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Abstract- Edge detection is one of the most commonly used operations in image analysis, and there are probably more algorithms in the 
literature for enhancing and detecting edges than any other single subject. Edge detection refers to the process of identifying and locating 
sharp discontinuities in an image. The discontinuities are abrupt changes in pixel intensity which characterize boundaries of objects in a sce-
ne. The reason for this is that edges form the outline of an object. An edge is the boundary between an object and the background, and indi-
cates the boundary between overlapping objects. This means that if the edges in an image can be identified accurately, all of the objects can 
be located and basic properties such as area, perimeter, and shape can be measured. Since computer vision involves the identification and 
classification of objects in an image, edge detections is an essential tool. In this paper, we have compared several techniques for edge detec-
tion in image processing. 
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Introduction 
Edge detection is a very important area in the field of Computer 
Vision. Edges define the boundaries between regions in an image, 
which helps with segmentation and object recognition. They can 
show where shadows fall in an image or any other distinct change 
in the intensity of an image. Edge detection is a fundamental of low
-level image processing and good edges are necessary for higher 
level processing. [1] 
Edge detection refers to the process of identifying and locating 
sharp discontinuities in an image. The discontinuities are abrupt 
changes in pixel intensity which characterize boundaries of objects 
in a scene. Classical methods of edge detection involve convolving 
the image with an operator (a 2-D filter), which is constructed to be 
sensitive to large gradients in the image while returning values of 
zero in uniform regions. There are an extremely large number of 
edge detection operators available, each designed to be sensitive 
to certain types of edges. Variables involved in the selection of an 
edge detection operator include:  

 Edge orientation: The geometry of the operator determines a 

characteristic direction in which it is most sensitive to edges. Oper-

ators can be optimized to look for horizontal, vertical, or diagonal 
edges. 

 Noise environment: Edge detection is difficult in noisy images, 

since both the noise and the edges contain high-frequency content. 
Attempts to reduce the noise result in blurred and distorted edges. 
Operators used on noisy images are typically larger in scope, so 
they can average enough data to discount localized noisy pixels. 
This results in less accurate localization of the detected edges. 
Edge structure: Not all edges involve a step change in intensity. 
Effects such as refraction or poor focus can result in objects with 
boundaries defined by a gradual change in intensity. The operator 
needs to be chosen to be responsive to such a gradual change in 
those cases. Newer wavelet-based techniques actually character-
ize the nature of the transition for each edge in order to distinguish, 
for example, edges associated with hair from edges associated 
with a face. 
There are many ways to perform edge detection. However, the 
majority of different methods may be grouped into two categories: 
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 Gradient:  The gradient method detects the edges by look-
ing for the maximum and minimum in the first derivative of 
the image. 

 Laplacian:  The Laplacian method searches for zero cross-
ings in the second derivative of the image to find edges. An 
edge has the one-dimensional shape of a ramp and calcu-
lating the derivative of the image can highlight its location. 
Suppose we have the following signal, with an edge shown 
by the jump in intensity below: 

Suppose we have the following signal, with an edge shown by the 
jump in intensity below:  

 
If we take the gradient of this signal (which, in one dimension, is 
just the first derivative with respect to t) we get the following:  

 
Clearly, the derivative shows a maximum located at the center of 
the edge in the original signal. This method of locating an edge is 
characteristic of the “gradient filter” family of edge detection filters 
and includes the Sobel method. A pixel location is declared an 
edge location if the value of the gradient exceeds some threshold. 
As mentioned before, edges will have higher pixel intensity values 
than those surrounding it. So once a threshold is set, you can com-
pare the gradient value to the threshold value and detect an edge 
whenever the threshold is exceeded. Furthermore, when the first 
derivative is at a maximum, the second derivative is zero. As a 
result, another alternative to finding the location of an edge is to 
locate the zeros in the second derivative. This method is known as 
the Laplacian and the second derivative of the signal is shown 
below:  

 
Edge Detection Techniques 

Robert’s cross Operator 
The Roberts Cross operator performs a simple, quick to compute, 
2-D spatial gradient measurement on an image. Pixel values at 
each point in the output represent the estimated absolute magni-
tude of the spatial gradient of the input image at that point.  
The operator consists of a pair of 2×2 convolution kernels as 
shown in Figure. One kernel is simply the other rotated by 90°. This 
is very similar to the Sobel operator.  

