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Abstract- In this paper we focus on software reliability with testing coverage, which will increase the software efficiency. Testing costs often 
account for up to 50% of the total expense of software development; hence any techniques leading to the automatic generation of test data 
will have great potential to considerably reduce costs. Hence, software quality managers have been looking for solutions to reduce testing 
costs and time. In our work, genetic algorithms that can automatically generate test cases to test selected path. This algorithm takes a se-
lected path as a target and executes sequences of operators iteratively for test cases to evolve. We describe the implementation of our GA-
based system and examine the effectiveness of this approach on a number of programs. 
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Introduction 
The software testing is designed with the purpose of detecting 
defects for a given set of inputs and estimating the operational 
effectiveness and suitability of the program being developed. 
Software program could be viewed as a function that describes 
the relationship of an input to an output. The testing process is 
used to ensure that the program realizes the function and its prob-
lem could be represented by the testing problem. The essential 
components of a software program test are a description of the 
functional input range, the program in executable form, a descrip-
tion of the expected behavior, a way of observing program behav-
ior and a method of determining whether the observed behavior 
conforms to the expected behavior. Generally, software-testing 
techniques are classified into two categories: static analysis and 
dynamic testing.  
This paper includes six sections, background of various software 
testing techniques in section 2, a literature study of genetic algo-
rithm based approaches to test data generator in section 3, intro-
duction to genetic algorithms in section 4, experimental results 
and discussion in section 5, this paper concludes in section 6 

Software Testing Techniques  
Software-testing techniques are classified into two categories: 
static analysis and dynamic testing. In static analysis, a code 
reviewer reads the source code of the program or software under 
test, statement by statement and visually follows the program 
logic flow by feeding an input. This type of testing is highly de-
pendent on the reviewer’s experience. Typical static analysis 
methods are code inspections, code walkthroughs and code re-
views [1]. In contrast to static analysis, which uses the program 
requirements and design documents for visual review, dynamic 
testing techniques execute the program under test on test input 
data and observe its output. Usually, the term testing refers to just 
dynamic testing. 
Dynamic testing can be classified into two categories: black-box 
and white-box. White-box testing is concerned with the degree to 
which test cases exercise or cover the logic flow of the program 
[1,2]. Therefore, this type of testing is also known as logic-
coverage testing or structural testing, because it considers the 
structure of the program. Black-box testing, a.k.a. functional or 
specification-based testing, on the other hand, tests the function-
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alities of software irrespective of its structure. Functional testing is 
interested only in verifying the output in response to given input 
data. 
This paper focuses on structural testing. Competence of logic-
coverage testing can be judged using different criteria: statement, 
decision, condition and path coverage [1,2]. 
 
