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Introduction 

Developing software is a challenging task. The challenge comes 
basically from the characteristics of the software itself, and because 
of these characteristics, the software can be said to prone towards 
containing faults. Even if know that the software contains faults, we 
generally do not know their exact identity. Viz., program proving and 
program testing can give the indication of the existence of the 
faults. Program proving is formal and mathematical while program 
testing is more practical and heuristic. The approach taken in pro-
gram proving is to construct a finite sequence of logical statements, 
usually the output specification statement, to be proved [1]. Pro-
gram testing is symbolic or physical execution of a set of test cases 

with the intent of exposing embedded faults in the program [1]. 

It is observed that these approaches are not that faultless and 
therefore a need for metrics for assessing software quality attributes 
has become significant. One such quantifiable metric of quality that 
is commonly used is software engineering practice is software relia-

bility. 

A number of conflicting views exist as to what software reliability is 
and how it should be quantified. One of the approaches parallels 
that of program proving whereby the program is either correct or 
incorrect. Software reliability in this case is binary in nature; an im-
perfect program has zero reliability and a perfect program has a 
reliability value of one. Thus software reliability can be defined as 
relative frequency of the times that the program performs as intend-
ed. This leads us to define software reliability as the probability of 

fault free operation, provided by software product under considera-
tion, over a specified period of time in specified operational environ-

ment [2]. 

The next section focuses on significance of Software reliability pro-

ceeded by definition to software reliability  

Uses of Software Reliability 

Potential use of software reliability includes the following [2]: 

Making intelligent system tradeoffs between reliability, performance, 
cost, schedules, and other factors for and between the programs 
themselves and other system elements as well. These tradeoffs will 
be made both at the start of the project and as it proceeds. They 
may involve combination of software reliability parameters with 
those of other system components to obtain system reliability esti-
mates or allocation of system reliability goals among subsystem, 

one or more subsystems being computer programs.  

Scheduling and monitoring progress of a testing effort b using con-
tinually updated estimates of current reliability. Included in the fore-

going is determining when to terminate a testing effort.  

Comparatively evaluating the effect on reliability of different design 
techniques, coding techniques, testing techniques and documenta-

tion approaches. 

Looking at the potential benefits of software reliability forty years 
back efforts started in this area. Although modeling software reliabil-
ity was very much influenced from that of hardware reliability, the 

concept of software differs much from that of hardware reliability.  
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Hardware versus Software Reliability  

A fundamental difference in dealing with software versus hardware 
reliability is that hardware reliability tends to decrease in time, due 
to aging, wear-out, and so forth, where as software reliability tends 
to increase through time, due to the removal of bugs, or will remain 
the same if no action is taken. There are exceptions to both, of 
course. Hardware reliability may increase in time as a result of a 
reliability improvement program, and software reliability may de-

crease as a result of the introduction of new bugs. [Table-1] sum-

maries the difference between hardware and software reliability [3]. 

Because of the large number of differences, one might conclude 
that methods developed for hardware would not be appropriate for 
analysis of software reliability. Many of the techniques used in the 
analysis of hardware reliability are also useful in software reliability 
as well, but care must be taken in selecting models and interpreting 

results in software context.  
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Table 1- Comparison of Hardware and Software 

Hardware  Software  

A small anomaly may lead to a predictable failure or have little or no effect.  One incorrect bit may lead to disaster  

Design and production predominate.  Nearly 100% design  

Can test all events  The number of events is huge and events tend to be unique to software  

Cause of failure is design, manufacture, maintenance, and misuse.  Failures are due to design defects.  

Redundancy can be used to increase reliability.  Redundancy does not necessarily lead to improvement.  

Maintenance improves reliability  Reprogramming may introduce new errors  

Physical laws may describe failures.  A comparable law does not exit.  

Interface are physical structures  Interfaces are conceptual  

Standard parts are commonly used.  Standard parts are seldom used.  

Software Reliability  

Software Reliability has been defined as the probability that a soft-
ware fault, which causes deviation from required output by more 
than specified tolerances in a specified environment, does not occur 
during a specified exposure period. Thus reliability can be formally 

defined as: 

 R (i) = P [No failures in i runs]     (1)  

Or  

 R (t) = P [No failures in interval (0,t)]   (2) 

Assuming that inputs are selected independently according to some 

probability distribution function, we have  

 R (i) = [R (1)] i = (R) I     (3)  

Where R=R (1). We can define the reliability R as follows: 

 R=1-lim (nf/n)      (4)  

Where 

n = number of runs,  

nf = number of failures in n runs. 

This is the operational definition of software reliability.  

Software reliability is a function of many factors like software devel-
opment methodology, validation methods and also the languages in 

which the program is written.  

Failure intensity is an alternative way of expressing reliability. Let R 
be the reliability, λ the failure intensity and t the execution time. 

Then as shown in [Fig-1]. 

 R(t) = exp(-λt)       (5) 

The failure intensity statement is more economical since only one 
number is needed. Failure intensity like reliability is defined with 
respect to a specified operational profile. The relationship between 
failure intensity and reliability depends on the reliability model em-

ployed if these values are changing.  

[Fig-2] shows that as faults are removed, failure intensity tends to 

drop and the reliability tends to increase. 

Software Error, Fault and Failure  

The following definitions are commonly used in the software engi-

neering literature [4]:  

 Error: Human action which results in software containing a fault.  

 Fault: A manifestation of an error in software; a fault if encoun-

tered may cause a failure.  

 Failure: An unacceptable result produced when fault is encoun-

tered.  

Even though these three things have different meanings, they are 

often used interchangeably in the literature. 

Fig. 1- Reliability Function in Relation to Failure Intensity 

Fig. 2- Decreases in Failure Intensity Increases Reliability 
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Time Relevant to Software Reliability  

Three kinds of time are relevant to software reliability: 

 The execution time for the program is the time required by a 

processor to execute the instructions of the program.  

 Calendar time is the regular time we are familiar with.  

 Clock time, used occasionally, represents the elapsed time from 

start to end of the program execution on a running computer. It 
includes wait time and execution time of other programs.  

Factors Influencing Software Reliability  

The main factors that affect software reliability are fault introduction, 
fault removal, and operational profile. Fault introduction depends 
primarily on the characteristics of the developed code (code written 
or modified for the program) and the development process. The 
code characteristics with the greatest effect are size. Development 
characteristics include the software engineering technologies and 
tools employed and the average level of experience of program-
mers. Note that code is developed when adding features or remov-
ing faults. Time, the operational profile and the quality of the repair 
activity affect fault removal.  

