on which objects to cre-
ate, which methods to invoke and which values to use as inputs.
The proposed algorithm mutates them with the aim of maximizing
a given coverage measure. The implementation of the algorithm
and its application to classes from the Java standard library are
described.
D. J. Berndt et al. [19] in 2005 in this paper explores strategies
that combine automated test suite generation techniques with high
volume or long sequence testing. Long sequence testing repeats
test cases many times, simulating extended execution intervals.
These testing techniques have been found useful for uncovering

errors resulting from component coordination problems, as well as
system resource consumption (e.g. memory leaks) or corruption.
Coupling automated test suite generation with long sequence
testing could make this approach more scalable and effective in
the field.
James Miller et al. [20] in 2005 presents a new approach utilizing
program dependence analysis techniques and genetic algorithms
(GAs) to generate test data. A set of experiments using the new
approach is reported to show its effectiveness and efficiency
based upon established criterion.
Abdelhamid Bouchachia [21] in 2007 proposed hybrid algorithm is
called Immune Genetic Algorithm (IGA). A full description of this
algorithm is presented before investigating its application in the
context of software test data generation using some benchmark
programs. Moreover, the algorithm is compared with other evolu-
tionary algorithms.
Yong Chen et al.’s [22] in 2009 proposed two fitness function
based on branch distance (BDBFF) and another based on normal-
ized extended Hamming distance (SIMILARITY) are both applied
in GA-based path oriented test data generation. To compare per-
formance of these two fitness functions, a triangle classification
program was chosen as the example.

Genetic Algorithms
Genetic Algorithms begins with a set of initial individuals as the
first generation, which are sampled at random from the problem
domain. The algorithms are developed to perform a series of oper-
ations that transform the present generation into a new, fitter gen-
eration [22].
Each individual in each generation is evaluated with a fitness func-
tion. Based on the evaluation, the evolution of the individuals may
approach the optimal solution.
The most common operations of genetic algorithms are designed
to produce efficient solution for the target problem [15]. These
primary operations include:

Reproduction- This operation assigns the reproduction probabil-
ity to each individual based on the output of the fitness function.
The individual with a higher ranking is given a greater probability
for reproduction. As a result, the fitter individuals are allowed a
better survival chance from one generation to the next.
Crossover- This operation is used to produce the descendants
that make up the next generation. This operation involves the
following crossbreeding procedures:

 Randomly select two individuals as a couple from the parent
generation.

 Randomly select a position of the genes, corresponding to this
couple, as the crossover point. Thus, each gene is divided into
two parts.

 Exchange the first parts of both genes corresponding to the
couple.

 Add the two resulted individuals to the next generation.
Mutation- This operation picks a gene at random and changing its
state according to the mutation probability. The purpose of the
mutation operation is to maintain the diversity in a generation to
prevent premature convergence to a local optimal solution. The
mutation probability is given intuitively since there is no definite
way to determine the mutation probability [22].

Nirpal P.B. and Kale K.V.

International Journal of Computational Intelligence Techniques
ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 1, 2012

Bioinfo Publications 63

Upon completion of crossover processing and mutation opera-
tions, there will be an original parent population and a new off-
spring population. A fitness function should be devised to deter-
mine which of these parents and offspring’s can be survived into
the next generation. After performing the fitness function, these
parents and offspring’s are filtered and a new generation is
formed. These operations are iterated until the expected goal is
achieved. Genetic algorithms guarantee high probability of im-
proving the quality of the individuals over several generations
according to the Schema Theorem.

Experimental studies
Example of Triangle classification program
Triangle classification program has been widely used in the re-
search area of software testing [22, 24]. It aims to determine if
three input edges can form a triangle and so what type of triangle
can be formed by them. Fig. 1 gives source code of the program.