A literature study of Genetic algorithm based approaches to 
test data generator 
One of the major difficulties in software testing is the automatic 
generation of test data that satisfy a given adequacy criterion. To 
solve this difficult problem there were a lot of research works, 
which have been done in the last 19 years. Perhaps the most 
commonly encountered are random test-data generation, symbolic 
(or path-oriented) test-data generation, dynamic test-data genera-
tion and recently, test-data generation based on genetic algo-
rithms (GAs). 
Xanthakis et al. in [3] is presented the first work applying genetic 
algorithms to generate test data. In this work GAs are employed to 
generate test data for structures not covered by random search. A 
path is chosen by the user and the relevant branch predicates are 
extracted from the program. The GA is then used to find input data 
that satisfies all branch predicates at once, with the fitness func-
tion summing branch distance values. 
Alan Schultz et al [4] in 1993 propose a machine learning tech-
niques to evaluate autonomous vehicle software controller. A set 
of simulated fault scenarios is applied to controller and a genetic 
algorithm searches for significant combination of fault. This ap-
proach to find a minimum set of faults that produces degraded 
vehicle performance and maximum set of faults that can be toler-
ated without significant performance loss. 
Pei et al. [5] in 1994 observed that most of the test data genera-
tors, which were developed in their era, were using symbolic eval-
uation. They observed that both static and gradient-descent-based 
dynamic testing was developed. However, they concluded that 
static testing was not practical, while the dynamic one was not 
effective. These drawbacks had inspired Pei et al. to develop a 
single-path-coverage test data generator that employs GA.  
Hunt J. et al. [6] 1995 presents a genetic algorithm designed to 
search for significant input and output combinations to software 
control system. By "significant" is meant those which produce an 
output (or result) which is not in line with the original specification. 
It is intended that such a tool should be used to support the hu-
man tester by focusing their attention on areas of concern which 
they can investigate further.  
Around the same time, Roper et al. [7] in 1995 developed a GA-
based test data generator that has an aim to traverse all the 
branches within a target program. Their generator takes a pro-
gram and instruments it automatically with probes to provide feed-
back on the branch coverage achieved. 
Alander, J. et al [8] in 1996 studying possibilities to test software 
using genetic algorithm search. The idea is to produce test cases 
in order to find problematic situation like processing time ex-
tremes. The proposed test method comes under the heading of 
automated dynamic stress testing. 
One year after, Jones et al. [9] in 1996 developed a similar GA-
based test data generator to achieve branch coverage. Their ma-
jor contributions are the use of a sequence of binary strings for 

individual representation, which is converted to a decimal number 
prior to the program execution and the use of unrolled control flow 
graph (CFG) to represent one, two, or more iterations for each 
loop, which makes the CFG acyclic. As each branch is executed, 
the test data generator automatically traverses the CFG to the 
next branch in a breadth-first manner. 
Michael et al. [10] in 1997 implemented Korel’s function minimiza-
tion approach [21] in their GA-based test data generator. They 
have built a test data generator called GADGET (Genetic Algo-
rithm Data Generation Tool), which has the ability to instrument a 
program automatically with no limitation in the programming lan-
guage, but it has a restriction that it can only accept scalar inputs. 
GADGET has the condition-decision coverage as its adequacy 
criteria. GADGET uses simple GA as well as differential GA. The 
difference between differential GA and the simple GA is in the 
recombination process [21]. Michael et al.’s result shows that, in 
general, the simple GA outperforms the differential one. GADGET 
is considered to be the first test data generator to be tested 
against a large real-world program named b737, which is part of 
an autopilot system (real-world control software). Michael et al. 
reported that the performance of random test generation deterio-
rates for larger programs. 
Tracey N. et al. [11] in 1998 develop a generalized test-case data 
generation framework based on optimization techniques. The 
framework can incorporate a number of testing criteria, for both 
functional and non-functional properties. Application of the optimi-
zation framework to testing specification failures and exception 
conditions is illustrated. The results of a number of small case 
studies are presented and show the efficiency and effectiveness of 
this dynamic optimization-base approach to generating test-data. 
The work done by Pargas et al. [12] in 1999 is an improvement to 
Jones et al.’s work. The approach they presented also uses 
branch information to evaluate the fitness function, except it uses 
control dependency graph for the fitness evaluation, which they 
claimed it can give more precise fitness evaluation than Jones et 
al.’s and Michael et al.’s approaches. Pargas et al. parallelized GA 
to make it faster and also claimed that the approach can provide 
path coverage with minor modifications. 
 Lin and Yeh [13] in 2000 extended the work done by Jones et al. 
In their work, they used the path coverage criterion rather than 
branch coverage. They also extended the ordinary (weighted) 
hamming distance such that it can handle different ordering of the 
target paths that have the same branch nodes. The rationale here 
is that, in path testing, two different paths may contain the same 
branches but in different sequences, where the simple hamming 
distance is no longer suitable. They name the fitness function 
SIMILARITY, since it calculates the similar items with respect to 
their ordering within the two different paths, i.e. branches, between 
the current executed path and the target path. The greater SIMI-
LARITY leads to the better fitness. 
Bueno and Jino [14] in 2000 proposed an approach that utilizes 
control and data flow dynamic information. The proposed ap-
proach is meant to fulfill path coverage testing. In addition, it also 
tackles the identification of potentially infeasible program paths by 
monitoring the progress of the search for required test data. The 
approach considers a continual population’s best fitness improve-
ment as an indication that a feasible path is covered. On the other 
hand, attempts to generate test data for infeasible paths result, 