The reliability of a software based product depends on how the 
computer and other external elements will use it [5]. Making a good 
reliability estimate depends on testing the product as if it were in the 
field. The operational profile, a quantitative characterization of how 
the software will be used, is therefore essential in any software 
reliability engineering (SRE) application. It is the fundamental con-
cept which must be understood in order to apply SRE effectively 
and with any degree of validity.  

A profile is a set of independent possibilities called elements, and 
their associated probability of occurrence. If operation A occurs 60 
percent of time, B occurs 30 percent, and C occurs 10 percent, for 
example the profile is [A, 0.6…B, 0.3…C, 0.1]. The OP is the set of 
independent operations that a software system performs and their 
associated probabilities. Developing an OP for a system involves 
one or more of the following five steps [Fig-3]:  

 Find the customer profile  

 Establish the user profile  

 Define the system mode profile  

 Determine the functional profile  

 Determine the operational profile  

Since most of the foregoing factors are probabilistic in nature and 
operate over time, software reliability models are generally devel-

oped as models of random processes.  

Fig. 3- Processes for Developing Operational Profile 

The model are distinguished from each other by probability distribu-
tion of failure times or numbers of failure experienced and by the 
form of the variation of the random process with time. Since the 
failure rate of the software changes over time as the software is 
modified to correct faults, the prediction procedure like the one 
shown in [Fig-4] provide values for the parameters of a software 
reliability growth model. A reliability growth model can be used to 
forecast what the failure rate λ(т) will be at any time т into the sys-

tem test. 

Conversely, a growth model can be used to forecast when a partic-
ular failure rate objective will be reached. The amount of execution 
time to reach an objective can be translated into calendar time for 
schedule and resource estimate. Reliability progress is evaluated 

as a part of prediction process. 

The next section focuses on software reliability models by first 
providing the overview of the software reliability models and then by 

classifying them under appropriate heads. 
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Fig. 4- Software Reliability Predictions 
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Software Reliability Models 

Models have been developed to measure estimate and predict the 
reliability of computer software. Software reliability has received 
much attention because reliability has always had obvious effect on 
highly visible aspects of software development: testing prior to de-

livering, and maintains. 

A model is an abstracted representation of the relationship among 
two or more variable attributes of an entity. A good model will incor-
porate the influence of all variables that affects the outcome. A use-
ful model will have predictive capabilities given the values of some 
attributes we know, or can estimate reasonable well, it will deter-
mine the future values of other attributes with an acceptable degree 

of uncertainty.  

Reliability models are mathematically intense incorporating stochas-
tic processes, Probability and statistics in their calculation and rely-
ing on maximum likelihood estimate, numerical methods and confi-
dence interval to model their assumptions. They express the gen-
eral form of the relationship between the failures and the factors 
mentioned. The possibilities for different general mathematical 

forms to describe the failure process are almost limitless.  

The specific form is determined by establishing the values of the 

parameters of the model through either:  

Estimation: applying statistical inference procedures to the failure 

data, or  

Prediction: relating parameter value to characteristics of the soft-
ware product and the development process (Which can be done 

before failure data is available). 

There will be uncertainty in the determination of specific form. This 
is generally expressed in terms of "confidence interval” for the pa-
rameters. A "confidence interval” represents a range of value within 
which a parameter is expected to lie with a certain confidence. For 
example, the 75% confidence interval of initial failure intensity may 
be 9 to 11 failures per hour. After the specific form has been estab-
lished, many different properties of the failure process can be deter-

mined. For many models there is analytic expression for  

The average number of failures experienced at any point in time,  

The average number time failures in a time interval,  

The failure intensity at any point in time, and  

The probability distribution of failure intervals.  

A good software reliability model has several important characteris-

tics. It 

 gives good prediction of future failure behavior, 

 computes useful quantities,  

 is simple  

 is widely applicable,  

 is based on sound assumptions. 

However software reliability models must take the following proper-

ties of software error into account:  

 The same program can have different reliability in different envi-
ronments depending upon which portion of the code gets exe-

cuted more often.  

 There is no physical deterioration of the software.  

 The software errors are usually correlated.  

 New errors can be introduced during the correction of the previ-

ous error. 

 Software reliability is dependent on the experience and educa-

tional level of the developer.  

At present, almost all the software reliability models make simplify-
ing assumptions that may not hold in practice. It is therefore im-
portant to check the validity of the assumptions made by the models 

before applying them in practice. 

A set of desirable features for software reliability models was devel-
oped by Bastani [6] which includes language independent, method-
ology independent, test case selection criteria, correction errors, 
representativeness, input distribution, program complexity, model 

validation, time and use of data collection. 

History of Software Reliability Model 

The first known study of software reliability by Hudson in 1967 [7] 
viewed software development as birth-and –death process (a type 
of Markov process). Fault generation (through design changes, 
faults created in fixing other faults, etc) was a birth, and fault correc-
tion was a death. The number of faults remaining defined the Pro-
cess State. The transition probabilities characterized the birth and 
death function. Hudson’s analysis, limited to pure death process for 
reasons of mathematical tractability, assumed that the rate of detec-
tion to faults was proportional to the number of faults remaining and 

a positive power of the time. 

Jelinski and Moranda [8] and Shooman [9] in 1972 made the next 
major steps. Both assumed a piecewise-constant hazard rate of 
failures that was proportional to the data of faults remaining. Moran-
da model that accounts for imperfect debugging. The view of de-
bugging taken here is that of a Markov process, with appropriate 
transaction probabilities between states. Several useful quantities 
can be derived analytically, with the mathematics remaining tracta-
ble. Kremer in 1983 developed this idea further, including the possi-

bility of spawning new faults due to the repair activity.  

Goel and Okumoto [10] in 1979 depicted software failure as a non-
homogeneous Poisson process with a exponentially decaying rate 
function. Maximum-likelihood methods for estimating the parame-
ters were developed for two different situations; intervals between 
failures and per intervals a simple modification of this models was 
investigated by Yamada et al.[11] in 1983, where the cumulative 

number of failures detected is described as an S-shaped curve. 

Crow [12] in 1984 proposed that a hardware model based on non-
homogenous Poisson process with a failure intensity function i. e. a 
power function in time can be applied to software, using appropriate 

ranges of parameter values.  

