
|| Bioinfo Publications || 43

BIOINFO Computer Engineering
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, 2014, pp.-043-056.

Available online at http://www.bioinfopublication.org/jouarchive.php?opt=&jouid=BPJ0000196

DESAI C.G.*

Department of MCA, MIT, Aurangabad- 431 009, MS, India.
*Corresponding Author: Email- chitra.desai@mit.asia

Received: November 16, 2013; Accepted: February 06, 2014

Introduction

Developing software is a challenging task. The challenge comes
basically from the characteristics of the software itself, and because
of these characteristics, the software can be said to prone towards
containing faults. Even if know that the software contains faults, we
generally do not know their exact identity. Viz., program proving and
program testing can give the indication of the existence of the
faults. Program proving is formal and mathematical while program
testing is more practical and heuristic. The approach taken in pro-
gram proving is to construct a finite sequence of logical statements,
usually the output specification statement, to be proved [1]. Pro-
gram testing is symbolic or physical execution of a set of test cases

with the intent of exposing embedded faults in the program [1].

It is observed that these approaches are not that faultless and
therefore a need for metrics for assessing software quality attributes
has become significant. One such quantifiable metric of quality that
is commonly used is software engineering practice is software relia-

bility.

A number of conflicting views exist as to what software reliability is
and how it should be quantified. One of the approaches parallels
that of program proving whereby the program is either correct or
incorrect. Software reliability in this case is binary in nature; an im-
perfect program has zero reliability and a perfect program has a
reliability value of one. Thus software reliability can be defined as
relative frequency of the times that the program performs as intend-
ed. This leads us to define software reliability as the probability of

fault free operation, provided by software product under considera-
tion, over a specified period of time in specified operational environ-

ment [2].

The next section focuses on significance of Software reliability pro-

ceeded by definition to software reliability

Uses of Software Reliability

Potential use of software reliability includes the following [2]:

Making intelligent system tradeoffs between reliability, performance,
cost, schedules, and other factors for and between the programs
themselves and other system elements as well. These tradeoffs will
be made both at the start of the project and as it proceeds. They
may involve combination of software reliability parameters with
those of other system components to obtain system reliability esti-
mates or allocation of system reliability goals among subsystem,

one or more subsystems being computer programs.

Scheduling and monitoring progress of a testing effort b using con-
tinually updated estimates of current reliability. Included in the fore-

going is determining when to terminate a testing effort.

Comparatively evaluating the effect on reliability of different design
techniques, coding techniques, testing techniques and documenta-

tion approaches.

Looking at the potential benefits of software reliability forty years
back efforts started in this area. Although modeling software reliabil-
ity was very much influenced from that of hardware reliability, the

concept of software differs much from that of hardware reliability.

BIOINFO Computer Engineering
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, 2014

Abstract- To build high reliability software it is essential to concentrate on quality aspects of software from the very beginning of the software
development life cycle. Therefore software reliability attribute is one of the important dimensions of software quality. However, several aspects
contribute towards software reliability estimation. This paper provides an insight to all such aspects of software reliability. Initially the paper
briefs introduction to Software reliability with a focus on factors affecting software reliability. Software reliability models are classified based on
their characteristics and the various software reliability models are discussed here with classification. Different models are applied to different
data set based on their growth pattern. The growth pattern is well identified using trend analysis. Various techniques for trend analysis are
also discussed in this paper. Several parameters define how much more likely it is that one model will produce accurate estimates than anoth-
er model. This can be best achieved by parameter estimation for model ranking. Here techniques for parameter estimation are also discussed
for model ranking which will provide basis for accurate estimation of software reliability by choosing appropriate model. While many of the
reliability growth models are purely empirical, some of the models are based on some specific assumptions about the fault detection/ removal
process. The parameters of these models thus have some interpretations and thus possibly may be estimated using empirical relationships
using static attributes. Two such parameters for software reliability - Exponential and Logarithmic are further discussed in this paper. Defect
density plays an important role in software reliability estimation. A brief insight to defect density also contributes to this paper. Finally the pa-

per concludes with the issues related to software reliability growth problem.

Keywords- Software reliability models, trend analysis, Exponential parameter, logarithmic parameter, model ranking, defect density

SOFTWARE RELIABILITY: A REVIEW

http://www.bioinfopublication.org

|| Bioinfo Publications || 44

Hardware versus Software Reliability

A fundamental difference in dealing with software versus hardware
reliability is that hardware reliability tends to decrease in time, due
to aging, wear-out, and so forth, where as software reliability tends
to increase through time, due to the removal of bugs, or will remain
the same if no action is taken. There are exceptions to both, of
course. Hardware reliability may increase in time as a result of a
reliability improvement program, and software reliability may de-

crease as a result of the introduction of new bugs. [Table-1] sum-

maries the difference between hardware and software reliability [3].

Because of the large number of differences, one might conclude
that methods developed for hardware would not be appropriate for
analysis of software reliability. Many of the techniques used in the
analysis of hardware reliability are also useful in software reliability
as well, but care must be taken in selecting models and interpreting

results in software context.

BIOINFO Computer Engineering
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, 2014

Desai C.G. (2014) Software Reliability: A Review.
BIOINFO Computer Engineering, ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, pp.-043-056.

Table 1- Comparison of Hardware and Software

Hardware Software

A small anomaly may lead to a predictable failure or have little or no effect. One incorrect bit may lead to disaster

Design and production predominate. Nearly 100% design

Can test all events The number of events is huge and events tend to be unique to software

Cause of failure is design, manufacture, maintenance, and misuse. Failures are due to design defects.

Redundancy can be used to increase reliability. Redundancy does not necessarily lead to improvement.

Maintenance improves reliability Reprogramming may introduce new errors

Physical laws may describe failures. A comparable law does not exit.

Interface are physical structures Interfaces are conceptual

Standard parts are commonly used. Standard parts are seldom used.

Software Reliability

Software Reliability has been defined as the probability that a soft-
ware fault, which causes deviation from required output by more
than specified tolerances in a specified environment, does not occur
during a specified exposure period. Thus reliability can be formally

defined as:

 R (i) = P [No failures in i runs] (1)

Or

 R (t) = P [No failures in interval (0,t)] (2)

Assuming that inputs are selected independently according to some

probability distribution function, we have

 R (i) = [R (1)] i = (R) I (3)

Where R=R (1). We can define the reliability R as follows:

 R=1-lim (nf/n) (4)

Where

n = number of runs,

nf = number of failures in n runs.

This is the operational definition of software reliability.

Software reliability is a function of many factors like software devel-
opment methodology, validation methods and also the languages in

which the program is written.

Failure intensity is an alternative way of expressing reliability. Let R
be the reliability, λ the failure intensity and t the execution time.

Then as shown in [Fig-1].

 R(t) = exp(-λt) (5)

The failure intensity statement is more economical since only one
number is needed. Failure intensity like reliability is defined with
respect to a specified operational profile. The relationship between
failure intensity and reliability depends on the reliability model em-

ployed if these values are changing.

[Fig-2] shows that as faults are removed, failure intensity tends to

drop and the reliability tends to increase.

Software Error, Fault and Failure

The following definitions are commonly used in the software engi-

neering literature [4]:

 Error: Human action which results in software containing a fault.

 Fault: A manifestation of an error in software; a fault if encoun-

tered may cause a failure.

 Failure: An unacceptable result produced when fault is encoun-

tered.

Even though these three things have different meanings, they are

often used interchangeably in the literature.

