
Bioinfo Publications 103

COMPARISON OF VARIOUS EDGE DETECTION TECHNIQUES

Journal of Information and Operations Management
ISSN: 0976–7754 & E-ISSN: 0976–7762 , Volume 3, Issue 1, 2012, pp-103-106
Available online at http://www.bioinfo.in/contents.php?id=55

BINDU BANSAL1*, JASBIR SINGH SAINI1, VIPAN BANSAL2, AND GURJIT KAUR1

1GNDEC, Ludhiana, India
2LPU, Phagwara, India
*Corresponding Author: Email- er_bindu18@rediffmail.com

Received: December 12, 2011; Accepted: January 15, 2012

Abstract- Edge detection is one of the most commonly used operations in image analysis, and there are probably more algorithms in the
literature for enhancing and detecting edges than any other single subject. Edge detection refers to the process of identifying and locating
sharp discontinuities in an image. The discontinuities are abrupt changes in pixel intensity which characterize boundaries of objects in a sce-
ne. The reason for this is that edges form the outline of an object. An edge is the boundary between an object and the background, and indi-
cates the boundary between overlapping objects. This means that if the edges in an image can be identified accurately, all of the objects can
be located and basic properties such as area, perimeter, and shape can be measured. Since computer vision involves the identification and
classification of objects in an image, edge detections is an essential tool. In this paper, we have compared several techniques for edge detec-
tion in image processing.
Keywords- Edge detection, Prewitts, Roberts, LoG, Canny.

Journal of Information and Operations Management
ISSN: 0976–7754 & E-ISSN: 0976–7762 , Volume 3, Issue 1, 2012

Introduction
Edge detection is a very important area in the field of Computer
Vision. Edges define the boundaries between regions in an image,
which helps with segmentation and object recognition. They can
show where shadows fall in an image or any other distinct change
in the intensity of an image. Edge detection is a fundamental of low
-level image processing and good edges are necessary for higher
level processing. [1]
Edge detection refers to the process of identifying and locating
sharp discontinuities in an image. The discontinuities are abrupt
changes in pixel intensity which characterize boundaries of objects
in a scene. Classical methods of edge detection involve convolving
the image with an operator (a 2-D filter), which is constructed to be
sensitive to large gradients in the image while returning values of
zero in uniform regions. There are an extremely large number of
edge detection operators available, each designed to be sensitive
to certain types of edges. Variables involved in the selection of an
edge detection operator include:

 Edge orientation: The geometry of the operator determines a

characteristic direction in which it is most sensitive to edges. Oper-

ators can be optimized to look for horizontal, vertical, or diagonal
edges.

 Noise environment: Edge detection is difficult in noisy images,

since both the noise and the edges contain high-frequency content.
Attempts to reduce the noise result in blurred and distorted edges.
Operators used on noisy images are typically larger in scope, so
they can average enough data to discount localized noisy pixels.
This results in less accurate localization of the detected edges.
Edge structure: Not all edges involve a step change in intensity.
Effects such as refraction or poor focus can result in objects with
boundaries defined by a gradual change in intensity. The operator
needs to be chosen to be responsive to such a gradual change in
those cases. Newer wavelet-based techniques actually character-
ize the nature of the transition for each edge in order to distinguish,
for example, edges associated with hair from edges associated
with a face.
There are many ways to perform edge detection. However, the
majority of different methods may be grouped into two categories:

Citation: Bindu Bansal, et al. (2012) Comparison of Various Edge Detection Techniques. Journal of Information and Operations Manage-
ment ISSN: 0976–7754 & E-ISSN: 0976–7762, Volume 3, Issue 1, pp– 103-106.

Copyright: Copyright© 2012 Bindu Bansal, et al. This is an open-access article distributed under the terms of the Creative Commons Attrib-
ution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are
credited.

Bioinfo Publications 104

 Gradient: The gradient method detects the edges by look-
ing for the maximum and minimum in the first derivative of
the image.