Thus, much of early history of software reliability modeling consist-
ed of looking at different possible models. In the late 1970’s and 
early 1980s, efforts started to focus on comparing software reliabil-
ity models, with the objective of selecting the “best” one or ones. 
Initial efforts at comparison were made by Sukert, in 1979; and 
Schick and Wolvetron [13] in 1973 which suffered from lack of good 
failure data and lack of agreement on the criteria to be used in mak-
ing the comparison. The publication by Musa of reasonably good-
quality set of data stimulated comparison efforts. Lannino and other 
in 1984 worked out a consensus on the compression criteria to be 
employed. Examination on the basic concepts underlying software 
reliability modeling and development of classification scheme 
helped clarify and organized comparison and suggested possible 
new models. This efforts led to the development of the Musa and 

Okumoto logarithmic Poisson execution-time model in 1984 [14].  
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Ohba [15] in 1984 put forth the hyper exponential growth model 
based on the assumption that a program has a number of clusters 
of modules, each having a different initial number of errors and a 
different failure rate. Yamada and Osaki suggested a similar exten-

sion of the exponential growth model in 1985.  

A major work was performed related to NHPP S-shaped model in 
the year 1983. Yamada proposed delayed S-shaped model and 
Ohba proposed the inflection S-shaped model [16]. Pham further 

enhanced this work in 1997.  

Pham [17] addressed the problems of multiple failure types and 
imperfect debugging based on NHPP for predicting software perfor-
mance measure. Empirical evidences suggests that the higher the 
test coverage, the higher would be the reliability of the software 
product. Studies regarding test coverage and reliability were exten-
sively worked out during the period of 1993 to 1996 by Wong [18], 
Chen [19], and Piwowarski [20], Malaiya [21], Frate [22], Jacoby 
and Masuzawa [23]. However most of the research till then focused 
on confirming the intuitive relationship between coverage and relia-
bility, or enhancing a particular model to incorporate code coverage, 
for a specific experiment. They did not represent a framework, 
which will allow coverage measures to be accounted for, in a gener-

alized fashion.  

In 1996 Gokhale, Trivedi, Philip and Marinos [24] proposed an En-
hanced Non Homogeneous Poisson Process model (ENHPP) as a 
unifying framework for finite failure NHPP models. It explicitly incor-

porates time varying test coverage.  

In 1998 Rivers and Vouk [25] derived a hypergeometric model for 
the number of failures experienced at each stage of testing when 
the constructs tested are removed from the population. i.e. when 

there is no reset of the constructs covered before. 

Thus, for about 25 years, software reliability modeling has been 
active process arena in software engineering environment and an 
attractive subject for technical publications in professional journals, 
trade magazines and SE symposium. Kan [26] has identified over 
100 software reliability models and Neufelder who is the instructor 
for software reliability at Reliability analysis center has identified 
over seven hundred models that can generally be classified as soft-

ware reliability models. 

Classification of Software Reliability Models  

The Software Reliability models can be classified as shown in [Fig- 
5]. Generally, a mathematical model based on stochastic and statis-
tics theories is useful to describe the software fault-detection phe-
nomena or the software failure-occurrence phenomena and esti-
mate the software reliability quantitatively. During testing phase in 
the software development process, software faults are detected and 
removed with a lot of testing effort expenditures. Then, the number 
of faults remaining in the software system is decreases as the test-
ing goes on. This means that the probability of software failure-
occurrence decreases as the software reliability is increases and 
the time-interval between software failures becomes longer with the 

testing time.  

The first classification into static and dynamic models reflects 
whether the reliability estimation is independent of time or has time 
base prediction capacity. In former case, reliability estimation is for 
a fixed point while in later, prediction into future is made based on 
stochastic model for the fault discovery history. The former models 
are useful only for estimation while the latter can be used both for 

estimation and prediction [4]. 

 

BIOINFO Computer Engineering 
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, 2014 

Desai C.G. (2014) Software Reliability: A Review. 
BIOINFO Computer Engineering, ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, pp.-043-056. 

Fig. 5- Classification of Software Reliability Models 

Static Models  

Fault Seeding Models 

The basic approach in this class of model is to “seed” a known 
number of faults in a program which is assumed to have an un-

known number of indigenous faults. The program is tested and the 
observed number of seeded and indigenous faults is counted. From 
these, an estimate of the fault content of the program prior to seed-
ing is obtained and used to assess software reliability and other 

relevant measures.  
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Mills’ Hyper Geometric Model 

The most popular and most basic seeding model is the Mill’s hyper-
geometric model [27]. Assumptions: 

 A known number of faults are planted in a program. 

 Based on standard capture and recapture technique. 

 Using combinatorics and maximum likelihood technique, the 

number of indigenous faults is estimated and the reliability of 
the software is then computed. 

The procedure adopted in this model is similar to the one used for 
estimating population of fish in a pond or estimating wildlife. These 
models are also referred to as tagging models since a given fault is 
tagged as seeded or indigenous.  

Lipow [28] modified this problem by taking into consideration the 
probability of finding a fault, of either kind, in any test of the soft-
ware. Then, for statistically independent tests, the probability of 
finding given number of indigenous and seeded faults can be calcu-
lated. In another modification, Basin [29] suggested a two stage 
procedure with the use of two programmers which can be used to 
estimate the number of indigenous faults in the program. 

Input Data Domain  

In this reliability of the software is measured by exercising the soft-
ware with a set of randomly chosen inputs. The ratio of inputs that 
resulted in successful execution to the total model of inputs gives 
an estimate of the reliability of the software product. Example: Nel-
son’s model [30].  

Nelson’s Model  

Assumptions:  

The software is run for a set of n inputs chosen randomly from a set 
{Ei:i=1,2,3…N}  

The random sampling of n inputs is done according to the probabil-
ity vector p, which defines the operational profile  

 R = 1-(f/n) = (n-f)/n      (6)  

is the estimate of reliability. Here the generation of test cases in-
volves the generation of test cases from an input distribution, which 
represents the operational usage of the program. Since it is difficult 
to obtain this distribution the input domain is usually partitioned into 
a set of equivalence class. 

Complexity Metric  

The complexity metric models employ a statistical model such as 
regression equation or principal component regression to estimate 
the number of faults or reliability as the function of relevant com-
plexity metric [31,32].  

Stochastic Models  

Homo Markov 

The models belonging to this category assume that the initial num-
ber of faults in the software product under consideration is unknown 
but fixed. The number of faults in the system, at any time, forms the 
state space of homogeneous Markov chain. The failure intensity of 
the software or the transition rates of the Markov chain depend 
upon the number of residual faults in the software.  