Fig. 1- Reliability Function in Relation to Failure Intensity

Fig. 2- Decreases in Failure Intensity Increases Reliability

http://www.bioinfopublication.org

|| Bioinfo Publications || 45

Time Relevant to Software Reliability

Three kinds of time are relevant to software reliability:

 The execution time for the program is the time required by a

processor to execute the instructions of the program.

 Calendar time is the regular time we are familiar with.

 Clock time, used occasionally, represents the elapsed time from

start to end of the program execution on a running computer. It
includes wait time and execution time of other programs.

Factors Influencing Software Reliability

The main factors that affect software reliability are fault introduction,
fault removal, and operational profile. Fault introduction depends
primarily on the characteristics of the developed code (code written
or modified for the program) and the development process. The
code characteristics with the greatest effect are size. Development
characteristics include the software engineering technologies and
tools employed and the average level of experience of program-
mers. Note that code is developed when adding features or remov-
ing faults. Time, the operational profile and the quality of the repair
activity affect fault removal.

The reliability of a software based product depends on how the
computer and other external elements will use it [5]. Making a good
reliability estimate depends on testing the product as if it were in the
field. The operational profile, a quantitative characterization of how
the software will be used, is therefore essential in any software
reliability engineering (SRE) application. It is the fundamental con-
cept which must be understood in order to apply SRE effectively
and with any degree of validity.

A profile is a set of independent possibilities called elements, and
their associated probability of occurrence. If operation A occurs 60
percent of time, B occurs 30 percent, and C occurs 10 percent, for
example the profile is [A, 0.6…B, 0.3…C, 0.1]. The OP is the set of
independent operations that a software system performs and their
associated probabilities. Developing an OP for a system involves
one or more of the following five steps [Fig-3]:

 Find the customer profile

 Establish the user profile

 Define the system mode profile

 Determine the functional profile

 Determine the operational profile

Since most of the foregoing factors are probabilistic in nature and
operate over time, software reliability models are generally devel-

oped as models of random processes.

Fig. 3- Processes for Developing Operational Profile

The model are distinguished from each other by probability distribu-
tion of failure times or numbers of failure experienced and by the
form of the variation of the random process with time. Since the
failure rate of the software changes over time as the software is
modified to correct faults, the prediction procedure like the one
shown in [Fig-4] provide values for the parameters of a software
reliability growth model. A reliability growth model can be used to
forecast what the failure rate λ(т) will be at any time т into the sys-

tem test.

Conversely, a growth model can be used to forecast when a partic-
ular failure rate objective will be reached. The amount of execution
time to reach an objective can be translated into calendar time for
schedule and resource estimate. Reliability progress is evaluated

as a part of prediction process.

The next section focuses on software reliability models by first
providing the overview of the software reliability models and then by

classifying them under appropriate heads.

BIOINFO Computer Engineering
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, 2014

Desai C.G. (2014) Software Reliability: A Review.
BIOINFO Computer Engineering, ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, pp.-043-056.

Fig. 4- Software Reliability Predictions

http://www.bioinfopublication.org

|| Bioinfo Publications || 46

Software Reliability Models

Models have been developed to measure estimate and predict the
reliability of computer software. Software reliability has received
much attention because reliability has always had obvious effect on
highly visible aspects of software development: testing prior to de-

livering, and maintains.

A model is an abstracted representation of the relationship among
two or more variable attributes of an entity. A good model will incor-
porate the influence of all variables that affects the outcome. A use-
ful model will have predictive capabilities given the values of some
attributes we know, or can estimate reasonable well, it will deter-
mine the future values of other attributes with an acceptable degree

of uncertainty.

Reliability models are mathematically intense incorporating stochas-
tic processes, Probability and statistics in their calculation and rely-
ing on maximum likelihood estimate, numerical methods and confi-
dence interval to model their assumptions. They express the gen-
eral form of the relationship between the failures and the factors
mentioned. The possibilities for different general mathematical

forms to describe the failure process are almost limitless.

The specific form is determined by establishing the values of the

parameters of the model through either:

Estimation: applying statistical inference procedures to the failure

data, or

Prediction: relating parameter value to characteristics of the soft-
ware product and the development process (Which can be done

before failure data is available).

There will be uncertainty in the determination of specific form. This
is generally expressed in terms of "confidence interval” for the pa-
rameters. A "confidence interval” represents a range of value within
which a parameter is expected to lie with a certain confidence. For
example, the 75% confidence interval of initial failure intensity may
be 9 to 11 failures per hour. After the specific form has been estab-
lished, many different properties of the failure process can be deter-

mined. For many models there is analytic expression for

The average number of failures experienced at any point in time,

The average number time failures in a time interval,

The failure intensity at any point in time, and

The probability distribution of failure intervals.

A good software reliability model has several important characteris-

tics. It

 gives good prediction of future failure behavior,

 computes useful quantities,

 is simple

 is widely applicable,

 is based on sound assumptions.

However software reliability models must take the following proper-

ties of software error into account:

 The same program can have different reliability in different envi-
ronments depending upon which portion of the code gets exe-

cuted more often.

 There is no physical deterioration of the software.

 The software errors are usually correlated.

 New errors can be introduced during the correction of the previ-

ous error.

 Software reliability is dependent on the experience and educa-

tional level of the developer.

At present, almost all the software reliability models make simplify-
ing assumptions that may not hold in practice. It is therefore im-
portant to check the validity of the assumptions made by the models

before applying them in practice.

A set of desirable features for software reliability models was devel-
oped by Bastani [6] which includes language independent, method-
ology independent, test case selection criteria, correction errors,
representativeness, input distribution, program complexity, model

validation, time and use of data collection.

History of Software Reliability Model

The first known study of software reliability by Hudson in 1967 [7]
viewed software development as birth-and –death process (a type
of Markov process). Fault generation (through design changes,
faults created in fixing other faults, etc) was a birth, and fault correc-
tion was a death. The number of faults remaining defined the Pro-
cess State. The transition probabilities characterized the birth and
death function. Hudson’s analysis, limited to pure death process for
reasons of mathematical tractability, assumed that the rate of detec-
tion to faults was proportional to the number of faults remaining and

a positive power of the time.

Jelinski and Moranda [8] and Shooman [9] in 1972 made the next
major steps. Both assumed a piecewise-constant hazard rate of
failures that was proportional to the data of faults remaining. Moran-
da model that accounts for imperfect debugging. The view of de-
bugging taken here is that of a Markov process, with appropriate
transaction probabilities between states. Several useful quantities
can be derived analytically, with the mathematics remaining tracta-
ble. Kremer in 1983 developed this idea further, including the possi-

bility of spawning new faults due to the repair activity.

Goel and Okumoto [10] in 1979 depicted software failure as a non-
homogeneous Poisson process with a exponentially decaying rate
function. Maximum-likelihood methods for estimating the parame-
ters were developed for two different situations; intervals between
failures and per intervals a simple modification of this models was
investigated by Yamada et al.[11] in 1983, where the cumulative

number of failures detected is described as an S-shaped curve.

Crow [12] in 1984 proposed that a hardware model based on non-
homogenous Poisson process with a failure intensity function i. e. a
power function in time can be applied to software, using appropriate

ranges of parameter values.