 
Fig.2- Roberts operator 

These kernels are designed to respond maximally to edges running 
at 45° to the pixel grid, one kernel for each of the two perpendicular 
orientations. The kernels can be applied separately to the input 
image, to produce separate measurements of the gradient compo-
nent in each orientation (call these Gx and Gy). These can then be 

combined together to find the absolute magnitude of the gradient at 
each point and the orientation of that gradient. The gradient magni-
tude is given by:  

 
although typically, an approximate magnitude is computed using:  

 
which is much faster to compute.  
The angle of orientation of the edge giving rise to the spatial gradi-
ent (relative to the pixel grid orientation) is given by:  

 
Prewitt’s Operator 
Prewitt operator is similar to the Sobel operator and is used for 
detecting vertical and horizontal edges in images.  
Laplacian of Gaussian (LoG) 
The Laplacian is a 2-D isotropic measure of the 2nd spatial deriva-
tive of an image. The Laplacian of an image highlights regions of 
rapid intensity change and is therefore often used for edge detec-
tion. The Laplacian is often applied to an image that has first been 
smoothed with something approximating a Gaussian Smoothing 

filter in order to reduce its sensitivity to noise. The operator normal-
ly takes a single graylevel image as input and produces another 
graylevel image as output.  
The Laplacian L(x,y) of an image with pixel intensity values I(x,y) is 
given by:  

                         
Since the input image is represented as a set of discrete pixels, we 
have to find a discrete convolution kernel that can approximate the 
second derivatives in the definition of the Laplacian. 
Canny’s Edge Detection Algorithm 
The Canny edge detection algorithm is known to many as the opti-
mal edge detector. Canny's intentions were to enhance the many 
edge detectors already out at the time he started his work. He was 
very successful in achieving his goal and his ideas and methods 
can be found in his paper, "A Computational Approach to Edge 
Detection". In his paper, he followed a list of criteria to improve 
current methods of edge detection. The first and most obvious is 
low error rate. It is important that edges occurring in images should 
not be missed and that there be NO responses to non-edges. The 
second criterion is that the edge points be well localized. In other 
words, the distance between the edge pixels as found by the detec-
tor and the actual edge is to be at a minimum. A third criterion is to 
have only one response to a single edge. This was implemented 
because the first 2 were not substantial enough to completely elimi-
nate the possibility of multiple responses to an edge.  
Based on these criteria, the canny edge detector first smoothes the 
image to eliminate and noise. It then finds the image gradient to 
highlight regions with high spatial derivatives. The algorithm then 
tracks along these regions and suppresses any pixel that is not at 
the maximum (non maximum suppression). The gradient array is 
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now further reduced by hysteresis. Hysteresis is used to track 
along the remaining pixels that have not been suppressed. Hyste-
resis uses two thresholds and if the magnitude is below the first 
threshold, it is set to zero (made a non edge). If the magnitude is 
above the high threshold, it is made an edge. And if the magnitude 
is between the 2 thresholds, then it is set to zero unless there is a 
path from this pixel to a pixel with a gradient above T2.  
Step 1 
In order to implement the canny edge detector algorithm, a series 
of steps must be followed. The first step is to filter out any noise in 
the original image before trying to locate and detect any edges. 
And because the Gaussian filter can be computed using a simple 
mask, it is used exclusively in the Canny algorithm. Once a suitable 
mask has been calculated, the Gaussian smoothing can be per-
formed using standard convolution methods. A convolution mask is 
usually much smaller than the actual image. As a result, the mask 
is slid over the image, manipulating a square of pixels at a time. 
The larger the width of the Gaussian mask, the lower is the detec-
tor's sensitivity to noise. The localization error in the detected edg-
es also increases slightly as the Gaussian width is increased. The 
Gaussian mask used in my implementation is shown below.  

 
Step 2 
After smoothing the image and eliminating the noise, the next step 
is to find the edge strength by taking the gradient of the image. The 
Sobel operator performs a 2-D spatial gradient measurement on an 
image. Then, the approximate absolute gradient magnitude (edge 
strength) at each point can be found. The Sobel operator uses a 
pair of 3x3 convolution masks, one estimating the gradient in the x-
direction (columns) and the other estimating the gradient in the y-
direction (rows). They are shown below:  

 
The magnitude, or edge strength, of the gradient is then approxi-
mated using the formula: |G| = |Gx| + |Gy|  
Step 3 
The direction of the edge is computed using the gradient in the x 
and y directions. However, an error will be generated when sumX 
is equal to zero. So in the code there has to be a restriction set 
whenever this takes place. Whenever the gradient in the x direction 
is equal to zero, the edge direction has to be equal to 90 degrees 
or 0 degrees, depending on what the value of the gradient in the y-
direction is equal to. If GY has a value of zero, the edge direction 
will equal 0 degrees. Otherwise the edge direction will equal 90 
degrees. The formula for finding the edge direction is just: 
Theta = invtan (Gy / Gx)  
Step 4 
Once the edge direction is known, the next step is to relate the 
edge direction to a direction that can be traced in an image. So if 
the pixels of a 5x5 image are aligned as follows: 
 