Example: Jelinski-Moranda [8], Goel Okumoto imperfect Debugging 
model [33] 

De-Eutrophication  

Jelinski-Moranda  

The JM model is based on the following assumptions:  

 The initial fault content of the tested software is an unknown 

fixed constant. 

 The failure rate is proportional to the current fault content of the 

tested software, and remains constant between failures.  

 All remaining software faults contribute the same amount to the 

failure rate.  

 A detected fault is corrected and removed immediately. 

 No new fault is introduced after a fault is corrected.  

The expressions regarding Jelinski-Moranda [8] are 

 μ(t) = No (1- exp (-φt))     (7)  

 λ(t) = φ(No - μ(t)     (8) 

Where No is the initial number of faults and φ is the contribution of 

each fault to overall failure rate. 

Imperfect Debugging  

As a relaxation to assumption 5 of the JM model Goel and Okumoto 

proposed an imperfect debugging model[33][10] in which each de-

tected fault is removed with the probability p, or remains in the soft-

ware with the probability q = p-1.  

In this model the number of faults in the system at time t, X(t) is 

related as a Markov process whose transition probabilitites are 

governed by the probability of imperfect debugging. Time between 

the transitions of X(t) are taken to be exponentially distributed with 

rates dependent on the current fault content of the system. The 

hazard function during the interval between the (i-1) and the i fail-

ures is given by  

 Z(ti)= [N-p(i-1)]λ      (9) 

Where N is the initial fault content of the system, p is the probability 

of imperfect debugging and λ is the failure rate per fault. 

Software Availability  

These models are used for estimating and predicting software relia-

bility and availability. In this model the system states are divided 

into distinct up and down states according to the number of faults 

remaining in the software weather the software is operating or not. 

Trivedi and Shooman Model [2]  

Assumptions:  

 Assume that the software is in an up state at time t=0. When a 

failure occurs, the system is shut down and enters a down 

state. The fault which caused the failure is then detected and 

removed before the system begins to operate again. 

 The operating time and the repair time are both assumed to be 

random variables described by failure rate 

 φ(No-i)       (10) 

and repair rate  

 μ(No-i)       (11) 

where No is the total number of faults in the software and i is the 

no. of failures that have been occurred. 
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Non-Homo Markov 

These models assume number of faults present in a software prod-
uct to be a random variable most often assumed to display the be-

havior of a non-homogeneous Poisson process. 

Finite Failures  

They assume that the expected number of failure observed during 

an infinite amount of time will be a finite failure.  

Example: Goel Okumoto NHPP model [1], Delayed S- Shaped 
NHPP model [15], Inflection S- shaped model [15], C1 NHPP model 
[15], pareto NHPP model [15], Little wood NHPP model [34],ENHPP 

[24].  

Musa Basic Execution Model  

Assumptions: 

 The number of failures that can be experienced in finite time is 

infinite  

 The distribution of the number of failures observed by time t is 

of Poisson type.  

 The functional form of the failure intensity in terms of time is 

exponential.  

Mean value function is given by  

 μ(t) = βo(1-e-β1t)     (12) 

Failure intensity is given by 

 N(t) = βoβ1 e-β1t      (13) 

Here the fault exposure ratio assumed is constant over time. 

An interesting extension of this model is the logarithmic Poisson 
execution time model, where the expected number of failures is a 
Poisson random variable and a logarithmic function of the CPU time 

т, a factor determining decay in failure intensity. 

The Enhanced NHPP Model 

The enhanced NHPP (ENHPP) model [24] is a unifying framework 
for finite failure NHPP models i.e. other NHPP models with bounded 
mean-value functions are special cases of the ENHPP model. The 
model explicitly incorporates time-varying test coverage and imper-
fect fault detection in its analytical formulation. Test coverage in this 
model is defined as the ratio of the number of potential fault sites 
sensitized by a test to the total number of potential fault sites. Po-
tential fault sites refer to “the program entities representing either 
structural or functional program elements whose sensitization is 
deemed essential towards establishing the operational integrity of 

the software product” [24].  

 The model makes the following assumptions:  

 Faults are uniformly distributed over all potential fault sites. The 
probability of detecting a fault when a fault site is sensitized at 

time t is cd(t) = K, (a constant), the fault detection coverage.  

 Faults are fixed perfectly.  

The mean value function for this model is developed as  

 (t) = c(t)N     (14) 

Where c(t) is the time variant test coverage function and N is num-
ber of faults expected to have been exposed at full coverage. This 
is distinguished from N, which is the expected number of faults to 
be detected after infinite testing time, perfect test and fault detection 

coverage. The failure intensity for this model then becomes  

 λ(t) = z(t)(N-μ(t))    (15) 

Where z(t) = c’(t).(1 – c(t)) – 1 is the time variant per-fault hazard 
rate. The model allows the scenario of defective coverage to be 
incorporated in the reliability estimation. Different coverage function 
distributions result in the variations of the NHPP models i.e. the G-
O model, the Yamada S-shaped model, etc. Reliability as obtained 

from this model is expressed as  

 R(t/s) = e – NK(c(s + t) – c(s))   (16) 

Where s is the time of last failure and t is the time measured from 
last failure. Grottke [35] observes correctly, that the main merit of 
this model is to serve as a unifying framework for NHPP models. 
Further, the dependence of the per-fault hazard rate solely on time-
variant test coverage neglects other influencing factors such as the 
fact that full test coverage may not be successful in detecting all the 
faults and that failures may still occur without any gain in test cover-

age.  

Infinite Failures 

The mean value function of this class of models is unbounded, i.e., 
the expected number of failures experienced in infinite time is infi-

nite.  

Example: Musa Logarithmic models [2], Duane model [36]. 

Duane Model 

The Duane model was originally proposed for hardware reliability 
studies. Its mean value function, m(t), and the failure intensity func-

tion, λ(t), are given by  

 m(t) = atb, b>0      (17) 

and  

 λ(t) = abt b-1 b>0    (18) 

This model usually overestimates the cumulative number of failures. 
The main criticism of the model is that its mean value function ap-

proaches infinity very rapidly. 

Semi Markov 

Here the number of faults remaining in the software is modeled 

using a semi Markov process. e.g. Schick and Wolvetron Model [13]  

Schick and Wolvetron Model 

The model is applied to specify the number of residual errors, the 

mean time to detect the next error, the error detection rate.  

The model is based on the following assumptions:  

 Errors occur by accident.  

 The error detection rate in the defined time intervals is constant.  