International Journal of Computational Intelligence Techniques 
ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 1, 2012 

Genetic Algorithm Based Software Testing Specifically Structural Testing for Software Reliability Enhancement  



Bioinfo Publications   62 

 

invariably, in a persistent lack of progress. 
Wegener et al. [15] in 2002 developed a fully automatic GA-based 
test data generator for structural software testing, specifically 
statement and branch coverage, of real-world embedded software 
systems. Their fitness function consists of two major building 
blocks: approximation level and normalized predicate local dis-
tance. The approximation level indicates the number of continu-
ously matched branching nodes between the traversed branches 
by an individual and a target branches (they call it “partial aim”). 
The local distance is calculated for the individual by means of the 
branching conditions in the branching node in which the target 
node is missed. Unfortunately, the report does not describe the 
normalization scheme of the local distance value. Overall fitness 
value is the summation of the approximation level value and the 
local distance value. Although their tool works on only one partial 
aim after the other, it takes into consideration the execution of a 
test datum that usually leads to passing several partial aims. 
Thus, the test soon focuses on those partial aims that are difficult 
to reach. The stopping criteria used is full statement/branch cover-
age and number of generations; whichever is satisfied first.  
Wegener et al.’s paper does not discuss as whether multiple tar-
gets can be covered in first attempt. However, the approach, or 
more precisely “the test control”, evaluates all individuals generat-
ed with respect to all unachieved targets. Thus, other targets 
found by chance are identified and individuals with good fitness 
values for one or more targets are noted and stored for seeding 
the next subsequent testing of uncovered targets. Furthermore, 
they reported that full coverage of some programs is achieved, but 
not for all programs though. According to their research work, they 
are investigating whether infeasible statements/branches or the 
number of generations are some of the reasons for not being able 
to achieve full coverage in some programs. 
Daz E., et al. [16] in 2003 in this paper, author explain how to 
created an efficient testing technique that combines Tabu Search 
with Korel’s chaining approach. This technique automatically gen-
erates test data in order to obtain branch coverage in software 
testing. 
Berndt D., et al. [17] in 2003 in this paper focuses on breeding 
software test cases using genetic algorithms as part of a software 
testing cycle. An evolving fitness function that relies on a fossil 
record of organisms results in interesting search behaviors, based 
on the concepts of novelty, proximity and severity. A case study 
that uses a simple, but widely studied program is used to illustrate 
the approach. 
Tonella P., et al. [18] in 2004 in this paper, a genetic algorithm is 
exploited to automatically produce test cases for the unit testing of 
classes in a generic usage scenario. Test cases are described by 
chromosomes, which include information on which objects to cre-
ate, which methods to invoke and which values to use as inputs. 
The proposed algorithm mutates them with the aim of maximizing 
a given coverage measure. The implementation of the algorithm 
and its application to classes from the Java standard library are 
described.  
D. J. Berndt et al. [19] in 2005 in this paper explores strategies 
that combine automated test suite generation techniques with high 
volume or long sequence testing. Long sequence testing repeats 
test cases many times, simulating extended execution intervals. 
These testing techniques have been found useful for uncovering 