An example program

path1=;%instrument branch#1
Triangle='Not a Triangle';
 if((a+b>c)&&(b+c>a)&&(c+a>b))
path1=[path1 'a']; %instrument branch#2
 if((a~=b)&&(b~=c)&&(c~=a))
path1=[path1 'e']; %instrument branch#3
Triangle='Scalene';
 else
path1=[path1 'b']; %instrument branch#4
 if(((a==b)&&(b~=c))||((b==c)&&(c~=a))||((c==a)&&(a~=b)))
path1=[path1 'f']; %instrument branch#5
Triangle='Isosceles';
 else
path1=[path1 'c']; %instrument branch#6
Triangle='Equilateral';
 end
 end
 else
path1=[path1 'd']; %instrument branch#7
 end
 end
For test generation we have taken the triangle classification prob-
lem. Our experiment of the general path testing follows the four
steps: Control flow graph construction, Target path selection, Test
case generation and execution and Test result evaluation.

Control flow graph construction

Fig. 1- Control flow graph of the triangle classification program

Target path selection
Path l: <d> //Not-a-triangle
Path 2: <ae> //Scalene
Path 3: <abf> //Isosceles
Path 4: <abc> //Equilateral
According to probability theory, the path <abc> is the most difficult
path to be covered in path testing. Therefore, the path <abc> is
selected as the target path.

Test case generation and execution
According to the genetic algorithms, an experimental tool for auto-
matically generating test cases to test a specific path is developed

Test result evaluation
This step is to execute the selected path with the test cases found
in step (3) and to determine whether the outputs are correct or
not.

Results
In this experiment we have used GA for 1000 generations with
n=15, initial population with 1000 test cases. The size of the chro-
mosome is 3. Mutation rate is 0.01. Selection rate 0.5

Table 1 Average number of test cases on the path of Fig. 1 of 1-

10 generation

Fig. 2- Average number of test cases on the path of Fig. 1 of 1-10
generation

In this work the software tests data generation using genetic algo-
rithm. Throughout this work triangle classification problem was
used for experiment. During result process around 100 figures
and almost 100 tables are used to show the outcome of this work.
The output is evaluated by passing the proposed algorithm
through 1000 generation to test the accuracy. The experimental
work consists of various types of triangle likes Equilateral, Not a

Genetic Algorithm Based Software Testing Specifically Structural Testing for Software Reliability Enhancement

International Journal of Computational Intelligence Techniques
ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 1, 2012

 <abc> <d> <ae> <abf> time
total test
cases

Generation Equilateral Not a Triangle Scalene Isosceles

1 6 492 370 132 0.0753 1000

2 1 376 94 29 0.0416 500

3 0 347 104 49 0.0436 500

4 0 357 100 43 0.0438 500

5 0 369 97 34 0.0445 500

6 4 332 115 49 0.0442 500

7 2 354 92 52 0.0436 500

8 0 339 114 47 0.044 500

9 2 342 115 41 0.044 500

10 1 344 113 42 0.0432 500

GA Graph

0

200

400

600

1 2 3 4 5 6 7 8 9 10

Generations

T
e
s
t

C
a
s
e
s Equilateral

Notatriangle

Scalene

Isosceles

Bioinfo Publications 64

Triangle, Scalene and Isosceles. The outcome is evaluated by
verifying the number of various triangles generated in 1000 test
cases.
We have used automation coverage for software reliability en-
hancement. This software testing metric gives the percentage of
manual test cases automated.

… (1)
Example: If there are 100 Manual test cases and one has auto-
mated 60 test cases then Automation Coverage = 60%.

Table 2- Reliability achieved in percentage using automation cov-

erage.

The final reliability in this work is calculated by equation number 1
and shown table it is 2 found that for test cases number 1 genera-
tion the reliability is 100% where as for remaining all 1000 genera-
tion it is 50%. The reliability trends of our research work are
shown in Fig. 3.

Fig. 3- Reliability achieved in percentage using automation cover-
age

Conclusion
In this experimental work we have used triangle problem for test
data generation. To carry out these experiments we have per-
formed above presented results. The various experimental results
which are carried out through triangle problem using genetic algo-
rithm based test data generation. It is hoped that the limitations of
this work would be considered as the beginning for the research in
future. Effectiveness and Efficiency - the effectiveness and effi-
ciency of the software can be improved.