 Errors are independent of each other.  

 No new errors are generated.  

 Errors are corrected after they have been detected.  

 

In this model it is assumed that the error detection rate is propor-
tional to the number of residual errors and the time passed since 
the detection of the preceding error. The transition rate, λI, during 
the test interval tI, is assumed to be proportional to the current fault 
content of the system, and time lapsed since the last failure and is 

given by 

 λI = φ[N- (I-1)]tI      (19) 

BIOINFO Computer Engineering 
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, 2014 

Desai C.G. (2014) Software Reliability: A Review. 
BIOINFO Computer Engineering, ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, pp.-043-056. 

http://www.bioinfopublication.org


|| Bioinfo Publications ||  50 

 

Order Statistics  

This model originated from the study of hardware reliability. Cozzoli-
no [30] presented a model, which he called the initial defect model 

for a repairable hardware system.  

Cozzolino  

Assumptions: 

 Each new system has an unknown Poisson distributed number 

called initial defect. 

 Each defect independently has a constant failure rate.  

 When a failure occurs, the defect causing it will be discovered 

and repaired perfectly that is the defect will never reappear.  

 The time to repair is negligible.  

Baysein 

In this, the model parameters are assumed to be random variables 
with some prior distributions. Based on failures observed, the poste-
rior distributions of the model parameters are derived using Bayes 
theorem. These posterior distributions, together with other model 
assumptions, are then used to predict various reliability measures. 

Example: Littlewood Verall model [37].  

Littlewood Verall Model  

The models presented in the previous sections all assume that 
failure data is available. They also apply classical statistical tech-
niques like maximum likelihood estimation (MLE) where model pa-
rameters are fixed but unknown and are estimated from the availa-
ble data. The drawback of such an approach is that model parame-
ters cannot be estimated when failure data is unavailable. Even 
when few data are available, MLE techniques are not trustworthy 

since they can result in unstable or incorrect estimations.  

The bayesian SRGM considers reliability growth in the context of 
both the number of faults that have been detected and the failure-
free operation. Further, in the absence of failure data, bayesian 
models consider that the model parameters have a prior distribu-
tion, which reflects judgment on the unknown data based on history 

e.g. a prior version and perhaps expert opinion about the software.  

The Littlewood-Verrall model is one example of a bayesian SRGM 
that assumes that times between failures are independent exponen-
tial random variables with a parameter ξi, i = 1,2, …, n which itself 
has parameters ψ(i) and α reflecting programmer quality and task 
difficulty having a prior gamma distribution. The failure intensity as 

obtained from the model using a linear form ψ(i) function is  

λ(t)=(α-1)(N2 +2Bφ(α-1))-1/2   (20)  

Where B represents the fault reduction factor, as in Musa’s basic 
execution time model. This model requires tune between failure 
occurrences to obtain the posterior distribution from the prior distri-

bution. 

Other Reliability Models 

There are several other models which has come up as the develop-
mental approaches are changing up. Reliability Focused Quality 
model for Object oriented Design [38] is used to predict reliability of 
object oriented software in the early design phase. The concept of 
user-oriented reliability and user profile is presented by [39]. The 
reliability of a system is expresses as a function of the reliability of 
its components and the user profile. A Markov model is developed 
under the assumption of module reliability and the Markovian be-

havior of control transfer among module. The potential application 
of this module is for reliability estimation, testing strategy, mainte-

nance philosophy and estimation of penalty cost. 

[40] Suggested two new reliability models considering software and 
hardware faults as root causes of software failures for embed-
ded software reliability estimation. The experimental results show 
that a Weibull based model, which takes characteristics of hardware 
degradation into account, has higher fitting-adequacy and superior 

accuracy for software reliability estimation. 

In software industry, up gradations are made in the software at a 
very brisk speed. To capture the effect of faults generated in 
the software due to add-ons at various point in time [41] developed 

a multi up gradation, multi release software reliability model. 

[42] Presented a prediction model of software reliability based on 
the modular. Here Markov analysis theory is applied for software 
reliability prediction based on module reliability and module im-
portance in order to achieve the requirement of improving software 

quality. 

[43] Proposes a multi-factor software reliability model based on 
logistic regression and its effective statistical parameter estimation 
method. The proposed parameter estimation algorithm is composed 
of the algorithm used in the logistic regression and the EM 
(expectation-maximization) algorithm for discrete time software 
reliability models. The multi-factor model deals with the metrics 
observed in testing phase (testing environmental factors), such as 
test coverage and the number of test workers, to predict the number 

of residual faults and other reliability measures. 

As we have seen there are various models for software reliability, 
we find that the basic approach of modeling is to fit past data to a 
model data that describes the expected behavior of the data, and to 
use the model to predict future behavior. In order to provide good 
predictions, the model should accurately describe the observed 
process or at least be close to it. Predictions obtained using models 
that do not fit the observed data can be misleading. Therefore se-
lecting the proper model is probably the most important part of mod-

eling and one can use trend analysis for that purpose. 

Trend Analysis 

The task of verification process is to increase the reliability of the 
tested design or, in other words, to decrease the failure intensity of 
the design. This is done by detecting and removing faults that 
cause failures from the design. Therefore the first indication that 
can be obtained from the statistical analysis is whether there is a 
reliability growth in the tested design. This type of information can 

be provided by trend analysis.  

Reliability growth means that the fault discovery intensity in the 
design is decreasing, and therefore the time between fault discover-
ies is increasing. This trend can be detected by looking at the cu-
mulative number of fault function of the testing time. Since the fail-
ure intensity is the derivative of the cumulative number of faults, 
decreasing failure intensity means that the function of the cumula-

tive number of faults vs. simulation time should be concave. 

Taking a look at the raw data provides only a rough indication of 

reliability growth for two main reasons: 

 The raw data of time between failures is only an instantiation of 
a random process. Therefore, the cumulative number of faults is 
not a smooth concave function, but with a function with many 

bumps and extreme points. 
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 The raw data information can very easily hide local changes in 
the trend of the reliability growth or strong local variations can 

hide the overall trend of reliability growth.  

There are several analytical tests for reliability growth that are de-
signed to overcome these problems. The idea behind these tests, 
known as trend tests, is to test a null hypothesis H0 versus an alter-
native H1. Usually H0 corresponds to the assumption that the relia-
bility is not changing, while H1 corresponds to the assumption that 

reliability undergoes a monotonic trend.  