 Laplacian: The Laplacian method searches for zero cross-
ings in the second derivative of the image to find edges. An
edge has the one-dimensional shape of a ramp and calcu-
lating the derivative of the image can highlight its location.
Suppose we have the following signal, with an edge shown
by the jump in intensity below:

Suppose we have the following signal, with an edge shown by the
jump in intensity below:

If we take the gradient of this signal (which, in one dimension, is
just the first derivative with respect to t) we get the following:

Clearly, the derivative shows a maximum located at the center of
the edge in the original signal. This method of locating an edge is
characteristic of the “gradient filter” family of edge detection filters
and includes the Sobel method. A pixel location is declared an
edge location if the value of the gradient exceeds some threshold.
As mentioned before, edges will have higher pixel intensity values
than those surrounding it. So once a threshold is set, you can com-
pare the gradient value to the threshold value and detect an edge
whenever the threshold is exceeded. Furthermore, when the first
derivative is at a maximum, the second derivative is zero. As a
result, another alternative to finding the location of an edge is to
locate the zeros in the second derivative. This method is known as
the Laplacian and the second derivative of the signal is shown
below:

Edge Detection Techniques

Robert’s cross Operator
The Roberts Cross operator performs a simple, quick to compute,
2-D spatial gradient measurement on an image. Pixel values at
each point in the output represent the estimated absolute magni-
tude of the spatial gradient of the input image at that point.
The operator consists of a pair of 2×2 convolution kernels as
shown in Figure. One kernel is simply the other rotated by 90°. This
is very similar to the Sobel operator.

Fig.2- Roberts operator

These kernels are designed to respond maximally to edges running
at 45° to the pixel grid, one kernel for each of the two perpendicular
orientations. The kernels can be applied separately to the input
image, to produce separate measurements of the gradient compo-
nent in each orientation (call these Gx and Gy). These can then be

combined together to find the absolute magnitude of the gradient at
each point and the orientation of that gradient. The gradient magni-
tude is given by:

although typically, an approximate magnitude is computed using:

which is much faster to compute.
The angle of orientation of the edge giving rise to the spatial gradi-
ent (relative to the pixel grid orientation) is given by:

Prewitt’s Operator
Prewitt operator is similar to the Sobel operator and is used for
detecting vertical and horizontal edges in images.
Laplacian of Gaussian (LoG)
The Laplacian is a 2-D isotropic measure of the 2nd spatial deriva-
tive of an image. The Laplacian of an image highlights regions of
rapid intensity change and is therefore often used for edge detec-
tion. The Laplacian is often applied to an image that has first been
smoothed with something approximating a Gaussian Smoothing

filter in order to reduce its sensitivity to noise. The operator normal-
ly takes a single graylevel image as input and produces another
graylevel image as output.
The Laplacian L(x,y) of an image with pixel intensity values I(x,y) is
given by:

Since the input image is represented as a set of discrete pixels, we
have to find a discrete convolution kernel that can approximate the
second derivatives in the definition of the Laplacian.
Canny’s Edge Detection Algorithm
The Canny edge detection algorithm is known to many as the opti-
mal edge detector. Canny's intentions were to enhance the many
edge detectors already out at the time he started his work. He was
very successful in achieving his goal and his ideas and methods
can be found in his paper, "A Computational Approach to Edge
Detection". In his paper, he followed a list of criteria to improve
current methods of edge detection. The first and most obvious is
low error rate. It is important that edges occurring in images should
not be missed and that there be NO responses to non-edges. The
second criterion is that the edge points be well localized. In other
words, the distance between the edge pixels as found by the detec-
tor and the actual edge is to be at a minimum. A third criterion is to
have only one response to a single edge. This was implemented
because the first 2 were not substantial enough to completely elimi-
nate the possibility of multiple responses to an edge.
Based on these criteria, the canny edge detector first smoothes the
image to eliminate and noise. It then finds the image gradient to
highlight regions with high spatial derivatives. The algorithm then
tracks along these regions and suppresses any pixel that is not at
the maximum (non maximum suppression). The gradient array is

Journal of Information and Operations Management
ISSN: 0976–7754 & E-ISSN: 0976–7762 , Volume 3, Issue 1, 2012