errors resulting from component coordination problems, as well as 
system resource consumption (e.g. memory leaks) or corruption. 
Coupling automated test suite generation with long sequence 
testing could make this approach more scalable and effective in 
the field. 
James Miller et al. [20] in 2005 presents a new approach utilizing 
program dependence analysis techniques and genetic algorithms 
(GAs) to generate test data. A set of experiments using the new 
approach is reported to show its effectiveness and efficiency 
based upon established criterion. 
Abdelhamid Bouchachia [21] in 2007 proposed hybrid algorithm is 
called Immune Genetic Algorithm (IGA). A full description of this 
algorithm is presented before investigating its application in the 
context of software test data generation using some benchmark 
programs. Moreover, the algorithm is compared with other evolu-
tionary algorithms. 
Yong Chen et al.’s [22] in 2009 proposed two fitness function 
based on branch distance (BDBFF) and another based on normal-
ized extended Hamming distance (SIMILARITY) are both applied 
in GA-based path oriented test data generation. To compare per-
formance of these two fitness functions, a triangle classification 
program was chosen as the example. 
 
Genetic Algorithms 
Genetic Algorithms begins with a set of initial individuals as the 
first generation, which are sampled at random from the problem 
domain. The algorithms are developed to perform a series of oper-
ations that transform the present generation into a new, fitter gen-
eration [22]. 
Each individual in each generation is evaluated with a fitness func-
tion. Based on the evaluation, the evolution of the individuals may 
approach the optimal solution.  
The most common operations of genetic algorithms are designed 
to produce efficient solution for the target problem [15]. These 
primary operations include: 
 
Reproduction- This operation assigns the reproduction probabil-
ity to each individual based on the output of the fitness function. 
The individual with a higher ranking is given a greater probability 
for reproduction. As a result, the fitter individuals are allowed a 
better survival chance from one generation to the next. 
Crossover- This operation is used to produce the descendants 
that make up the next generation. This operation involves the 
following crossbreeding procedures: 

 Randomly select two individuals as a couple from the parent 
generation. 

 Randomly select a position of the genes, corresponding to this 
couple, as the crossover point. Thus, each gene is divided into 
two parts. 

 Exchange the first parts of both genes corresponding to the 
couple. 

 Add the two resulted individuals to the next generation. 
Mutation- This operation picks a gene at random and changing its 
state according to the mutation probability. The purpose of the 
mutation operation is to maintain the diversity in a generation to 
prevent premature convergence to a local optimal solution. The 
mutation probability is given intuitively since there is no definite 
way to determine the mutation probability [22]. 
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Upon completion of crossover processing and mutation opera-
tions, there will be an original parent population and a new off-
spring population. A fitness function should be devised to deter-
mine which of these parents and offspring’s can be survived into 
the next generation. After performing the fitness function, these 
parents and offspring’s are filtered and a new generation is 
formed. These operations are iterated until the expected goal is 
achieved. Genetic algorithms guarantee high probability of im-
proving the quality of the individuals over several generations 
according to the Schema Theorem. 
 
Experimental studies 
Example of Triangle classification program 
Triangle classification program has been widely used in the re-
search area of software testing [22, 24]. It aims to determine if 
three input edges can form a triangle and so what type of triangle 
can be formed by them. Fig. 1 gives source code of the program. 
 
An example program 
 
path1=;%instrument branch#1 
Triangle='Not a Triangle'; 
 if((a+b>c)&&(b+c>a)&&(c+a>b))  
path1=[path1 'a']; %instrument branch#2 
 if((a~=b)&&(b~=c)&&(c~=a)) 
path1=[path1 'e']; %instrument branch#3 
Triangle='Scalene'; 
 else 
path1=[path1 'b']; %instrument branch#4 
 if(((a==b)&&(b~=c))||((b==c)&&(c~=a))||((c==a)&&(a~=b))) 
path1=[path1 'f']; %instrument branch#5 
Triangle='Isosceles'; 
 else 
path1=[path1 'c']; %instrument branch#6 
Triangle='Equilateral'; 
 end 
  end 
 else 
path1=[path1 'd']; %instrument branch#7 
 end 
  end 
For test generation we have taken the triangle classification prob-
lem. Our experiment of the general path testing follows the four 
steps: Control flow graph construction, Target path selection, Test 
case generation and execution and Test result evaluation. 
 