The trend test is run against the failure history data to see if it exhib-
its reliability growth, decay followed by growth or stable reliability. 
Based on this information one can decide which reliability growth 
model to use [44]. The two trend tests that are commonly carried 

out are: 

 Running Average 

 Laplace test  

Running Average 

This test consists of computing the running average of the time 
between successive failures for time between failure data, or run-
ning average of number of failures per interval for failure count data. 
For time between failures, if the running average increases with 

failure number, this increases reliability growth.  

The arithmetic mean T(i) of the observed interfailure times tj, j = 1,2,

…..i;  

 T(i) = 1/i Σ tj      (21)  

An increasing sequence of T (i) indicates reliability growth and a 
decreasing sequence indicate reliability decay. For failure count 
data, if the running average decreases with time, reliability growth is 
indicated. [Fig-6] shows running average analysis using time be-

tween failure data (Sample data used). 

Fig. 6- Running Average Analyses for Time Between Failure Data 

Now the s1 data set is converted type from time between failure to 
failure count data. To convert inter failure time data to failure fre-
quency data the desired length of testing interval is specified to be 
500 seconds. The running arithmetic mean for s1 data set is as 

shown in the [Fig-7] which shows decrease with the decrease in 
test interval number with time and hence reliability growth.  

Fig. 7- Running Average Analysis For Failure Counts Data (S1 Data 

Set) 

Laplace Test  

Laplace test is superior from an optimality point of view and is rec-
ommended for use when the NHPP assumption is made [45]. The 

test procedure is to compute Laplace factor λ(t) given by [6]  

The Laplace factor is evaluated step by step, after every failure 
occurrence. Here t is then equal to the time of occurrence of the ith 

failure, and the failure at time t is excluded. 

Intuitively Laplace factor can be interpreted as follows:  

 Negative values indicate a decreasing failure intensity, and thus 

reliability growth.  

 Positive values indicate increasing failure intensity and thus a 

decre4ase in the reliability.  

 Values between –2 and +2 indicate stable reliability.  

[Fig-8] demonstrates the Laplace test for the s1 data set for the 

reliability growth at 5% significance.  

Trend Analysis can provide information about trends that occurred 
during the verification process, and answer important questions, 
such as: does the reliability of the tested design grow, and how do 
specific events affect this growth? Still trend analysis cannot answer 
questions like: how many failures are left in the tested design, and 
when will be the desired level of reliability achieved? To answer 
such questions, predictions of the future behavior of the tested de-
sign and the verification process are needed. Usually, predictions of 
the future behavior of a process to some predefined model (or mod-
els) and using the properties of the model to describe predicted 
future behavior. Trend analysis can significantly help in choosing 
the appropriate model for a given sequence of inter failure times, so 
that they can be applied to data displaying trends in accordance 
with their assumptions rather than blindly. Using a model for the 
analysis of failure data set, without taking into consideration the 
trend displayed is different than assumed in the model. Also there 
are multiple models that can be use to fit the given set of data with 
more or less capability [44].  
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Fig. 8- Laplace Test 

The predictive capabilities of the various models can be judged by 
estimating the following parameters for each of these models. Con-
sidering the Laplace test and running average test for the s1 data a 
increase in the software reliability growth is observed. Base on this 
result three models for the further demonstration of the parameter 

estimation are selected. The models used are: 

 Jelinski Moranda Model  

 Musa Basic 

 Musa Okumoto  

Parameter Estimation for Model Ranking  

Prequential Likelihood  

The parameter estimates and the actual observed failure times are 
used in the function to compute a value that can be used to deter-
mine how much more likely it is that one model will produce accu-
rate estimates than another model. This likelihood is given by val-
ues of the ratio of Prequential likelihood for the two models being 
compared. [Fig-9] shows the Prequential likelihood for the three 

models. 

Fig. 9- Prequential Likelihood 

Model Bias  

Model bias determines whether the predictions are on an average 
close to the true distribution. The estimated probability of failure for 
each failure interval is used to determine the extent to which a mod-
el introduces bias into its predictions. If the model is optimistically 
biased, the estimates of time to net failure are higher than what is 
actually observed where as in case of pessimistic bias the esti-
mates of times to next failure are lower than the observed one. 
Model biases are determined by u-plot [46], [Fig-10]. 

Fig. 10- Model Bias  

Model Noise 

This gives an indication of how much noise the model itself intro-
duced into the predictions. In general, the higher this figure is, the 
less likely the model is to give accurate predictions. [Table-2] for 

model noise of three software reliability models. 

Table 2- Model Noise  

Goodness of Fit Test  

The ability of a model to reproduce the observed failure behavior of 
the software, also known as its retrodictive capability, is determined 
by the goodness of fit test. The observed failure data is used to 
estimate the parameters of the model. The estimated mean value 
function is computed and plotted along with the observed mean 
value function. The error sum of squares is then calculated to evalu-
ate the goodness of fit. The lower is the error sum of square the 

better is the fit [Table-3]. 

Based on the above four parameter the models are ranked as per 
their predictive capabilities. [Table-4] gives the ranking details and 

[Table-5] shows the ranks given to these models.  

Table 3- Goodness of fit test  

BIOINFO Computer Engineering 
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, 2014 

Desai C.G. (2014) Software Reliability: A Review. 
BIOINFO Computer Engineering, ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, pp.-043-056. 

Model Name Model Noise 

Jelinski-Morando 5.58E+00 

Musa Basic 5.35E+00 

Musa -Okumoto 2.31E+00 

Model Name KS Distance 5.%Fit? 

Jelinski-Morando 9.44E-02 Yes 

Musa Basic 9.20E-02 Yes 

Musa -Okumoto 8.79E-02 Yes 
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Table 4- Ranking Details  
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Model Name -ln Model Bias Bias Trend Model Noise 

Musa -Okumoto 5.311823E+002[1] 8.197740E-002[1] 1.056971E-001[1] 2.307074E+000[1] 

Musa Basic 5.376974E+002[2] 1.935277E-001[2] 1.556185E-001[3] 5.351962E+000[2] 

Jelinski-Morando 5.387762E+002[3] 2.201526E-001[3] 1.542180E-001[2] 5.582339E+000[3] 

Table 5- Model Ranking 

Thus for the same set of data when the above two models are ap-
plied we find that Musa Okumoto model gives the better reliability 

prediction.  

While considering software reliability models there are various as-
pects which needs be considered from various points of view for 
estimating and predicting software reliability. Next we concentrate 
on the details of these aspects and their impact on software reliabil-

ity.  