Comparison of Various Edge Detection Techniques

http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm

Bioinfo Publications 105

now further reduced by hysteresis. Hysteresis is used to track
along the remaining pixels that have not been suppressed. Hyste-
resis uses two thresholds and if the magnitude is below the first
threshold, it is set to zero (made a non edge). If the magnitude is
above the high threshold, it is made an edge. And if the magnitude
is between the 2 thresholds, then it is set to zero unless there is a
path from this pixel to a pixel with a gradient above T2.
Step 1
In order to implement the canny edge detector algorithm, a series
of steps must be followed. The first step is to filter out any noise in
the original image before trying to locate and detect any edges.
And because the Gaussian filter can be computed using a simple
mask, it is used exclusively in the Canny algorithm. Once a suitable
mask has been calculated, the Gaussian smoothing can be per-
formed using standard convolution methods. A convolution mask is
usually much smaller than the actual image. As a result, the mask
is slid over the image, manipulating a square of pixels at a time.
The larger the width of the Gaussian mask, the lower is the detec-
tor's sensitivity to noise. The localization error in the detected edg-
es also increases slightly as the Gaussian width is increased. The
Gaussian mask used in my implementation is shown below.

Step 2
After smoothing the image and eliminating the noise, the next step
is to find the edge strength by taking the gradient of the image. The
Sobel operator performs a 2-D spatial gradient measurement on an
image. Then, the approximate absolute gradient magnitude (edge
strength) at each point can be found. The Sobel operator uses a
pair of 3x3 convolution masks, one estimating the gradient in the x-
direction (columns) and the other estimating the gradient in the y-
direction (rows). They are shown below:

The magnitude, or edge strength, of the gradient is then approxi-
mated using the formula: |G| = |Gx| + |Gy|
Step 3
The direction of the edge is computed using the gradient in the x
and y directions. However, an error will be generated when sumX
is equal to zero. So in the code there has to be a restriction set
whenever this takes place. Whenever the gradient in the x direction
is equal to zero, the edge direction has to be equal to 90 degrees
or 0 degrees, depending on what the value of the gradient in the y-
direction is equal to. If GY has a value of zero, the edge direction
will equal 0 degrees. Otherwise the edge direction will equal 90
degrees. The formula for finding the edge direction is just:
Theta = invtan (Gy / Gx)
Step 4
Once the edge direction is known, the next step is to relate the
edge direction to a direction that can be traced in an image. So if
the pixels of a 5x5 image are aligned as follows:

Then, it can be seen by looking at pixel "a", there are only four
possible directions when describing the surrounding pixels - 0 de-
grees (in the horizontal direction), 45 degrees (along the positive
diagonal), 90 degrees (in the vertical direction), or 135 degrees
(along the negative diagonal). So now the edge orientation has to
be resolved into one of these four directions depending on which
direction it is closest to (e.g. if the orientation angle is found to be 3
degrees, make it zero degrees). Think of this as taking a semicircle
and dividing it into 5 regions.

Therefore, any edge direction falling within the yellow range (0 to
22.5 & 157.5 to 180 degrees) is set to 0 degrees. Any edge direc-
tion falling in the green range (22.5 to 67.5 degrees) is set to 45
degrees. Any edge direction falling in the blue range (67.5 to 112.5
degrees) is set to 90 degrees. And finally, any edge direction falling
within the red range (112.5 to 157.5 degrees) is set to 135 degrees.
Step 5
After the edge directions are known, non maximum suppression
now has to be applied. Non maximum suppression is used to trace
along the edge in the edge direction and suppress any pixel value
(sets it equal to 0) that is not considered to be an edge. This will
give a thin line in the output image.
Step 6
Finally, hysteresis is used as a means of eliminating streaking.
Streaking is the breaking up of an edge contour caused by the
operator output fluctuating above and below the threshold. If a
single threshold, T1 is applied to an image, and an edge has an
average strength equal to T1, then due to noise, there will be in-
stances where the edge dips below the threshold. Equally it will
also extend above the threshold making an edge look like a dashed
line.
Tool Used
The methods have been developed in Matlab 7.0.1 GUI. The
graphical interface allows a better representation of the image with
its output image. Visual appearance of the image has been used
as a deciding factor for the finding the best method of edge detec-
tion.
Results and Disscussions

Welcome screen for the project is

Fig.6- Welcome screen for “COMPARISON OF VARIOUS EDGE
DETECTION TECHNIQUES”
Clicking on the Next we will be forwarded to next screen of the
algorithms used.Choosing the technique we will go to the next
screen for selecting input image.