Thus, much of early history of software reliability modeling consist-
ed of looking at different possible models. In the late 1970’s and
early 1980s, efforts started to focus on comparing software reliabil-
ity models, with the objective of selecting the “best” one or ones.
Initial efforts at comparison were made by Sukert, in 1979; and
Schick and Wolvetron [13] in 1973 which suffered from lack of good
failure data and lack of agreement on the criteria to be used in mak-
ing the comparison. The publication by Musa of reasonably good-
quality set of data stimulated comparison efforts. Lannino and other
in 1984 worked out a consensus on the compression criteria to be
employed. Examination on the basic concepts underlying software
reliability modeling and development of classification scheme
helped clarify and organized comparison and suggested possible
new models. This efforts led to the development of the Musa and

Okumoto logarithmic Poisson execution-time model in 1984 [14].

BIOINFO Computer Engineering
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, 2014

Desai C.G. (2014) Software Reliability: A Review.
BIOINFO Computer Engineering, ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, pp.-043-056.

http://www.bioinfopublication.org

|| Bioinfo Publications || 47

Ohba [15] in 1984 put forth the hyper exponential growth model
based on the assumption that a program has a number of clusters
of modules, each having a different initial number of errors and a
different failure rate. Yamada and Osaki suggested a similar exten-

sion of the exponential growth model in 1985.

A major work was performed related to NHPP S-shaped model in
the year 1983. Yamada proposed delayed S-shaped model and
Ohba proposed the inflection S-shaped model [16]. Pham further

enhanced this work in 1997.

Pham [17] addressed the problems of multiple failure types and
imperfect debugging based on NHPP for predicting software perfor-
mance measure. Empirical evidences suggests that the higher the
test coverage, the higher would be the reliability of the software
product. Studies regarding test coverage and reliability were exten-
sively worked out during the period of 1993 to 1996 by Wong [18],
Chen [19], and Piwowarski [20], Malaiya [21], Frate [22], Jacoby
and Masuzawa [23]. However most of the research till then focused
on confirming the intuitive relationship between coverage and relia-
bility, or enhancing a particular model to incorporate code coverage,
for a specific experiment. They did not represent a framework,
which will allow coverage measures to be accounted for, in a gener-

alized fashion.

In 1996 Gokhale, Trivedi, Philip and Marinos [24] proposed an En-
hanced Non Homogeneous Poisson Process model (ENHPP) as a
unifying framework for finite failure NHPP models. It explicitly incor-

porates time varying test coverage.

In 1998 Rivers and Vouk [25] derived a hypergeometric model for
the number of failures experienced at each stage of testing when
the constructs tested are removed from the population. i.e. when

there is no reset of the constructs covered before.

Thus, for about 25 years, software reliability modeling has been
active process arena in software engineering environment and an
attractive subject for technical publications in professional journals,
trade magazines and SE symposium. Kan [26] has identified over
100 software reliability models and Neufelder who is the instructor
for software reliability at Reliability analysis center has identified
over seven hundred models that can generally be classified as soft-

ware reliability models.

Classification of Software Reliability Models

The Software Reliability models can be classified as shown in [Fig-
5]. Generally, a mathematical model based on stochastic and statis-
tics theories is useful to describe the software fault-detection phe-
nomena or the software failure-occurrence phenomena and esti-
mate the software reliability quantitatively. During testing phase in
the software development process, software faults are detected and
removed with a lot of testing effort expenditures. Then, the number
of faults remaining in the software system is decreases as the test-
ing goes on. This means that the probability of software failure-
occurrence decreases as the software reliability is increases and
the time-interval between software failures becomes longer with the

testing time.

The first classification into static and dynamic models reflects
whether the reliability estimation is independent of time or has time
base prediction capacity. In former case, reliability estimation is for
a fixed point while in later, prediction into future is made based on
stochastic model for the fault discovery history. The former models
are useful only for estimation while the latter can be used both for

estimation and prediction [4].

BIOINFO Computer Engineering
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, 2014

Desai C.G. (2014) Software Reliability: A Review.
BIOINFO Computer Engineering, ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, pp.-043-056.

Fig. 5- Classification of Software Reliability Models

Static Models

Fault Seeding Models

The basic approach in this class of model is to “seed” a known
number of faults in a program which is assumed to have an un-

known number of indigenous faults. The program is tested and the
observed number of seeded and indigenous faults is counted. From
these, an estimate of the fault content of the program prior to seed-
ing is obtained and used to assess software reliability and other

relevant measures.

http://www.bioinfopublication.org

|| Bioinfo Publications || 48

Mills’ Hyper Geometric Model

The most popular and most basic seeding model is the Mill’s hyper-
geometric model [27]. Assumptions:

 A known number of faults are planted in a program.

 Based on standard capture and recapture technique.

 Using combinatorics and maximum likelihood technique, the

number of indigenous faults is estimated and the reliability of
the software is then computed.

The procedure adopted in this model is similar to the one used for
estimating population of fish in a pond or estimating wildlife. These
models are also referred to as tagging models since a given fault is
tagged as seeded or indigenous.

Lipow [28] modified this problem by taking into consideration the
probability of finding a fault, of either kind, in any test of the soft-
ware. Then, for statistically independent tests, the probability of
finding given number of indigenous and seeded faults can be calcu-
lated. In another modification, Basin [29] suggested a two stage
procedure with the use of two programmers which can be used to
estimate the number of indigenous faults in the program.

Input Data Domain

In this reliability of the software is measured by exercising the soft-
ware with a set of randomly chosen inputs. The ratio of inputs that
resulted in successful execution to the total model of inputs gives
an estimate of the reliability of the software product. Example: Nel-
son’s model [30].

Nelson’s Model

Assumptions:

The software is run for a set of n inputs chosen randomly from a set
{Ei:i=1,2,3…N}

The random sampling of n inputs is done according to the probabil-
ity vector p, which defines the operational profile

 R = 1-(f/n) = (n-f)/n (6)

is the estimate of reliability. Here the generation of test cases in-
volves the generation of test cases from an input distribution, which
represents the operational usage of the program. Since it is difficult
to obtain this distribution the input domain is usually partitioned into
a set of equivalence class.

Complexity Metric

The complexity metric models employ a statistical model such as
regression equation or principal component regression to estimate
the number of faults or reliability as the function of relevant com-
plexity metric [31,32].

Stochastic Models

Homo Markov

The models belonging to this category assume that the initial num-
ber of faults in the software product under consideration is unknown
but fixed. The number of faults in the system, at any time, forms the
state space of homogeneous Markov chain. The failure intensity of
the software or the transition rates of the Markov chain depend
upon the number of residual faults in the software.

Example: Jelinski-Moranda [8], Goel Okumoto imperfect Debugging
model [33]

De-Eutrophication

Jelinski-Moranda

The JM model is based on the following assumptions:

 The initial fault content of the tested software is an unknown

fixed constant.

 The failure rate is proportional to the current fault content of the

tested software, and remains constant between failures.

 All remaining software faults contribute the same amount to the

failure rate.

 A detected fault is corrected and removed immediately.

 No new fault is introduced after a fault is corrected.

The expressions regarding Jelinski-Moranda [8] are

 μ(t) = No (1- exp (-φt)) (7)

 λ(t) = φ(No - μ(t) (8)

Where No is the initial number of faults and φ is the contribution of

each fault to overall failure rate.

Imperfect Debugging

As a relaxation to assumption 5 of the JM model Goel and Okumoto

proposed an imperfect debugging model[33][10] in which each de-

tected fault is removed with the probability p, or remains in the soft-

ware with the probability q = p-1.

In this model the number of faults in the system at time t, X(t) is

related as a Markov process whose transition probabilitites are

governed by the probability of imperfect debugging. Time between

the transitions of X(t) are taken to be exponentially distributed with

rates dependent on the current fault content of the system. The

hazard function during the interval between the (i-1) and the i fail-

ures is given by

 Z(ti)= [N-p(i-1)]λ (9)

Where N is the initial fault content of the system, p is the probability

of imperfect debugging and λ is the failure rate per fault.