Acknowledgment
The authors wish to acknowledge UGC for the award of Research

Fellowship under Fellowship in Sciences to Meritorious Students
(RFSMS) scheme for carrying out this research.

References
[1] Roger Pressman (1997) “Software Engineering” A Practition-

er’s Approach 5th Edition, McGraw Hill.
[2] Beizer B. (1990) Software Testing Techniques 2nd Edition,

International Thomson Computer Press.
[3] Xanthakis S., Ellis C., Skourlas C., Le Gall A., Kastiskas S.,

Karapoulios K. (1992) In 5th International Conference on Soft-
ware Engineering and its Applications, 625-636.

[4] Alan C. Schultz, John J. Grefenstette, aid Kenneth A. De Jong
(1993) IEEE- Test and Evaluation by Genetic Algorithms,
Digital Object Identifier, 8(5).

[5] Pei M., Goodman E.D., Gao Z. and Zhong K. (1994) Automat-
ed Software Test Data Generation Using A Genetic Algorithm.

[6] Hunt J. (1995) Testing Control Software using a Genetic Algo-
rithm”, Working Paper, University of Wales, UK.

[7] Roper M., Maclean I., Brooks A., Miller J. and Wood M. (1995)
Genetic Algorithms and the Automatic Generation of Test
Data.

[8] Alander J.T., Mantere T. and Turunen P. (1997) Genetic Algo-
rithm Based Software Testing.

[9] Jones B., Sthamer H. and Eyres D. (1996) Software Engineer-
ing Journal 11(5), 299-306.

[10] Michael C.C., McGraw G.E., Schatz M.A. and Walton C.C.
(1997) Genetic Algorithms for Dynamic Test Data Genera-
tion”, Technical report, Reliable Software Technologies, Ster-
ling.

[11] Tracey N.J., Clark J., Mander K. and McDermid J. (1998) 13th
IEEE Conference in Automated Software Engineering, Hawaii.

[12] Pargas R.P., Harrold M.J. and Peck R.R. (1999) Journal of
Software Testing, Verification and Reliability.

[13] Lin J.C. and Yeh P.L. (2000) 9th Asian Test Symposium.
[14] Bueno P.M.S. and Jino M. (2000) Fifteenth IEEE International

Conference on Automated Software Engineering, 209-218.
[15] Wegener J., Buhr K. and Pohlheim H. (2002) Genetic and

Evolutionary Computation Conference.
[16] Daz E., Tuya J. and Blanco R. (2003) 18th IEEE International

Conference on Automated Software Engineering, 310-313.
[17] Berndt D.J., Fisher J., Johnson L., Pinglikar J. and Watkins A.

(2003) Thirty-Sixth Hawai`i International Conference on Sys-
tem Sciences.

[18] Tonella P. (2004) ACM SIGSOFT international symposium on
Software testing and analysis, 119-128.

[19] Berndt D.J., Watkins A. (2005) 38th Annual Hawaii Interna-
tional Conference on System Sciences, Track 9.

[20] James Miller, Marek Reformat and Howard Zhang (2006)
Science Direct, Information and Software Technology, 48, 586
-605.

[21] Abdelhamid Bouchachia (2007) IEEE, Seventh International
Conference on Hybrid Intelligent Systems.

[22] Chen Yong and Zhong Yong (2008) Fourth International Con-
ference on Natural Computation.

 % 100*
TC manual of No. Total

 Automated TC of No. Total
Coverage Automation 










Nirpal P.B. and Kale K.V.

International Journal of Computational Intelligence Techniques
ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 1, 2012

Sr. No Generation
Number of auto-
mated test cases

Number of manual
test cases

Percentage
(%)

1 1 1000 1000 100%

2 2 500 1000 50%

3 3 500 1000 50%

4 4 500 1000 50%

5 5 500 1000 50%

6 6 500 1000 50%

7 7 500 1000 50%

8 8 500 1000 50%

9 9 500 1000 50%

10 10 500 1000 50%

Reliability enhancement

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

Generation

T
o

ta
l

te
s
t

c
a
s
e
s Number of

automated test

cases

Number of manual

test cases

Percentage (%)