Parameters Affecting Software Reliability  

Exponential Model parameters  

While many of the reliability growth models are purely empirical, 
some of the models are based on some specific assumptions about 
the fault detection/ removal process. The parameters of these mod-
els thus have some interpretations and thus possibly may be esti-
mated using empirical relationships using static attributes. The two 
parameters of the exponential model are the easiest to explain. 
Using this model the expected number of faults μ(t) detected in a 

duration t may be expressed as  

 

  (22)  

Here β0
E represents the total number of faults that would be eventu-

ally detected β1
E and is the per fault hazard rate which is assumed 

to be constant for exponential model. The data collected by Musa 
shows that the number of additional faults introduced during the 
debugging process is only about 5% [47]. Thus β0

E may be estimat-

ed as the initial number of faults.  

The estimation of the other parameter β1
E is more complex. Musa et 

al. have defined a parameter K, called fault exposure ratio (FER), 
which can be obtained by normalizing the per-fault hazard rate with 
respect to the linear execution frequency, which is the ratio of the 
instruction execution rate and the software size. For 13 software 
systems [48] it was found that the overall FER varies from 1.41 x l0-

7 to 1 0.6 x l0-7, with the average value equal to 4.2 x l0-7 failure/

fault. Once we know the value of K, β1
E can be estimated using,  

     (23)  

Where TL is the linear execution time, given by  

TL = (Is Qr) 1/r Is, is the number of source lines of code; Qr is the 
average object instructions per source statement; r is the CPU in-
struction execution rate. If N (t) is the total number of defects still 

present at time t, it can be shown that [25], 

 

   (24) 

Thus the defect finding rate –dN(t)/ dt is proportional to the fault 
exposure ratio. Note that in the above equation, the effect of the 
software size and the instruction execution rate of the CPU has 
been taken into account separately in the term TL. To characterize 
the defect removal process accurately, one need to identify the 

factors that control FER.  

Once it has been done, one can empirically estimate FER and 

hence the failure intensity and reliability.  

Logarithmic Model Parameters  

Exponential model can be considered as an approximation of Loga-
rithmic model [48]. Logarithmic model is found to have very good 
predictive capability in many cases. According to [48] the β0 and β1 
parameters can be estimated using the logarithmic model, which is 

further designated as β0
L and β1

L.  

Therefore 

 β0
L = Dmin * Is      (25) 

and  

 β1
L = (Kmin /TL)*e((D0 - Dmin) / Dmin)    (26) 

Fault Exposure Ratio (FER (K))  

FER plays an important role in software reliability growth. A manag-
er can use it to plan the test resources need to achieve the desired 
quality level, even before testing begins. In the early stages of test-
ing, only a limited number of data points are available, which are 
not often enough to establish the long-term trend. This makes pa-
rameter estimation for SRGMs unstable. Identifying what factors 
affect K is of considerable significance. If we can accurately model 
the behavior of K, there are three ways in which the software relia-

bility engineering will be affected [49]. 

 When the process parameters are known a priori, optimal re-
source allocation can be done even before testing begins. Early 

planning can be crucial to the success of the project.  

 In the early phases of testing, the failure intensity values ob-
served contains considerable noise]. The use of reliability 
growth models in the early phases can sometimes result in 
grossly incorrect projection. The accuracy can be enhanced by 

using a priori parameter values in such cases. 

 Residual defect density can be measured accurately.  

Musa, et al. have speculated that K may depend on program struc-
ture in some way. However, they suspected that for large programs, 
the “structured ness” (as measured by decision density) averages 
out and hence does not vary much from program to program [50]. 
Musa has also argued that K should be independent of program 
size [35]. Likewise Malaiya argue that K may be relatively independ-
ent of the program size [51].Mayrhauser and Teresinki [52] have 
suggested that K may depend on testability, as measured by static 
metrics like “loopiness” and “branchiness” of the program. However, 
because of lack of sufficient data, the results are not yet conclusive. 
Li and Malaiya suggested that K varies with the initial defect density 

and is given by the following expression.  

Model Name Rank 5.E+003 Sec Reliability after failure 136 

Musa -Okumoto 1 1.04E-01 

Musa Basic 2 3.39E-01 

Jelinski-Morando 3 3.59E-01 
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 K = (1.2 * 10E-06/Do)*Exp(0.005*Do)   (27) 

Defect Density  

Defect density is an important measure of software quality, one 
which is often used as an acceptance criterion for a piece of soft-
ware. For this reason it is desirable to understand how various as-
pects of the development process impact defect density, so they 
can be controlled or at least used to gain a better understanding of 
product reliability. The maturity of the development process, the skill 
of the programmers involved, and the complexity of the program all 

play a significant part in the defect density of a program [51].  

Leading edge software development organizations typically achieve 
a defect density of about 2.0 defects/KLOC [53] and some now use 
a lower target. The cost of fixing a defect later can be several or-
ders of magnitude higher than during development, yet a program 
must be shipped by some deadline dictated by market considera-
tions. This makes the estimation of the number of remaining defects 

a very important challenge.  

One conceivable way of knowing the exact defect density of a pro-
gram is to actually find all remaining defects. This is obviously infea-
sible for any commercial product. Even if there are resources avail-
able, it will take a prohibitive amount of time to find all bugs in a 
large program [54]. Sampling based methods have been suggested 
for estimating the number of remaining defects. They assume that 
the faults found have the same testability as faults not found. How-
ever, in actual practice, the faults not found represent faults that are 
harder to find [1]. Thus such methods are likely to yield an estimate 
of faults that are relatively easier to find, which will be less than the 
true number. It is possible to estimate the defect density based on 
past experience using empirical models like the Rome Lab model 

[55] or the model proposed by Malaiya and Denton [51].  

The estimates obtained by such models can be very useful for initial 
planning; however these models are not expected to be accurate 
enough to compare with methods involving actual test data. Another 
possible way to estimate the number of faults is by using the Expo-
nential (Software Reliability Growth Model) SRGM. In this model the 
parameter β0 represents the total number of defects that would 
eventually be found. We can estimate the number of remaining 
defects by subtracting the number of defects found from the value 
of β0 obtained by fitting. An SRGM relates the number of defects 
found to the testing time spent. As this work focuses on predicting 
the defect density at the early phase of object oriented software 

designs there is no working code in hand, so the use of SRGM fails.  

Having an early warning system to estimate defect density would 
aid developers by giving them an indication as to potential problems 
in the system. We can leverage metrics, which are readily available 
in the system to help provide defect density estimate. The next 
section gives the overview of the previously suggested defect den-

sity model.  