Software Availability

These models are used for estimating and predicting software relia-

bility and availability. In this model the system states are divided

into distinct up and down states according to the number of faults

remaining in the software weather the software is operating or not.

Trivedi and Shooman Model [2]

Assumptions:

 Assume that the software is in an up state at time t=0. When a

failure occurs, the system is shut down and enters a down

state. The fault which caused the failure is then detected and

removed before the system begins to operate again.

 The operating time and the repair time are both assumed to be

random variables described by failure rate

 φ(No-i) (10)

and repair rate

 μ(No-i) (11)

where No is the total number of faults in the software and i is the

no. of failures that have been occurred.

BIOINFO Computer Engineering
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, 2014

Desai C.G. (2014) Software Reliability: A Review.
BIOINFO Computer Engineering, ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, pp.-043-056.

http://www.bioinfopublication.org

|| Bioinfo Publications || 49

Non-Homo Markov

These models assume number of faults present in a software prod-
uct to be a random variable most often assumed to display the be-

havior of a non-homogeneous Poisson process.

Finite Failures

They assume that the expected number of failure observed during

an infinite amount of time will be a finite failure.

Example: Goel Okumoto NHPP model [1], Delayed S- Shaped
NHPP model [15], Inflection S- shaped model [15], C1 NHPP model
[15], pareto NHPP model [15], Little wood NHPP model [34],ENHPP

[24].

Musa Basic Execution Model

Assumptions:

 The number of failures that can be experienced in finite time is

infinite

 The distribution of the number of failures observed by time t is

of Poisson type.

 The functional form of the failure intensity in terms of time is

exponential.

Mean value function is given by

 μ(t) = βo(1-e-β1t) (12)

Failure intensity is given by

 N(t) = βoβ1 e-β1t (13)

Here the fault exposure ratio assumed is constant over time.

An interesting extension of this model is the logarithmic Poisson
execution time model, where the expected number of failures is a
Poisson random variable and a logarithmic function of the CPU time

т, a factor determining decay in failure intensity.

The Enhanced NHPP Model

The enhanced NHPP (ENHPP) model [24] is a unifying framework
for finite failure NHPP models i.e. other NHPP models with bounded
mean-value functions are special cases of the ENHPP model. The
model explicitly incorporates time-varying test coverage and imper-
fect fault detection in its analytical formulation. Test coverage in this
model is defined as the ratio of the number of potential fault sites
sensitized by a test to the total number of potential fault sites. Po-
tential fault sites refer to “the program entities representing either
structural or functional program elements whose sensitization is
deemed essential towards establishing the operational integrity of

the software product” [24].

 The model makes the following assumptions:

 Faults are uniformly distributed over all potential fault sites. The
probability of detecting a fault when a fault site is sensitized at

time t is cd(t) = K, (a constant), the fault detection coverage.

 Faults are fixed perfectly.

The mean value function for this model is developed as

 (t) = c(t)N (14)

Where c(t) is the time variant test coverage function and N is num-
ber of faults expected to have been exposed at full coverage. This
is distinguished from N, which is the expected number of faults to
be detected after infinite testing time, perfect test and fault detection

coverage. The failure intensity for this model then becomes

 λ(t) = z(t)(N-μ(t)) (15)

Where z(t) = c’(t).(1 – c(t)) – 1 is the time variant per-fault hazard
rate. The model allows the scenario of defective coverage to be
incorporated in the reliability estimation. Different coverage function
distributions result in the variations of the NHPP models i.e. the G-
O model, the Yamada S-shaped model, etc. Reliability as obtained

from this model is expressed as

 R(t/s) = e – NK(c(s + t) – c(s)) (16)

Where s is the time of last failure and t is the time measured from
last failure. Grottke [35] observes correctly, that the main merit of
this model is to serve as a unifying framework for NHPP models.
Further, the dependence of the per-fault hazard rate solely on time-
variant test coverage neglects other influencing factors such as the
fact that full test coverage may not be successful in detecting all the
faults and that failures may still occur without any gain in test cover-

age.

Infinite Failures

The mean value function of this class of models is unbounded, i.e.,
the expected number of failures experienced in infinite time is infi-

nite.

Example: Musa Logarithmic models [2], Duane model [36].

Duane Model

The Duane model was originally proposed for hardware reliability
studies. Its mean value function, m(t), and the failure intensity func-

tion, λ(t), are given by

 m(t) = atb, b>0 (17)

and

 λ(t) = abt b-1 b>0 (18)

This model usually overestimates the cumulative number of failures.
The main criticism of the model is that its mean value function ap-

proaches infinity very rapidly.

Semi Markov

Here the number of faults remaining in the software is modeled

using a semi Markov process. e.g. Schick and Wolvetron Model [13]

Schick and Wolvetron Model

The model is applied to specify the number of residual errors, the

mean time to detect the next error, the error detection rate.

The model is based on the following assumptions:

 Errors occur by accident.

 The error detection rate in the defined time intervals is constant.

 Errors are independent of each other.

 No new errors are generated.

 Errors are corrected after they have been detected.

In this model it is assumed that the error detection rate is propor-
tional to the number of residual errors and the time passed since
the detection of the preceding error. The transition rate, λI, during
the test interval tI, is assumed to be proportional to the current fault
content of the system, and time lapsed since the last failure and is

given by

 λI = φ[N- (I-1)]tI (19)

BIOINFO Computer Engineering
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, 2014

Desai C.G. (2014) Software Reliability: A Review.
BIOINFO Computer Engineering, ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, pp.-043-056.

http://www.bioinfopublication.org

|| Bioinfo Publications || 50

Order Statistics

This model originated from the study of hardware reliability. Cozzoli-
no [30] presented a model, which he called the initial defect model

for a repairable hardware system.

Cozzolino

Assumptions:

 Each new system has an unknown Poisson distributed number

called initial defect.

 Each defect independently has a constant failure rate.

 When a failure occurs, the defect causing it will be discovered

and repaired perfectly that is the defect will never reappear.

 The time to repair is negligible.

Baysein

In this, the model parameters are assumed to be random variables
with some prior distributions. Based on failures observed, the poste-
rior distributions of the model parameters are derived using Bayes
theorem. These posterior distributions, together with other model
assumptions, are then used to predict various reliability measures.

Example: Littlewood Verall model [37].

Littlewood Verall Model

The models presented in the previous sections all assume that
failure data is available. They also apply classical statistical tech-
niques like maximum likelihood estimation (MLE) where model pa-
rameters are fixed but unknown and are estimated from the availa-
ble data. The drawback of such an approach is that model parame-
ters cannot be estimated when failure data is unavailable. Even
when few data are available, MLE techniques are not trustworthy

since they can result in unstable or incorrect estimations.

The bayesian SRGM considers reliability growth in the context of
both the number of faults that have been detected and the failure-
free operation. Further, in the absence of failure data, bayesian
models consider that the model parameters have a prior distribu-
tion, which reflects judgment on the unknown data based on history

e.g. a prior version and perhaps expert opinion about the software.