Bindu Bansal1, Jasbir Singh Saini2, Vipan Bansal3, and Gurjit Kaur4

Journal of Information and Operations Management
ISSN: 0976–7754 & E-ISSN: 0976–7762 , Volume 3, Issue 1, 2012

Bioinfo Publications 106

Putting the image on the coordinates looks like.Choosing the im-
age we will apply a particular method on it. The results for the four
techniques are as follows.
Result for Prewitts Operator.
Result for LoG Operator
Result for Roberts Operator
Result for Canny’s Edge Detection

Concusion
Gradient-based algorithms such as the Prewitt filter have a major

drawback of being very sensitive to noise. The size of the kernel
filter and coefficients are fixed and cannot be adapted to a given
image. An adaptive edge-detection algorithm is necessary to pro-
vide a robust solution that is adaptable to the varying noise levels.
Gradient-based algorithms such as the Prewitt filter have a major
drawback of being very sensitive to noise. The size of the kernel
filter and coefficients are fixed and cannot be adapted to a given
image. An adaptive edge-detection algorithm is necessary to pro-
vide a robust solution that is adaptable to the varying noise levels
of these images to help distinguish valid image contents from visu-
al artifacts introduced by noise.
The performance of the Canny algorithm depends heavily on the
adjustable parameters, σ, which is the standard deviation for the
Gaussian filter, and the threshold values, ‘T1’ and ‘T2’. σ also
controls the size of the Gaussian filter. The bigger the value for σ,
the larger the size of the Gaussian filter becomes. This implies
more blurring, necessary for noisy images, as well as detecting
larger edges. As expected, however, the larger the scale of the
Gaussian, the less accurate is the localization of the edge. Smaller
values of σ imply a smaller Gaussian filter which limits the amount
of blurring, maintaining finer edges in the image. The user can
tailor the algorithm by adjusting these parameters to adapt to dif-
ferent environments.Canny’s edge detection algorithm is computa-
tionally more expensive compared to Sobel, Prewitt and Robert’s
operator. However, the Canny’s edge detection algorithm performs
better than all these operators under almost all scenarios.

References

[1] Argyle E (1971) IEEE, vol. 59, pp. 285-286.
[2] Bergholm F (1986) 8th Int. Conf. Pattern Recognition, Paris,

France, pp. 597- 600.
[3] Matthews J (2002) An introduction to edge detection: The

sobel edge detector.
[4] Roberts L.G (1965) ser. Optical and Electro-Optical Infor-

mation Processing. MIT Press.
[5] Gonzalez R.C. and Woods R.E (2002) 2nd ed. Prentice Hall.
[6] Torre V and Poggio T.A (1986) IEEE Trans. Pattern Anal.

Machine Intell., vol. PAMI-8, no. 2, pp. 187-163.
[7] Davies E.R (1986) Partern Recognition Lett.,vol. 4, pp. 11 1-

120.
[8] Frei W and Chen C.C (1977) lEEE Trans. Comput., vol. C-26,

no. 10, pp. 988-998.
[9] Grimson W.E and Hildreth E.C (1985) IEEE Trans. Pattern

Anal. Machine Intell., vol. PAMI-7, no. 1, pp. 121-129.
[10] Haralick R.M (1984) IEEE Trans. Pattern Anal. Machine In-

tell., vol. PAMI-6, no. 1, pp. 58-68.
[11] Canny J.F (1986) IEEE Trans. Pattern Anal. Machine Intell.,

vol. PAMI-8, no. 6, pp. 679-697.
[12] Canny J (1983) Master’s thesis, MIT.
[13] Kirsch R.A (1971) Comput. Eiorned. Res., vol. 4, pp. 315-328.
[14] Hueckel M.H (1973) J. ACM, vol. 20, no. 4, pp. 634- 647.
[15] Yakimovsky Y (1976) JACM, vol. 23, no. 4, pp. 598-619.

Comparison of Various Edge Detection Techniques

Journal of Information and Operations Management
ISSN: 0976–7754 & E-ISSN: 0976–7762 , Volume 3, Issue 1, 2012