Control flow graph construction 
 
 

 
 
 
 
 
 
 
 

Fig. 1- Control flow graph of the triangle classification program 

Target path selection 
Path l: <d> //Not-a-triangle 
Path 2: <ae> //Scalene 
Path 3: <abf> //Isosceles 
Path 4: <abc> //Equilateral 
According to probability theory, the path <abc> is the most difficult 
path to be covered in path testing. Therefore, the path <abc> is 
selected as the target path. 
 
Test case generation and execution 
According to the genetic algorithms, an experimental tool for auto-
matically generating test cases to test a specific path is developed 
 
Test result evaluation 
This step is to execute the selected path with the test cases found 
in step (3) and to determine whether the outputs are correct or 
not. 
 
Results 
In this experiment we have used GA for 1000 generations with 
n=15, initial population with 1000 test cases. The size of the chro-
mosome is 3. Mutation rate is 0.01. Selection rate 0.5 
 
Table 1 Average number of test cases on the path of Fig. 1 of 1-

10 generation 

Fig. 2- Average number of test cases on the path of Fig. 1 of 1-10 
generation 

 
In this work the software tests data generation using genetic algo-
rithm. Throughout this work triangle classification problem was 
used for experiment. During result process around 100 figures 
and almost 100 tables are used to show the outcome of this work. 
The output is evaluated by passing the proposed algorithm 
through 1000 generation to test the accuracy. The experimental 
work consists of various types of triangle likes Equilateral, Not a 
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  <abc> <d> <ae> <abf> time 
total test 
cases 

Generation Equilateral Not a Triangle Scalene Isosceles     

1 6 492 370 132 0.0753 1000 

2 1 376 94 29 0.0416 500 

3 0 347 104 49 0.0436 500 

4 0 357 100 43 0.0438 500 

5 0 369 97 34 0.0445 500 

6 4 332 115 49 0.0442 500 

7 2 354 92 52 0.0436 500 

8 0 339 114 47 0.044 500 

9 2 342 115 41 0.044 500 

10 1 344 113 42 0.0432 500 
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Triangle, Scalene and Isosceles. The outcome is evaluated by 
verifying the number of various triangles generated in 1000 test 
cases. 
We have used automation coverage for software reliability en-
hancement. This software testing metric gives the percentage of 
manual test cases automated. 

… (1) 
Example: If there are 100 Manual test cases and one has auto-
mated 60 test cases then Automation Coverage = 60%. 
 
Table 2- Reliability achieved in percentage using automation cov-

erage. 

The final reliability in this work is calculated by equation number 1 
and shown table it is 2 found that for test cases number 1 genera-
tion the reliability is 100% where as for remaining all 1000 genera-
tion it is 50%. The reliability trends of our research work are 
shown in Fig. 3. 

Fig. 3- Reliability achieved in percentage using automation cover-
age 

 
Conclusion 
In this experimental work we have used triangle problem for test 
data generation. To carry out these experiments we have per-
formed above presented results. The various experimental results 
which are carried out through triangle problem using genetic algo-
rithm based test data generation. It is hoped that the limitations of 
this work would be considered as the beginning for the research in 
future. Effectiveness and Efficiency - the effectiveness and effi-
ciency of the software can be improved. 
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Sr. No Generation 
Number of auto-
mated test cases 

Number of manual 
test cases 

Percentage 
(%) 

1 1 1000 1000 100% 

2 2 500 1000 50% 

3 3 500 1000 50% 

4 4 500 1000 50% 

5 5 500 1000 50% 

6 6 500 1000 50% 

7 7 500 1000 50% 

8 8 500 1000 50% 

9 9 500 1000 50% 

10 10 500 1000 50% 
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