The Littlewood-Verrall model is one example of a bayesian SRGM
that assumes that times between failures are independent exponen-
tial random variables with a parameter ξi, i = 1,2, …, n which itself
has parameters ψ(i) and α reflecting programmer quality and task
difficulty having a prior gamma distribution. The failure intensity as

obtained from the model using a linear form ψ(i) function is

λ(t)=(α-1)(N2 +2Bφ(α-1))-1/2 (20)

Where B represents the fault reduction factor, as in Musa’s basic
execution time model. This model requires tune between failure
occurrences to obtain the posterior distribution from the prior distri-

bution.

Other Reliability Models

There are several other models which has come up as the develop-
mental approaches are changing up. Reliability Focused Quality
model for Object oriented Design [38] is used to predict reliability of
object oriented software in the early design phase. The concept of
user-oriented reliability and user profile is presented by [39]. The
reliability of a system is expresses as a function of the reliability of
its components and the user profile. A Markov model is developed
under the assumption of module reliability and the Markovian be-

havior of control transfer among module. The potential application
of this module is for reliability estimation, testing strategy, mainte-

nance philosophy and estimation of penalty cost.

[40] Suggested two new reliability models considering software and
hardware faults as root causes of software failures for embed-
ded software reliability estimation. The experimental results show
that a Weibull based model, which takes characteristics of hardware
degradation into account, has higher fitting-adequacy and superior

accuracy for software reliability estimation.

In software industry, up gradations are made in the software at a
very brisk speed. To capture the effect of faults generated in
the software due to add-ons at various point in time [41] developed

a multi up gradation, multi release software reliability model.

[42] Presented a prediction model of software reliability based on
the modular. Here Markov analysis theory is applied for software
reliability prediction based on module reliability and module im-
portance in order to achieve the requirement of improving software

quality.

[43] Proposes a multi-factor software reliability model based on
logistic regression and its effective statistical parameter estimation
method. The proposed parameter estimation algorithm is composed
of the algorithm used in the logistic regression and the EM
(expectation-maximization) algorithm for discrete time software
reliability models. The multi-factor model deals with the metrics
observed in testing phase (testing environmental factors), such as
test coverage and the number of test workers, to predict the number

of residual faults and other reliability measures.

As we have seen there are various models for software reliability,
we find that the basic approach of modeling is to fit past data to a
model data that describes the expected behavior of the data, and to
use the model to predict future behavior. In order to provide good
predictions, the model should accurately describe the observed
process or at least be close to it. Predictions obtained using models
that do not fit the observed data can be misleading. Therefore se-
lecting the proper model is probably the most important part of mod-

eling and one can use trend analysis for that purpose.

Trend Analysis

The task of verification process is to increase the reliability of the
tested design or, in other words, to decrease the failure intensity of
the design. This is done by detecting and removing faults that
cause failures from the design. Therefore the first indication that
can be obtained from the statistical analysis is whether there is a
reliability growth in the tested design. This type of information can

be provided by trend analysis.

Reliability growth means that the fault discovery intensity in the
design is decreasing, and therefore the time between fault discover-
ies is increasing. This trend can be detected by looking at the cu-
mulative number of fault function of the testing time. Since the fail-
ure intensity is the derivative of the cumulative number of faults,
decreasing failure intensity means that the function of the cumula-

tive number of faults vs. simulation time should be concave.

Taking a look at the raw data provides only a rough indication of

reliability growth for two main reasons:

 The raw data of time between failures is only an instantiation of
a random process. Therefore, the cumulative number of faults is
not a smooth concave function, but with a function with many

bumps and extreme points.

BIOINFO Computer Engineering
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, 2014

Desai C.G. (2014) Software Reliability: A Review.
BIOINFO Computer Engineering, ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, pp.-043-056.

http://www.bioinfopublication.org

|| Bioinfo Publications || 51

 The raw data information can very easily hide local changes in
the trend of the reliability growth or strong local variations can

hide the overall trend of reliability growth.

There are several analytical tests for reliability growth that are de-
signed to overcome these problems. The idea behind these tests,
known as trend tests, is to test a null hypothesis H0 versus an alter-
native H1. Usually H0 corresponds to the assumption that the relia-
bility is not changing, while H1 corresponds to the assumption that

reliability undergoes a monotonic trend.

The trend test is run against the failure history data to see if it exhib-
its reliability growth, decay followed by growth or stable reliability.
Based on this information one can decide which reliability growth
model to use [44]. The two trend tests that are commonly carried

out are:

 Running Average

 Laplace test

Running Average

This test consists of computing the running average of the time
between successive failures for time between failure data, or run-
ning average of number of failures per interval for failure count data.
For time between failures, if the running average increases with

failure number, this increases reliability growth.

The arithmetic mean T(i) of the observed interfailure times tj, j = 1,2,

…..i;

 T(i) = 1/i Σ tj (21)

An increasing sequence of T (i) indicates reliability growth and a
decreasing sequence indicate reliability decay. For failure count
data, if the running average decreases with time, reliability growth is
indicated. [Fig-6] shows running average analysis using time be-

tween failure data (Sample data used).

Fig. 6- Running Average Analyses for Time Between Failure Data

Now the s1 data set is converted type from time between failure to
failure count data. To convert inter failure time data to failure fre-
quency data the desired length of testing interval is specified to be
500 seconds. The running arithmetic mean for s1 data set is as

shown in the [Fig-7] which shows decrease with the decrease in
test interval number with time and hence reliability growth.

Fig. 7- Running Average Analysis For Failure Counts Data (S1 Data

Set)

Laplace Test

Laplace test is superior from an optimality point of view and is rec-
ommended for use when the NHPP assumption is made [45]. The

test procedure is to compute Laplace factor λ(t) given by [6]

The Laplace factor is evaluated step by step, after every failure
occurrence. Here t is then equal to the time of occurrence of the ith

failure, and the failure at time t is excluded.

Intuitively Laplace factor can be interpreted as follows:

 Negative values indicate a decreasing failure intensity, and thus

reliability growth.

 Positive values indicate increasing failure intensity and thus a

decre4ase in the reliability.

 Values between –2 and +2 indicate stable reliability.

[Fig-8] demonstrates the Laplace test for the s1 data set for the

reliability growth at 5% significance.

Trend Analysis can provide information about trends that occurred
during the verification process, and answer important questions,
such as: does the reliability of the tested design grow, and how do
specific events affect this growth? Still trend analysis cannot answer
questions like: how many failures are left in the tested design, and
when will be the desired level of reliability achieved? To answer
such questions, predictions of the future behavior of the tested de-
sign and the verification process are needed. Usually, predictions of
the future behavior of a process to some predefined model (or mod-
els) and using the properties of the model to describe predicted
future behavior. Trend analysis can significantly help in choosing
the appropriate model for a given sequence of inter failure times, so
that they can be applied to data displaying trends in accordance
with their assumptions rather than blindly. Using a model for the
analysis of failure data set, without taking into consideration the
trend displayed is different than assumed in the model. Also there
are multiple models that can be use to fit the given set of data with
more or less capability [44].

BIOINFO Computer Engineering
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, 2014

Desai C.G. (2014) Software Reliability: A Review.
BIOINFO Computer Engineering, ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, pp.-043-056.

http://www.bioinfopublication.org

|| Bioinfo Publications || 52

Fig. 8- Laplace Test

The predictive capabilities of the various models can be judged by
estimating the following parameters for each of these models. Con-
sidering the Laplace test and running average test for the s1 data a
increase in the software reliability growth is observed. Base on this
result three models for the further demonstration of the parameter

estimation are selected. The models used are:

 Jelinski Moranda Model

 Musa Basic

 Musa Okumoto

Parameter Estimation for Model Ranking

Prequential Likelihood

The parameter estimates and the actual observed failure times are
used in the function to compute a value that can be used to deter-
mine how much more likely it is that one model will produce accu-
rate estimates than another model. This likelihood is given by val-
ues of the ratio of Prequential likelihood for the two models being
compared. [Fig-9] shows the Prequential likelihood for the three

models.