Defect Density Model  

There has been considerable research to identify the major factors 
that correlate with the number of defects. The Malaiya and Denton 

[51] based on the data reported in literature, is given by  

 DD = C * Fph * Fpt * Fm * Fs     (28)  

Where Fph = phase factor modeling dependence on software test 

phase. 

Fpt = programming team factor [Table-7] 

Fm = maturity of software development [Table-8] 

Fs = structure of the software under development  

C = constant of proportionality  

DD = Defect Density 

The number of defects present at the beginning of different test 
phases is different. Gaffney [16] has proposed a phase-based mod-
el that uses the Rayleigh curve. Malaiya [51] presented a simpler 
model using actual data reported by Musa and the error profile pre-
sented by Piwowarski. The first two columns of [Table-6] represent 
the multipliers suggested by the numbers given by Musa et al. and 
Piwowarski et al. The third column presents the multipliers assumed 

by Malaiya [51].  

Table 6- Phase Factor 

Table 7- Team Factor 

Table 8- Maturity Factor 

The defect density varies significantly due to the coding and debug-
ging capabilities of the individuals involved [14, 55]. The only availa-
ble quantitative characterization is in terms of programmer’s aver-
age experience in years, given by Takahashi and Kamayachi [14]. 
Their model can take into account programming experience of up to 
7 years, each year reducing the number of defects by about 14%. 
The data in the study reported by Takada et al [55] suggests that 
programmers can vary in debugging efficiency by a factor of 3. In a 
study about the PSP process [54], the defect densities in a program 
written separately by 104 programmers were evaluated. For about 
90% of the programmers, the defect density ranged from about 50 
to 250 defects/KSLOC. This suggests that defect densities due to 
different programming skills can differ by a factor of 5 or even high-

er.  

This factor takes into account the rigor of software development 
process at a specific organization. This level, as measured by the 

SEI Capability Maturity Model, can be used to quantify it.  

The structure of development factor takes into account the depend-
ence of defect density on language type (the fractions of code in 
assembly and high level languages), program complexity, modulari-

ty and the extent of reuse.  

The model given equation 26 provides an initial estimate. It should 
be calibrated using the past data from the same organization. For 
this purpose the factor C is involved. Musa’s data suggest that the 
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Test Phase 
Multiplier 

Musa et al. Piwowarski Malaiya et al. 

Unit 3.28 5 4 

Subsystem Insufficient Data 2.5 2.5 

System 1 1 1(default) 

Operations 0.25 0.45 0.35 

Team’s Average Skill Multiplier 

High 0.4 

Average 1(default) 

Low 2.5 

SEI CMM Level Multiplier 

Level 1 1.5 

Level 2 1(default) 

Level 3 0.4 

Level 4 0.1 

Level 5 0.05 
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constant of proportionality C can range from 6 to 20 defects per 

KLOC. 

Software Reliability Growth Problem  

The basic problem of reliability theory is to predict when a system 
will eventually fail. Software fails because of design problems. Indi-
viduals based on their intellectual develop design and as intellectual 
itself varies from individual to individual, it is really not easy to pre-
dict from the design that when the system will fail. Various ap-
proaches have been proposed for modeling software reliability but 
no individual technique has singled out for unreserved recommen-
dations from the many that have been proposed over years [56]. 
Empirical observations suggest that no such technique has consist-
ently able to give accurate result over different data sources and we 
need to examine the accuracy of the actual reliability measures, 
obtained from several techniques in a particular case, with a view of 
selecting the one (if any) that yields trustworthy results [57].  

But here it again gives rise to another problem that how to decide 
which model to use in the given circumstances as things are not as 
clear as they appear to be in theory. As noted above one should not 
trust a single approach for assessing reliability, but another problem 
that arises here is that, what about the economy of using multiple 
software reliability models for measuring the accuracy of the soft-
ware? 

The underlying problem with the software reliability is that you can-
not firmly predict when it will fail. Suppose it is considered that the 
system will fail in its 10 hours of operation once. But in these 10 
hours the system may fail in first two minutes or in the last two 
minutes. Also if the path containing error is not at all traversed in its 
10 hours of working it will assure 100% reliability which may not be 
the fact.  

The another issue that comes up is that, on often fixing a fault a 
general consideration is that it has led to the improvement of relia-
bility however concerning software ineffective fixes or the introduc-
tion of novel faults will indeed decrease the reliability. Thus several 
questions come forward even after fixing the faults:  

 How reliable is the software now?  

 Is it sufficiently reliable that we can cease testing and ship it?  

 How reliable it will be after we spend a given amount of further 

testing effort?  

 How long are we likely to wait until the reliability target is 

achieved?  

A crucial activity is the definition of operational profile and associat-
ed test cases. OP is used to select test cases and direct develop-
ment, testing and maintenance [58]. Both the determination of OP 
and random sampling of test cases might be impractical in certain 
applications [59, 60]. In such a case one has little choice but to rely 
on educated guesstimates. 

The problem of assessing the reliability of software is again a diffi-
cult one because claims for extremely high reliability appear to need 
extremely large amount of evidence. Thus direct evaluation of relia-
bility, using statistical methods based upon operational data will 
only allow quiet modest claims to be made – putting it another way, 
to make claims ultra high reliability this way would require infeasible 
large amount of operational exposure [61]. 

Although various software reliability models claims their efficiency in 
some way or the other they are not used as universally in software 

development as they should be. Some reasons that project manag-

ers give are following [9]: 

 It costs too much to do such modeling and I can’t afford it within 

my budget. 

 There are so many software reliability models to use that I don’t 

know which is best; therefore I choose not to use any.  

 We are using the most advanced software development strate-
gies and tools and produce high quality software; thus we don’t 

need reliability measurements.  

 Even if the model told me that the reliability is poor, I would just 

test some more and remove more errors  

 If I release product with too many errors, I can always fix those 

that get discovered during early deployment.  

Another issue that comes up is that assessing or predicting reliabil-
ity of the software on the past experience and data of the similar 
type of software may not be relied upon. Reason, the past experi-
ences has already thought us eliminate repetitive errors. Therefore 
by using past information and predicting the present software relia-
bility status sounds abrupt. The other conditions like the external 
environment, the resources namely; human, other software and 
hardware may also vary from software to software development 

process. 

Thus we see there are various aspects related to software reliability 
and an proper understanding of these aspects will provide better 

insight for effective software reliability estimation. 
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