 

Then, it can be seen by looking at pixel "a", there are only four 
possible directions when describing the surrounding pixels - 0 de-
grees (in the horizontal direction), 45 degrees (along the positive 
diagonal), 90 degrees (in the vertical direction), or 135 degrees 
(along the negative diagonal). So now the edge orientation has to 
be resolved into one of these four directions depending on which 
direction it is closest to (e.g. if the orientation angle is found to be 3 
degrees, make it zero degrees). Think of this as taking a semicircle 
and dividing it into 5 regions. 

Therefore, any edge direction falling within the yellow range (0 to 
22.5 & 157.5 to 180 degrees) is set to 0 degrees. Any edge direc-
tion falling in the green range (22.5 to 67.5 degrees) is set to 45 
degrees. Any edge direction falling in the blue range (67.5 to 112.5 
degrees) is set to 90 degrees. And finally, any edge direction falling 
within the red range (112.5 to 157.5 degrees) is set to 135 degrees.  
Step 5 
After the edge directions are known, non maximum suppression 
now has to be applied. Non maximum suppression is used to trace 
along the edge in the edge direction and suppress any pixel value 
(sets it equal to 0) that is not considered to be an edge. This will 
give a thin line in the output image.  
Step 6 
Finally, hysteresis is used as a means of eliminating streaking. 
Streaking is the breaking up of an edge contour caused by the 
operator output fluctuating above and below the threshold. If a 
single threshold, T1 is applied to an image, and an edge has an 
average strength equal to T1, then due to noise, there will be in-
stances where the edge dips below the threshold. Equally it will 
also extend above the threshold making an edge look like a dashed 
line. 
Tool Used 
The methods have been developed in Matlab 7.0.1 GUI. The 
graphical interface allows a better representation of the image with 
its output image.  Visual appearance of the image has been used 
as a deciding factor for the finding the best method of edge detec-
tion. 
Results and Disscussions 

Welcome screen for the project is 

Fig.6- Welcome screen for “COMPARISON OF VARIOUS EDGE 
DETECTION TECHNIQUES” 
Clicking on the Next we will be forwarded to next screen of the 
algorithms used.Choosing the technique we will go to the next 
screen for selecting input image. 
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Putting the image on the coordinates looks like.Choosing the im-
age we will apply a particular method on it. The results for the four 
techniques are as follows. 
Result for Prewitts Operator. 
Result for LoG Operator 
Result for Roberts Operator 
Result for Canny’s Edge Detection 

Concusion 
Gradient-based algorithms such as the Prewitt filter have a major 

drawback of being very sensitive to noise. The size of the kernel 
filter and coefficients are fixed and cannot be adapted to a given 
image. An adaptive edge-detection algorithm is necessary to pro-
vide a robust solution that is adaptable to the varying noise levels. 
Gradient-based algorithms such as the Prewitt filter have a major 
drawback of being very sensitive to noise. The size of the kernel 
filter and coefficients are fixed and cannot be adapted to a given 
image. An adaptive edge-detection algorithm is necessary to pro-
vide a robust solution that is adaptable to the varying noise levels 
of these images to help distinguish valid image contents from visu-
al artifacts introduced by noise. 
The performance of the Canny algorithm depends heavily on the 
adjustable parameters, σ, which is the standard deviation for the 
Gaussian filter, and the threshold values, ‘T1’ and ‘T2’. σ also 
controls the size of the Gaussian filter. The bigger the value for σ, 
the larger the size of the Gaussian filter becomes. This implies 
more blurring, necessary for noisy images, as well as detecting 
larger edges. As expected, however, the larger the scale of the 
Gaussian, the less accurate is the localization of the edge. Smaller 
values of σ imply a smaller Gaussian filter which limits the amount 
of blurring, maintaining finer edges in the image. The user can 
tailor the algorithm by adjusting these parameters to adapt to dif-
ferent environments.Canny’s edge detection algorithm is computa-
tionally more expensive compared to Sobel, Prewitt and Robert’s 
operator. However, the Canny’s edge detection algorithm performs 
better than all these operators under almost all scenarios. 
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