Fig. 9- Prequential Likelihood

Model Bias

Model bias determines whether the predictions are on an average
close to the true distribution. The estimated probability of failure for
each failure interval is used to determine the extent to which a mod-
el introduces bias into its predictions. If the model is optimistically
biased, the estimates of time to net failure are higher than what is
actually observed where as in case of pessimistic bias the esti-
mates of times to next failure are lower than the observed one.
Model biases are determined by u-plot [46], [Fig-10].

Fig. 10- Model Bias

Model Noise

This gives an indication of how much noise the model itself intro-
duced into the predictions. In general, the higher this figure is, the
less likely the model is to give accurate predictions. [Table-2] for

model noise of three software reliability models.

Table 2- Model Noise

Goodness of Fit Test

The ability of a model to reproduce the observed failure behavior of
the software, also known as its retrodictive capability, is determined
by the goodness of fit test. The observed failure data is used to
estimate the parameters of the model. The estimated mean value
function is computed and plotted along with the observed mean
value function. The error sum of squares is then calculated to evalu-
ate the goodness of fit. The lower is the error sum of square the

better is the fit [Table-3].

Based on the above four parameter the models are ranked as per
their predictive capabilities. [Table-4] gives the ranking details and

[Table-5] shows the ranks given to these models.

Table 3- Goodness of fit test

BIOINFO Computer Engineering
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, 2014

Desai C.G. (2014) Software Reliability: A Review.
BIOINFO Computer Engineering, ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, pp.-043-056.

Model Name Model Noise

Jelinski-Morando 5.58E+00

Musa Basic 5.35E+00

Musa -Okumoto 2.31E+00

Model Name KS Distance 5.%Fit?

Jelinski-Morando 9.44E-02 Yes

Musa Basic 9.20E-02 Yes

Musa -Okumoto 8.79E-02 Yes

http://www.bioinfopublication.org

|| Bioinfo Publications || 53

Table 4- Ranking Details

BIOINFO Computer Engineering
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, 2014

Desai C.G. (2014) Software Reliability: A Review.
BIOINFO Computer Engineering, ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, pp.-043-056.

Model Name -ln Model Bias Bias Trend Model Noise

Musa -Okumoto 5.311823E+002[1] 8.197740E-002[1] 1.056971E-001[1] 2.307074E+000[1]

Musa Basic 5.376974E+002[2] 1.935277E-001[2] 1.556185E-001[3] 5.351962E+000[2]

Jelinski-Morando 5.387762E+002[3] 2.201526E-001[3] 1.542180E-001[2] 5.582339E+000[3]

Table 5- Model Ranking

Thus for the same set of data when the above two models are ap-
plied we find that Musa Okumoto model gives the better reliability

prediction.

While considering software reliability models there are various as-
pects which needs be considered from various points of view for
estimating and predicting software reliability. Next we concentrate
on the details of these aspects and their impact on software reliabil-

ity.

Parameters Affecting Software Reliability

Exponential Model parameters

While many of the reliability growth models are purely empirical,
some of the models are based on some specific assumptions about
the fault detection/ removal process. The parameters of these mod-
els thus have some interpretations and thus possibly may be esti-
mated using empirical relationships using static attributes. The two
parameters of the exponential model are the easiest to explain.
Using this model the expected number of faults μ(t) detected in a

duration t may be expressed as

 (22)

Here β0
E represents the total number of faults that would be eventu-

ally detected β1
E and is the per fault hazard rate which is assumed

to be constant for exponential model. The data collected by Musa
shows that the number of additional faults introduced during the
debugging process is only about 5% [47]. Thus β0

E may be estimat-

ed as the initial number of faults.

The estimation of the other parameter β1
E is more complex. Musa et

al. have defined a parameter K, called fault exposure ratio (FER),
which can be obtained by normalizing the per-fault hazard rate with
respect to the linear execution frequency, which is the ratio of the
instruction execution rate and the software size. For 13 software
systems [48] it was found that the overall FER varies from 1.41 x l0-

7 to 1 0.6 x l0-7, with the average value equal to 4.2 x l0-7 failure/

fault. Once we know the value of K, β1
E can be estimated using,

 (23)

Where TL is the linear execution time, given by

TL = (Is Qr) 1/r Is, is the number of source lines of code; Qr is the
average object instructions per source statement; r is the CPU in-
struction execution rate. If N (t) is the total number of defects still

present at time t, it can be shown that [25],

 (24)

Thus the defect finding rate –dN(t)/ dt is proportional to the fault
exposure ratio. Note that in the above equation, the effect of the
software size and the instruction execution rate of the CPU has
been taken into account separately in the term TL. To characterize
the defect removal process accurately, one need to identify the

factors that control FER.

Once it has been done, one can empirically estimate FER and

hence the failure intensity and reliability.

Logarithmic Model Parameters

Exponential model can be considered as an approximation of Loga-
rithmic model [48]. Logarithmic model is found to have very good
predictive capability in many cases. According to [48] the β0 and β1
parameters can be estimated using the logarithmic model, which is

further designated as β0
L and β1

L.

Therefore

 β0
L = Dmin * Is (25)

and

 β1
L = (Kmin /TL)*e((D0 - Dmin) / Dmin) (26)

Fault Exposure Ratio (FER (K))

FER plays an important role in software reliability growth. A manag-
er can use it to plan the test resources need to achieve the desired
quality level, even before testing begins. In the early stages of test-
ing, only a limited number of data points are available, which are
not often enough to establish the long-term trend. This makes pa-
rameter estimation for SRGMs unstable. Identifying what factors
affect K is of considerable significance. If we can accurately model
the behavior of K, there are three ways in which the software relia-

bility engineering will be affected [49].

 When the process parameters are known a priori, optimal re-
source allocation can be done even before testing begins. Early

planning can be crucial to the success of the project.

 In the early phases of testing, the failure intensity values ob-
served contains considerable noise]. The use of reliability
growth models in the early phases can sometimes result in
grossly incorrect projection. The accuracy can be enhanced by

using a priori parameter values in such cases.

 Residual defect density can be measured accurately.

Musa, et al. have speculated that K may depend on program struc-
ture in some way. However, they suspected that for large programs,
the “structured ness” (as measured by decision density) averages
out and hence does not vary much from program to program [50].
Musa has also argued that K should be independent of program
size [35]. Likewise Malaiya argue that K may be relatively independ-
ent of the program size [51].Mayrhauser and Teresinki [52] have
suggested that K may depend on testability, as measured by static
metrics like “loopiness” and “branchiness” of the program. However,
because of lack of sufficient data, the results are not yet conclusive.
Li and Malaiya suggested that K varies with the initial defect density

and is given by the following expression.

Model Name Rank 5.E+003 Sec Reliability after failure 136

Musa -Okumoto 1 1.04E-01

Musa Basic 2 3.39E-01

Jelinski-Morando 3 3.59E-01

)e1()t(
tE

0

E
0

L

E

0
T

K

)t(N
T

K

dt

)t(dN

L

http://www.bioinfopublication.org

|| Bioinfo Publications || 54

 K = (1.2 * 10E-06/Do)*Exp(0.005*Do) (27)

Defect Density

Defect density is an important measure of software quality, one
which is often used as an acceptance criterion for a piece of soft-
ware. For this reason it is desirable to understand how various as-
pects of the development process impact defect density, so they
can be controlled or at least used to gain a better understanding of
product reliability. The maturity of the development process, the skill
of the programmers involved, and the complexity of the program all

play a significant part in the defect density of a program [51].

Leading edge software development organizations typically achieve
a defect density of about 2.0 defects/KLOC [53] and some now use
a lower target. The cost of fixing a defect later can be several or-
ders of magnitude higher than during development, yet a program
must be shipped by some deadline dictated by market considera-
tions. This makes the estimation of the number of remaining defects

a very important challenge.

One conceivable way of knowing the exact defect density of a pro-
gram is to actually find all remaining defects. This is obviously infea-
sible for any commercial product. Even if there are resources avail-
able, it will take a prohibitive amount of time to find all bugs in a
large program [54]. Sampling based methods have been suggested
for estimating the number of remaining defects. They assume that
the faults found have the same testability as faults not found. How-
ever, in actual practice, the faults not found represent faults that are
harder to find [1]. Thus such methods are likely to yield an estimate
of faults that are relatively easier to find, which will be less than the
true number. It is possible to estimate the defect density based on
past experience using empirical models like the Rome Lab model

[55] or the model proposed by Malaiya and Denton [51].

The estimates obtained by such models can be very useful for initial
planning; however these models are not expected to be accurate
enough to compare with methods involving actual test data. Another
possible way to estimate the number of faults is by using the Expo-
nential (Software Reliability Growth Model) SRGM. In this model the
parameter β0 represents the total number of defects that would
eventually be found. We can estimate the number of remaining
defects by subtracting the number of defects found from the value
of β0 obtained by fitting. An SRGM relates the number of defects
found to the testing time spent. As this work focuses on predicting
the defect density at the early phase of object oriented software

designs there is no working code in hand, so the use of SRGM fails.

Having an early warning system to estimate defect density would
aid developers by giving them an indication as to potential problems
in the system. We can leverage metrics, which are readily available
in the system to help provide defect density estimate. The next
section gives the overview of the previously suggested defect den-

sity model.

Defect Density Model

There has been considerable research to identify the major factors
that correlate with the number of defects. The Malaiya and Denton

[51] based on the data reported in literature, is given by

 DD = C * Fph * Fpt * Fm * Fs (28)

Where Fph = phase factor modeling dependence on software test

phase.

Fpt = programming team factor [Table-7]

Fm = maturity of software development [Table-8]

Fs = structure of the software under development

C = constant of proportionality

DD = Defect Density

The number of defects present at the beginning of different test
phases is different. Gaffney [16] has proposed a phase-based mod-
el that uses the Rayleigh curve. Malaiya [51] presented a simpler
model using actual data reported by Musa and the error profile pre-
sented by Piwowarski. The first two columns of [Table-6] represent
the multipliers suggested by the numbers given by Musa et al. and
Piwowarski et al. The third column presents the multipliers assumed

by Malaiya [51].

Table 6- Phase Factor

Table 7- Team Factor

Table 8- Maturity Factor

The defect density varies significantly due to the coding and debug-
ging capabilities of the individuals involved [14, 55]. The only availa-
ble quantitative characterization is in terms of programmer’s aver-
age experience in years, given by Takahashi and Kamayachi [14].
Their model can take into account programming experience of up to
7 years, each year reducing the number of defects by about 14%.
The data in the study reported by Takada et al [55] suggests that
programmers can vary in debugging efficiency by a factor of 3. In a
study about the PSP process [54], the defect densities in a program
written separately by 104 programmers were evaluated. For about
90% of the programmers, the defect density ranged from about 50
to 250 defects/KSLOC. This suggests that defect densities due to
different programming skills can differ by a factor of 5 or even high-

er.

This factor takes into account the rigor of software development
process at a specific organization. This level, as measured by the

SEI Capability Maturity Model, can be used to quantify it.

The structure of development factor takes into account the depend-
ence of defect density on language type (the fractions of code in
assembly and high level languages), program complexity, modulari-

ty and the extent of reuse.

The model given equation 26 provides an initial estimate. It should
be calibrated using the past data from the same organization. For
this purpose the factor C is involved. Musa’s data suggest that the

BIOINFO Computer Engineering
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, 2014

Desai C.G. (2014) Software Reliability: A Review.
BIOINFO Computer Engineering, ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, pp.-043-056.

Test Phase
Multiplier

Musa et al. Piwowarski Malaiya et al.

Unit 3.28 5 4

Subsystem Insufficient Data 2.5 2.5

System 1 1 1(default)

Operations 0.25 0.45 0.35

Team’s Average Skill Multiplier

High 0.4

Average 1(default)

Low 2.5

SEI CMM Level Multiplier

Level 1 1.5

Level 2 1(default)

Level 3 0.4

Level 4 0.1

Level 5 0.05

http://www.bioinfopublication.org

|| Bioinfo Publications || 55

constant of proportionality C can range from 6 to 20 defects per

KLOC.

Software Reliability Growth Problem

The basic problem of reliability theory is to predict when a system
will eventually fail. Software fails because of design problems. Indi-
viduals based on their intellectual develop design and as intellectual
itself varies from individual to individual, it is really not easy to pre-
dict from the design that when the system will fail. Various ap-
proaches have been proposed for modeling software reliability but
no individual technique has singled out for unreserved recommen-
dations from the many that have been proposed over years [56].
Empirical observations suggest that no such technique has consist-
ently able to give accurate result over different data sources and we
need to examine the accuracy of the actual reliability measures,
obtained from several techniques in a particular case, with a view of
selecting the one (if any) that yields trustworthy results [57].

But here it again gives rise to another problem that how to decide
which model to use in the given circumstances as things are not as
clear as they appear to be in theory. As noted above one should not
trust a single approach for assessing reliability, but another problem
that arises here is that, what about the economy of using multiple
software reliability models for measuring the accuracy of the soft-
ware?

The underlying problem with the software reliability is that you can-
not firmly predict when it will fail. Suppose it is considered that the
system will fail in its 10 hours of operation once. But in these 10
hours the system may fail in first two minutes or in the last two
minutes. Also if the path containing error is not at all traversed in its
10 hours of working it will assure 100% reliability which may not be
the fact.

The another issue that comes up is that, on often fixing a fault a
general consideration is that it has led to the improvement of relia-
bility however concerning software ineffective fixes or the introduc-
tion of novel faults will indeed decrease the reliability. Thus several
questions come forward even after fixing the faults:

 How reliable is the software now?

 Is it sufficiently reliable that we can cease testing and ship it?

 How reliable it will be after we spend a given amount of further

testing effort?

 How long are we likely to wait until the reliability target is

achieved?

A crucial activity is the definition of operational profile and associat-
ed test cases. OP is used to select test cases and direct develop-
ment, testing and maintenance [58]. Both the determination of OP
and random sampling of test cases might be impractical in certain
applications [59, 60]. In such a case one has little choice but to rely
on educated guesstimates.

The problem of assessing the reliability of software is again a diffi-
cult one because claims for extremely high reliability appear to need
extremely large amount of evidence. Thus direct evaluation of relia-
bility, using statistical methods based upon operational data will
only allow quiet modest claims to be made – putting it another way,
to make claims ultra high reliability this way would require infeasible
large amount of operational exposure [61].

Although various software reliability models claims their efficiency in
some way or the other they are not used as universally in software

development as they should be. Some reasons that project manag-

ers give are following [9]:

 It costs too much to do such modeling and I can’t afford it within

my budget.

 There are so many software reliability models to use that I don’t

know which is best; therefore I choose not to use any.

 We are using the most advanced software development strate-
gies and tools and produce high quality software; thus we don’t

need reliability measurements.

 Even if the model told me that the reliability is poor, I would just

test some more and remove more errors

 If I release product with too many errors, I can always fix those

that get discovered during early deployment.

Another issue that comes up is that assessing or predicting reliabil-
ity of the software on the past experience and data of the similar
type of software may not be relied upon. Reason, the past experi-
ences has already thought us eliminate repetitive errors. Therefore
by using past information and predicting the present software relia-
bility status sounds abrupt. The other conditions like the external
environment, the resources namely; human, other software and
hardware may also vary from software to software development

process.

Thus we see there are various aspects related to software reliability
and an proper understanding of these aspects will provide better

insight for effective software reliability estimation.

Acknowledgement: Dr. K V Kale, Professor and Head, Department
of Computer Science, Dr. Babasaheb Ambedkar Marathwada Uni-

versity, Aurangabad for his valuable guidance.

References

[1] Goel A.L. (1985) IEEE Transactions on Software Engineering,

12, 1411-1423.

[2] Musa J.D. (1975) IEEE Transactions on Software Engineering,

SE-1(3), 312-327.

[3] Wallace R.B. & Prabhakar Murthy D.N. (2000) Reliability Model-
ing, Predition and Optimization, Wiley Inter Science Publication

848.

[4] Goel A.L. & Yang K.Z. (1997) Advances in Computers, 45, 197-

267.

[5] Mills H.D. (1972) On the Statistical Validation of Computer Pro-

grams, IBM Fedreal Syst.Div.,Gaitthersburg, MD, Rep. 72-6015.

[6] Ramamoorthy C.V. & Bastani F.B. (1982) IEEE Trans. Software

Eng., 8(4), 354-371.

[7] Hudson G.R. (1967) Program Errors as A Birth and Death Pro-
cess, Report SP-3011, System Development Corporation, San-

ta Monica, California.

[8] Jelinski Z. & Moranda P.B. (1972) Software reliability research,
Statistical Computer Performance Evaluation, Academic Press,

New York, 465-484.

[9] Shooman M.L. (2002) Reliability of Complete System and Net-

work, Wiley InterScience, 552.

[10] Goel A.L. & Okumoto K. (1979) IEEE Transactions on Reliabil-

ity, 28(3), 206-211.

[11] Yamada S., Ohba M. & Osaki S. (1983) IEEE Transactions on

Reliability, 32(5), 475-484.

BIOINFO Computer Engineering
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, 2014

Desai C.G. (2014) Software Reliability: A Review.
BIOINFO Computer Engineering, ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, pp.-043-056.

http://www.bioinfopublication.org

|| Bioinfo Publications || 56

[12] Crow L.H. & Singpurwalla N.D. (1984) IEEE Transactions on

Reliability, 33(2), 176-183.

[13] Schick G.J. & Wolverton R.W. (1973) Annual Meeting 1972

Physica-Verlag HD, 395-422.

[14] Musa J.D. & Okumoto K. (1984) Journal of Systems and Soft-

ware, 4(4), 277-287.

[15] Ohba M. (1984) IBM Journal of research and Development, 28

(4), 428-443.

[16] Gaffney J. & Pietrolewicz J. (1990) An Automated Model for
Early Error Prediction in Software Development Process, Proc.

IEEE Software Reliability Symposium Colorado Spring.

[17] Pham H. (2000) Software Reliability, New York

[18] Abdel-Ghally A.A., Chan P.Y. & Littlewood B. (1986) IEEE

Trans. on Software Engineering, 12(9).

[19] Grottke M. (2001) Software Reliability Model Study, Deliverable

A-2 IST-1999-55017.

[20] Duane J.T. (1964) IEEE Transactions on Aerospace, 2(2), 563-

566.

[21] Littlewood B. (1980) IEEE Transactions on Software Engineer-

ing, 5, 489-500.

[22] Desai C. (2008) International Journal of Computational Intelli-

gence and Telecommunication Systems, 11-16

[23] Cheung R.C. (1980) IEEE Transactions on Software Engineer-

ing, 2, 118-125.

[24] Park J., Kim H.J., Shin J.H. & Baik J. (2012) IEEE Sixth Interna-

tional Conference on Software Security and Reliability, 207-214.

[25] Kapur P.K., Tandon A. & Kaur G. (2010) 2nd International Con-

ference on Reliability, Safety and Hazard, 468-474.

[26] Zhu X.M., Guo Z.G. & Yuan C. (2012) Fuzzy Engineering and

Operations Research, Springer Berlin, 485-492.

[27] Okamura H., Etani Y. & Dohi T. (2010) IEEE 21st International

Symposium on Software Reliability Engineering, 31-40.

[28] Atole C.S. & Kale K.V. (2004) An Analysis of Software Reliability
Estimation for Model Ranking, Proceedings of National Confer-
ence on Software Engineering Principles and Practices, Patiala,

Punjab.

[29] Gaudoin O. (1992) IEEE Transactions on Reliability, 41(4), 525-

532.

[30] Lyu M.R. & Nikora A. (1992) CASRE: a computer-aided soft-
ware reliability estimation tool, Proceedings of Fifth International

Workshop on Computer-Aided Software Engineering, 264-275.

[31] Naixin L. & Malaiya Y.K. (1996) Fault exposure ratio estimation
and applications, Proceedings of Seventh International Sympo-

sium on Software Reliability Engineering, 372-381.

[32] Denton J.A. (1999) Accurate Software Reliability Estimation,

Thesis.

[33] Malaiya Y.K., Von Mayrhauser A. & Srimani P.K. (1993) IEEE

Transactions on Software Engineering, 19(11), 1087-1094.

[34] Musa J.D. (1991) ACM SIGSOFT Software Engineering Notes,

16(3), 78-79.

[35] Malaiya Y.K. & Denton J. (1997) The Eighth International Sym-

posium on Software Reliability Engineering, 124-135.

[36] von Mayrhauser A. & Teresinki J.A. (1990) Proc. Symp. On

Software Reliability Engineering, 19.1-19.13.

[37] Binder R. V.(1997) Six sigma: Hardware si, software no!

[38] Butler R.W. & Finelli G.B. (1993) IEEE Transactions on Soft-

ware Engineering, 19(1), 3-12.

[39] Atole C.S. & Kale K.V. (2005) Software Reliability Model Re-
view: In Light Of Software Development Process, Software

Engineering Institute (SEI) CMM.

[40] Fenton N.E. & Pfleeger S.L. (1998) Software metrics: a rigorous

and practical approach, PWS Publishing Co.

[41] Vouk M.A. (2000) Software reliability engineering, In a tutorial
presented at the Annual Reliability and Maintainability Symposi-

um.

[42] Horgan J.R. & Mathur A.P. (1996) Software Testing And Reliabil-
ity, Hand Book of Software Reliability Engineering, Mc Graw

Hill.

[43] Horgan J.R. & Mathur A P (1995) Perils Of Software Reliability

Modeling, Technical Report, SERL-TR-160.

[44] Littlewood B. (2000) The problems of assessing software relia-

bility... when you really need to depend on it.

BIOINFO Computer Engineering
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, 2014

Desai C.G. (2014) Software Reliability: A Review.
BIOINFO Computer Engineering, ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 3, Issue 1, pp.-043-056.

http://www.bioinfopublication.org

